Posts Tagged ‘waste’

EFP Brief No. 153: Extremadura Regional Foresight Exercise

Tuesday, May 24th, 2011

The Extremadura region has carried out the first regional foresight exercise to help devise a global strategy for the socio-economic
development of the region so as to enhance economic growth. The main agents involved in regional development set out to plan a desirable
future for the region and clearly define investment priorities. The Extremaduran foresight exercise aimed at projecting the position
of key sectors and technologies in the context of future international trends.

EFMN Brief No. 153_Extremadura_Foresight

EFP Brief No. 140: Security of Energy Supply: A Quantitative Scenario Study on Future Energy Systems for the EU25 for 2030

Saturday, May 21st, 2011

The quantitative scenario study on the EU energy system focuses on the security of energy supply and different alternatives for the EU energy system. Five different scenarios for the EU25 energy system by 2030 were developed. The scenarios were then grouped into two main families called “advanced conventional” and “domestic action” and their respective pros and cons analysed with regard to all relevant EU-policy fields for providing policy recommendations.

The Dual Challenge of Climate Protection
and Security of Energy Supply

The EU currently faces two different challenges with regard to the future development of the EU energy system and the question of the ‘security of energy supply’. Firstly, the era of cheap and abundant conventional energy resources appears to be coming to an end. This means that maintaining reliable supply levels implies significant and timely investment in new and more expensive oil and gas production, which will put upward pressure on world market prices for oil, gas and, to a lesser extent, coal – with potential impacts for economic development and growth. Furthermore, the geographical concentration of oil and gas export potential, combined with newly emerging
large energy importing economies (i.e. China, India) can be expected to intensify international competition for market access to the declining resources and, ultimately, may also generate international conflicts.
Distinct from these issues, a second challenge has emerged. Climate change requires substantial reductions in global
greenhouse gas emissions, which essentially means using less energy and switching to carbon neutral energy carriers.
Both challenges require determined and timely action from the EU and its member states, as well as from the international community at large. A conventional, albeit advanced, “business as usual” (BAU) strategy is likely to face increasing problems when trying to adequately cope with these simultaneous challenges. In order to analyse important strategies and/or technology decisions (higher/lower nuclear share in electricity generation, increased energy efficiency and use of combined heating and power [CHP], increased use of renewable energies) and highlight
a range of possible future energy solutions for the EU25, five different scenarios have been developed according to the strategies and targets requested by the European Parliament’s Committee on Industry, Research and Energy (ITRE).

Five Options to Go Ahead

In order to draw different possible futures of the EU energy system, five scenarios based on two main sources were designed. The basic data, economic assumptions and the main results for the BAU scenario were derived from the latest available EU energy and transport projections (Decker 2006, Mantzos 2006, Mantzos & Capros 2006). Demand-side projections and analyses of higher penetrations of energy efficiency and renewable energies were derived from a recent scenario analysis by the Wuppertal Institute (Lechtenböhmer et al. 2005a/b). The quantification and combination of potentials, costs, strategies, policies and measures, and the calculation of scenarios were carried out using the Wuppertal Scenario Technique.

In the business as usual (BAU) scenario, the continuation of energy policy trends would already lead to a strong primary energy efficiency increase within the EU25. However, this increase would not be sufficient to compensate for growing GDP. As a consequence, primary energy demand would increase by almost 15% and import dependency by more than a third. Due to an increased share of renewable energy sources (RES) and a switch to natural gas, CO2 emissions would increase by only 3% to 6.6%, depending on the nuclear energy policy. With regard to climate policy, it is assumed in the BAU scenario that the EU25 will accept international emission reduction targets for the commitment periods after 2012 of 15% by 2020 and 30% by 2030.

The N+ scenario – as defined in accordance with the request by the ITRE committee – is a variant of the BAU scenario based on the expansion of nuclear energy (thus N+). While in the BAU scenario nuclear capacity declines by 28% from 141 GW (2000) to 101 GW in 2030, in the N+ scenario the construction of about ten more new nuclear power plants of 1300 MW each is assumed, which would result in a nuclear capacity of about 126 GW in 2030 – or 25% more than in the BAU scenario. CO2 emissions in power and steam generation decrease by about 6.6% vs. BAU by 2030, whereas total emissions from the EU25 decrease by 1.9%. Furthermore, this scenario also includes the use of carbon capture and storage (CCS), which can further reduce CO2 emissions, albeit fairly modestly in the case of the EU (another 6%~7% of the power sector emissions compared to BAU).

The N– scenario marks the other end of a range of possible nuclear energy BAU scenarios. Power plants are assumed to perform less well in this scenario and this, together with waste issues and a stronger perception of the risks of nuclear energy, combines to increase the pressure on plant operators. Consequently, no new nuclear power plants are commissioned and a in 2030. In total, CO2 emissions in this scenario would be at a level of 72 million tonnes, or 1.9%, more than in the BAU scenario by 2030.

Table 1: Comparison of the scenarios – results for 2030
 

 

Scenario  

CO2 emissions (% ∆

1990)

Primary energy

demand

(% ∆

1990)

Import dependency Nuclear share in electricity

generation

RES

share in

PE demand

Energy effi-

ciency

growth rate

(2000 – 2030)

BAU +4.7% +14.6% 64.8% 18.7% 12.2% 1.5%/ year
N+

(+CCS)

+3.0%

(+1.3%)

+16.4% 62.7% 23.6% 12.0%
N +6.6% +12.2% 66.5% 13.8% 12.4%
EE –18.8% – 8.2% 59.8% 15.7% 15.0% 2.2%/ year
RE – 45.1% – 20.1% 49.1% 16.4% 31.4% 2.7%/ year

Source: own calculations, Wuppertal Institute, 2006

 

The energy efficiency (EE) scenario assumes strong policy at EU level, as well as within the member states, targeted at accelerating the rate of increase of energy efficiency in order to reach a level of energy efficiency 50% higher than in the BAU scenario by 2030. This means that energy efficiency (GDP per ktoe primary energy use) would increase by 2.2% per year and reach 10.5 MEur/ktoe in 2030 (BAU: 8.5).

The renewable energy expansion (RE) scenario describes a restructuring towards a renewable energy system with a target of approaching a renewable energy supply as high as possible by 2030. To achieve such a high share of renewable energy, the scenario combines an even stronger drive towards energy efficiency (11.9 MEur/ktoe by 2030) with an accelerated expansion strategy of renewable energies, which reach a share of 31% of total primary energy supply in 2030. This strategy depends on the feasibility of the projected 34% share of fluctuating energies (wind, hydro, solar, tidal and wave) in the electricity system and on the feasibility of accelerating energy efficiency improvement to 2.7% per year.

Policy Choices

The five scenarios developed for the study have been analysed with regard to the core energy policy fields. Brief discussions on recent trends, followed by implications for policy needs with regard to the different scenarios, have been discussed for each scenario.

The energy issues considered in this report interact directly and indirectly with many European policies, in particular the climate policy, the Lisbon strategy and the external (energy markets) policy, which do not focus exclusively on energy but function as framework policies. These policy areas with wider scope can significantly influence the feasibility of potential pathways for the development of the energy system. In addition to these crosscutting policies, the following key energy policies are touched upon in the study: single European energy market, energy efficiency, renewable energies and energy technology policy.

Policies on EU External Energy Markets

The comparison of scenarios with regard to policies on EU external energy markets shows that quite different challenges lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – particular emphasis would be needed on external energy supply through the establishment of stable political relations with oil and gas producing countries and (for gas) transit countries and the mobilisation of huge investments– most of all for natural gas. In BAU/N+ the extended efforts to promote clean energy technology transfer in conjunction
with a widening use of emission trading (notably the EU’s emission trading system and clean development mechanism)
are, to some extent, favourable to global stability but, on the other hand, also need global political stability.
The energy efficiency scenario and a fortiori the renewable energy expansion scenario would significantly relieve the
pressure on external supplies to the EU due to decreased imports, while offering additional options to mitigate the worldwide depletion of fossil resources.

Single European Energy Market

In spite of the general current policy lines for the creation of the legal and technical provisions for a single European energy market, which are important in all scenarios and have still to be developed, quite different challenges would lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – current
policy trends would have to be pursued and even accelerated. Large investment would be needed for improvements of gas
and electricity networks – about € 45 bn to € 50 bn for electricity grid investment including cross-border transmission, about € 11 bn to € 14 bn for long distance gas transmission, gas storage and liquefied natural gas terminals (CESI et al. 2005) and about € 800 bn over the 25-year scenario period for huge replacements in the existing stock of condensing power plants. The energy efficiency scenario and, to an even greater extent,
the renewable energy expansion scenario would present significant new challenges regarding accelerating progress in
energy efficiency and the restructuring of the energy system towards higher shares of renewable energy sources and of
CHP in district heating and industry. Grid investments for electricity would be expected to be near the upper limit of the above-mentioned numbers, while those for natural gas would approach the lower end. Investments for new power generation would be 20% lower in the EE scenario than in the BAU scenario and 10% lower in the RE scenario. In the RE scenario the effect of much lower capacity is partly offset by higher cost per kilowatt installed. Furthermore, investment would be completely different. While even in the BAU scenario investments in new CHP and renewable capacities are projected to overtake investments in fossil and nuclear generation, the latter will stand in the EE scenario for only 20% of total investment and in the RE scenario for less than 10%.

Policy for Energy Efficiency

The comparison of the current EU policy towards energy efficiency with the three scenarios – BAU, EE and RE – shows
some crucial results. The current EU demand side energy efficiency policy would (by definition) be sufficient in many fields to realise the BAU scenario as well as the two nuclear scenarios N+/N–. However, particularly in the transport sector, in electrical appliances and in industry, further action would be needed. Further action would be necessary as well to protract these policies until 2030. On the other hand, the current political targets with
respect to energy efficiency, as set out by the Green Paper “Doing more with less” and the Energy End-Use Efficiency
Directive, would not be achieved in the BAU scenario. A much stronger policy for energy efficiency in the EU would
be needed in order to meet the energy efficiency and the renewable energy expansion scenarios. This policy would have to instigate strong and rapid action in order to implement ambitious efficiency targets close to the technical optimum, introduce further stepwise improvements in the energy efficiency of cars, appliances, buildings and businesses, strengthen technology development and provide substantial financial support and appropriate institutions. The evolution in energy market design would also affect the progress in energy efficiency and renewable
energy use by affecting end use prices, investment in new and efficient (CHP) generation capacity and the prospects for the introduction of demand side management policies.

Policy for Renewable Energies

It is assumed that the EU will pursue a very active policy to promote renewable energies in all scenarios. As the analysis of the existing policy shows, broad additional activities are indispensable even in the BAU scenario. However, in this scenario – as in all the others apart from the RE scenario – set targets will be missed and the EU would have to solve the problem of further fostering a supportive framework for renewable energies
against a background of possible disappointment. In the renewable energy expansion scenario on the other hand,
both current targets and ambitious targets for the future (20% in 2020, 35% in 2030) are achievable. However, the scenario also illustrates that these targets require a substantial restructuring of the whole energy system and economy by using the opening window of opportunity presented by the ageing energy system and its subsequent high reinvestment need. It appears that current policy for renewable energy – in spite of its impressive success – is not yet in a position to implement the changes needed for the realisation of this scenario.

Conclusion and Policy Implications

Two Ways to Go

The scenarios discussed in this report can be grouped into two main strategies.

The first type of strategy could be called “advanced conventional”. This route is described by the BAU scenario combined with the N+ scenario and specific greenhouse gas mitigation options of carbon capture and storage and, particularly, the use of clean technology transfer and other flexible mechanisms to achieve emission reductions outside the EU.

The other type of strategy, “domestic action”, relies much more on the domestic potential of renewable energy sources and energy efficiency and seems to have the capability to adequately cope with both major challenges so that the risks emanating from these are significantly lower.

Both strategies have crucial preconditions that may pose severe challenges to their feasibility. The advanced conventional strategy crucially relies on the successful implementation of an active foreign energy and technology transfer policy. Strong international competition for energy resources may become an increasing threat for this crucial foreign policy link. However, this scenario would carry less risk with respect to the management of change inside the domestic European society, since changes tend to be less radical than in alternative scenarios. The domestic action strategy, on the other hand, would swap, to some extent, the external threats from climate change and geopolitical turmoil for bigger challenges with respect to the management of the more radical changes inside the domestic European society (i.e. within the EU and its member states). More specifically, this strategy would stand or fall on the successful restructuring of the EU energy system and the bulk of all investment decisions.

Robust Strategies

In spite of the diverging, and at least partly mutually exclusive, directions in which energy policy could steer (energy) policy choices, there are a number of policy actions that would be required in any strategy and which differ only in terms of intensity. Consequently, these policy areas should be given high priority for securing energy supply regardless of the strategy prioritised.

  • The first strategy is enhancing demand side energy efficiency including cogeneration.
  • The next robust option concerns renewable energies. All the scenarios assume high increases in this area as well, particularly in wind power generation and biomass use. What is more, some policies are already partly in place and the current targets on the EU level already correspond to a very ambitious RE scenario, but need to be supported by stronger policies and expanded by 2020 and 2030.
  • In the energy market overall, and taking into account the efforts being made to enhance energy efficiency, it is also important that retail pricing of electricity appropriately reflect its scarcity and emission impacts on the wholesale market.
  • Robust steps towards a future EU external energy and climate policy include the fostering of clean development and clean technology transfer, as this will strengthen international relations, partly relieve demand pressure on energy markets, create additional or strategically needed emission credits and expand markets for renewable and efficiency technologies, which would, in turn, support the domestic development of these technologies.

 

Authors: Stefan Lechtenböhmer        stefan.lechtenboehmer@wupperinst.org

Maike Bunse           maike.bunse@wupperinst.org

Adriaan Perrels       adriaan.perrels@vatt.fi

Karin Arnold, Stephan Ramesohl, Anja Scholten, Nikolaus Supersberger

Sponsors: European Parliament, Committee on Industry, Research and Energy (ITRE), IP/A/ITRE/ST/2005-70
Type: Single issue
Organizer: Wuppertal Institute for Climate, Energy, Environment, Doeppersberg 19, 42103 Wuppertal, Germany, info@wupperinst.org; Government Institute for Economic Reasearch VATT, Arkadiankatu 7, 00101 Helsinki, Finland, webmaster@vatt.fi
Duration: 01/2006-08/2006
Budget: n.a.
Time Horizon: 2030
Date of Brief: April 2008

Download: EFMN Brief No. 140_ Security of Energy Supply

Sources and References

Cesi et al. (2005): Centro Elettrotecnico Sperimentale Italiano, Instituto de

Investigacion Tecnologica, Mercados Energeticos, Ramboll TENEnergy Invest.

Decker, M. (2006): New (2005) Energy Baseline, Presentation to National Emission Ceilings and Policy Instruments Working Group, Meeting on 1. 2. 2006.

Lechtenböhmer, et al. (2005a): Target 2020, Policies and Measures to reduce Greenhouse gas emissions in the EU, Scenario analysis on behalf of WWF-European Policy Office, Wuppertal, Brussels.

Lechtenböhmer et al. (2005b): Energy efficiency as a key element of the EU’s post-Kyoto strategy: results of an integrated scenario analysis. In: Energy savings: what works & who delivers, ECEEE 2005 Summer Study Proceedings; volume 1. Stockholm: Europ. Council for an EnergyEfficient Economy, 2005, p. 203-212.

Lechtenböhmer et al. (2006): Security of Energy Supply – The Potential and Reserves of Various Energy Sources, Technologies Furthering Self Reliance and the Impact of Policy Decisions. Study on behalf of the European Parliament. IP/ITRE/ST/2005-70.

Lechtenböhmer et al. (2007): The Blessings of Energy Efficiency in an Enhanced EU Sustainability Scenario. In: eceee 2007 Summer Study Proceedings: Saving energy – just do it! 4-9 June 2007. La Colle sur Loup, France. ISBN 978-91-633-0899-4.

Mantzos, L. (2006): PRIMES model of scenario results for the EU25, NEC-PI Meeting, July 2006, Brussels.

Mantzos, L., Capros P. (2006): European energy and Transport. Scenarios on energy efficiency and renewables, Ed.: DG TREN, Brussels.

EFP Brief No. 138: Results of Lab on ‘Old and New Energy’

Saturday, May 21st, 2011

The Club of Amsterdam set up an ‘Old and New Energy Lab’ designed to generate novel and potentially viable plans of action for dealing with energy issues by leveraging brainstorming methods to produce innovative thinking and bypass preconceived ideas and assumptions. The process tapped into the expertise of ‘thought leaders’ chosen for their diversity so as to maximise the fertility of discussions.

Lab Challenges to Think Outside the Box

Diminishing reserves of fossil fuels, climate change, geopo-litical factors and a wave of technological advances are bring-ing complex pressures to bear on the landscape of energy gen-eration and consumption. Change seems inevitable, but react-ing appropriately is a challenge. This is especially so when limited modes of supply and consumption have been en-trenched for extensive periods, as is the case with the energy landscape. This can make it very hard for people to think ‘out-side the box’ – arguably much needed at the moment.Thus the challenge addressed at ‘The Lab’ was to bypass pre-conceptions and traditional ways of thinking. Participants were called upon to brainstorm possibilities and then validate the resulting ideas with some tangible, realistic scenarios.

Conceiving Future Scenarios – the Methodology

Principal approaches employed were Socratic discourse and a future scenario method. Participants were asked to identify a set of driving ‘values’ deemed desirable (e.g. equal access to resources, freedom, quality of life, stability etc.). Socratic dis-course and other techniques were applied to open up discus-sion to the broadest possible level. The outcome was the ob-servation of numerous facts, trends, constraints etc.
The resulting ‘facts’ were then fed into an analysis based on the future scenario method. The values identified earlier were used to drive the scenarios, which were to envision a positive future ten years hence (the goal being to identify possible so-lutions).
Four scenarios were created by choosing two drivers of change: governance and economy. Note that there is nothing absolute about the choice of drivers or even the number of drivers con-sidered, but these were the ones considered most important.
These drivers define the axes of a graph depicting four different environments (symbolized by the numbered circles in the diagram)derived from the possible combinations of extreme cases of both drivers. These environments provided the basis for the scenarios.

138_bild1

Keep in mind that these scenarios are not predictions but simply tools to guide discussion from exploration to identification of potential solutions and analysis of important trends and factors (political, cultural, technological, etc.) and their interactions.

Participants

Four ‘thought leaders’ brought expertise to help keep discussion realistic, whether on technological, economic, political or social levels. Their backgrounds included

  • analysis of new technologies and their commercial and social impact;
  • understanding corruption and conflict resulting from exploitation of natural resources and international trade systems;
  • energy resource analysis and prediction in the context of the International Energy Agency;
  • nuclear policy and law.

Energy Futures – the Four Scenarios

Observations on trends and forces will be split into socioeconomic and cultural, and technological and sectoral. The four scenarios based on these trends and forces will then be outlined before looking at identified opportunities and challenges, which are in turn fed by the scenarios.

Scarcity of Supply, Potential for Conflict, and Environmental Concern – Socio-economic and Cultural Trends/Trend Breaks
  • Rising energy production costs.
  • Concern about climate change (global warming).
  • Increasing sensitivity to energy supply disruption.
  • Concerns over energy dependence and vulnerability.
  • Impending scarcity of fossil fuels with increasing demand from rapidly advancing nations such as China and India.
  • Increasing global tension relating to energy supplies and the possibility of resulting conflict.
  • Environmental concerns about nuclear energy.
  • Increasing interest in alternative energy sources.
  • Increasing interest and efforts in energy conservation.
  • Development of carbon trading schemes.
More Choices and Technological Advances –  Technological and Sectoral Trends/Trend Breaks
  • Capability (in some markets) for energy purchasers to also sell to the grid.
  • Choice (in some markets) over source of energy bought.
  • The nanotechnology ‘revolution’ impacting multiple, interacting energy-related technologies.
  • Multiple parallel and rapid advances in solar technologies promising greater efficiency and/or lower cost.
  • Advances in fuel cells (in many sectors).
  • Advances in batteries and ultracapacitors.
  • Developments in thermoelectrics offering promise for waste heat reclamation and geothermal energy.
  • Availability of smart energy-saving materials (electrochromic or anti-IR window coatings etc.).
  • Lighter/ stronger metals, ceramics and composites.
  • Efficient lighting (especially nanostructured LEDs).
  • Improvements in coal/gas/biomass-to-liquid processes, often driven by improved technology (e.g. nanocatalysis).
  • Advances in hydrogen production and storage.
  • Potential developments in artificial photosynthesis.
  • Potential for low-loss electrical transmission.
  • New CO2 separation technologies.
  • Improved nuclear fission technologies.
The Four Scenarios

Four scenarios were framed assuming environments as described in the methodology section. Remember that they are designed to be optimistic views of a situation ten years hence. Their creation allowed disparate ideas to be brought together in a framework where interactions and socio-economic and political realities could be considered.

Not all the scenarios were recorded in the same degree of detail. Different groups of participants chose different styles of presentation.

 Scenario 1 – ‘Harvesting Energy’ (emerging economy, minimal governance)

The environment envisaged was a poor, sub-Saharan country with village communities as the dominant settlement pattern, poor access to resources and minimal infrastructure. The village in this scenario was assumed to be remote but not overly far from a principal city.

The one plentiful resource is sunshine. New cheap photovoltaics and microloans allow the village to produce electricity. This gives rise to increased productivity and enables more flexibility in trading of staples such as vegetable and meat produce through refrigeration.

The small economic boost and decreasing costs of photovoltaics allow expansion of generating capacity. Direct energy sales become attractive in a future where fossil fuel is expensive and supplies unreliable and the village becomes a supplier of power from solar energy. Improved battery technologies and high fuel prices lead to more electric or hybrid vehicles. Households in and outside the village increasingly use batteries and pay for recharging.

The village has effectively shifted from subsistence agriculture to ‘farming’ sunlight, with batteries as the means of distribution.  The availability of power for transport attracts more vehicles and infrastructure improves. Then cables are laid to directly supply electricity to the nearby city. After all, the village now has the generating capacity, the expertise, and plentiful lowvalue land for expansion. Infrastructure experiences another boost, including communications. The village buys computers and the community now has Internet access. Educational opportunities increase dramatically. Over time the community becomes generally well-educated and thus capable of engaging in even more diverse and complex commercial activities.

Some time in the future (although maybe not in the ten-year frame), solar energy could be captured in a fuel created by artificial photosynthesis, allowing wider export of energy and opening up the solar farming model to more remote communities. This would require importing water (limiting displacement of battery use), but importing water is certainly preferable to importing oil in this (future) day and age.

Scenario 2 – ‘Central Energy Planning’ (emerging economy, strong central governance)

This scenario assumed a top-down, centrally-organised society with an emerging economy. China was offered as an example, on the assumption that much of the traditional communist philosophy still permeates the government, which regulates the allocation of resources. Short-term (business) thinking is constrained for the benefit of the collective when it comes to something as fundamental as national energy supply.

The immediate need for more energy to support growth is urgent. Coal is abundant and coal-fired power stations proliferate, with little thought given to environmental concerns. But this is only the first, quick fix, part of the plan, which is also influenced by oil imports for vehicles, the need to transport energy over great distances and the fact that even coal resources have limits.

Coal-to-liquid processes are used to produce clean diesel to help ease the dependence on oil imports, while a massive research effort creates low-loss electrical transmission based on high-temperature superconductors (doubly important because of the chosen alternative to coal – photovoltaics).

Huge solar ‘plains’ grow in the country’s remote, arid and impoverished west, bringing employment and commerce. Ultimately, the technology becomes simple plastic sheets that can be rolled out and clipped together. They contain nano-engineered structures that exploit the highly-efficient initial step of photosynthesis but feed the liberated electrons into the superconducting transmission lines and on to the energy-hungry coast. China soon becomes a major exporter of these technologies.

In the cities of the East, electric and hybrid cars are encouraged and manufactured. Coal is increasingly used only to produce diesel and dependence on foreign oil now rapidly disappears.

 Scenario 3 – ‘Energy Caps and Taxes’ (strong economy, strong central governance)

Sweden, which aims to become oil-free by 2021, might be an example.

A progressively increasing carbon tax is introduced for individuals and corporations. A flexible power supply network allows individuals to avoid a carbon tax by purchasing energy from sustainable sources. This encourages development of such sources – from the logging and papermaking industries using waste to produce electricity, heat and biofuels, down to individual households generating energy and selling any surplus to the grid.

Central support and legislation for energy-saving technologies in housing and transport increases their uptake through various means. The carbon tax imposes a cost on manufacturers for the lifetime emissions of their products.  The tax alone triggers substantial change, but more comes through governmentdriven, large-scale geothermal, hydroelectric and combined heat and power schemes.

 Scenario 4 – ‘Communicating Energy’ (strong economy, minimal governance, individual action)

This scenario is one of change through popular movements. Analogies might be seen in the growth in the popularity of ‘organic’ produce or that of ‘fair trade’ products, both of which evolved out of grass roots concern. For instance, we can help the environment by buying local produce rather than that shipped great distances, or eating less meat (such unlikely action probably highlights limits to this approach). Other individual contributions are switching lights off, car-pooling, capturing rainwater to water one’s garden or carbon offsetting schemes.

The key is understanding what can be done and creating a culture of willingness and responsibility. Communication is key and the Internet makes this possible as never before.

To some extent this scenario is happening now, but there are clearly limits to how much it can achieve without some topdown initiatives (or economic imperatives) added to the mix.

Top-down Action and Technological Advances are Critical for Seizing Opportunities

The fact that all but one of the scenarios could conceivably address all the main energy issues points to much opportunity. Exploiting this rapidly enough is a major challenge. Another obvious challenge is highlighted by Scenario 4, which suggests that, at least in the developed world, ‘people power’ is not enough and top-down governmental action may well be necessary. Economic and practical pressures would achieve the necessary changes eventually, but it is probably not advisable to wait for the hurricane to prove that you should not have made your house of straw. As for opportunities, the scenarios explored highlight those best. Scenario 1, ‘Harvesting Energy’,
perhaps best illustrates the dramatic achievement that might be had given only certain technological advances. Many other scenarios are possible, of course, and those developed were deliberately positive. But the consensus at The Lab was that all the scenarios were credible, so they probably do represent real opportunities.

Diverse Solutions, Proactive  Government and Advances  in Technology Are Key

In view of policy implications, the full two days of discussion and debate might be briefly summarized in the following manner.1

Oil dependence is a danger that needs addressing

Despite much disagreement about how close ‘peak oil’ is, all seemed to agree that action is needed now to reduce the developed world’s dependence on oil.

Solutions to the problems being faced will be diverse

Different environments are likely to beg different solutions and the diversity of technological developments that bear on the issues prevent simple answers and argue for multiple alternatives to be investigated.

The variation across the scenarios developed suggests that multiple approaches will be needed in parallel, covering conservation, alternative forms of generation, and storage and transmission technologies. The best solution or combination of solutions for a given region will vary with external factors (climate, population density, access to water, etc.) and with developments in numerous interacting technologies. The appropriate focus can vary dramatically depending on the existing situation. For example, a focus on coal in the short-term is sensible for China, if the aim is energy independence, while France might see nuclear in a similar light. In lower latitudes, solar energy will be more quickly economically viable than in higher latitudes, where geothermal may be a better choice. In all cases, conservation makes sense as a priority and gives the most rapid return on investment.

Given this diversity and uncertainty, it seems sensible to recommend broad investment in energy-related R&D and a systematic, inclusive, and iterative analysis of the energy situation at regional scales.

It is worth noting that only two currently achievable sources of energy are sufficient for global needs in the long-term and truly sustainable. They are solar and geothermal energy.

Areas of technological focus to be considered are just as diverse – see section 2 on technological and sectoral trends.

In the developed world government action is probably essential

The ramifications of energy supply disruption and the time needed to change our infrastructure suggest that appropriate change cannot be expected to arise from market and social forces. Accordingly, governments need to be a key player in developed countries. Proactive action from government is almost certainly necessary to avoid the risk of severe economic disruption.

Much of the rest is down to technological developments and their impacts on the economic competitiveness of certain technologies. Though solar emerged from the Lab as the winner in terms of chief long-term global energy sources, the means of capturing it, transporting it and using it produced no clear favourites. The range of possibilities from domestic to industrial to automotive applications in a diverse range of environments suggests that all avenues of research should be actively explored. Since solutions will likely be more complex than the current rather monolithic systems, flexibility, interoperability and rapid adaptability are critical success factors.

In the under-developed world, small changes or actions may have a large and lasting positive effect

When tackling the issue of poverty on a global scale, there may be a possibility of achieving much with little (Scenario 1), given certain technological shifts.

 

Authors: Paul Holister                  paul9@holisters.net
Sponsors: Club of Amsterdam
Type: Field/sector specific
Organizer: Humberto Schwab, humberto@clubofamsterdam.com, Felix Bopp, felix@clubofamsterdam.com
Duration: April 2007
Budget: n.a.
Time Horizon: 2017
Date of Brief: April 2008

Download: EFMN Brief No. 138_ Energy Lab

Sources and References

Club of Amsterdam, Lab on Old and New Energy, April 17 and 18, 2007, in Girona, Spain.

http://www.clubofamsterdam.com/content_list.asp?contentid= 655&contenttypeid=9 

The participating thought leaders were:

  • Nathalie Horbach – Centre for Energy, Petroleum and Mineral Law and Policy, University of Dundee;
  • Simon Taylor – director and co-founder, Global Witness;
  • Christof van Agt – independent participant, formerly at the International Energy Agency;
  • Paul Holister – technology impact consultant.

Humberto Schwab, director of the Club of Amsterdam and innovation philosopher, led the process.

EFP Brief No. 130: Migration: One of the Most Important Challenges for Europe

Saturday, May 21st, 2011

This brief presents major social, technological, economic, environmental and political trends and rationales for migration, followed by a number of strengths, weaknesses, opportunities and threats of migratory processes. In the last section, the brief concludes with a set of general policy options and some final remarks about the sources and data analysed.

EFMN Brief No. 130_Migration

EFP Brief No. 116: Regional Infrastructure Foresight

Friday, May 20th, 2011

“Regional Infrastructure Foresight” enables municipalities, engineers and decision makers in regional sanitation systems to develop a middle- to long-term strategy for a sustainable sanitation infrastructure. Identification of uncertainties and future challenges of the regional infrastructure’s context is carried out in a participatory scenario process. A broad range of possible integrated solutions for the sanitation system is evaluated from different stakeholders’ views. This approach allows handling of uncertainties of frameworks and of complexity of the system to find more adaptive system configurations for a sustainable sanitation system.

EFMN Brief No. 116 – RIF

EFP Brief No. 107: Key Technologies for France 2010

Friday, May 20th, 2011

“Key technologies 2010” is the third edition of a process, launched in 1995 by the Ministry of Industry. However, it differs from the previous  exercises with regard to its objectives, target and methodology (design, dissemination and monitoring). “Key Technologies 2010” results in a characterisation and prioritisation of a list of key technologies according to the long-term appreciation of their im-pact on the development of activities identified as being structuring for France. The methodology developed within this exercise in-cludes information collection and analysis, interviews with stakeholders from ministries and research organisations, the implementa-tion of working groups and a strong collaboration with regional actors.

EFMN Brief No. 107 – French Key Technologies

EFP Brief No. 95: ICT and Robotics in Agriculture and the Related Industries – a European Approach

Friday, May 20th, 2011

A Collaborative Working Group (CWG) under the Standing Committee for Agricultural Research (SCAR) has been formed to raise awareness on the research and development within the area of ICT and Robotics and to advise the European Commission. The CWG will assist in putting this field of research on the agenda in a European context as well as creating consensus among the most important stakeholders. This is done through dialogue and increased member state collaboration achieving synergy and creating optimal conditions for further development.

EFMN Brief No. 95 – ICT and Robotics in Agriculture

EFP Brief No. 90: Global Technology Revolution 2020

Friday, May 20th, 2011

The intention of this forward looking study was to inform the U.S. National Intelligence Council’s 2020 project – www.dni.gov/nic/NIC_2020_project.html – and help provide U.S. policymakers with a view of how world developments could evolve, identifying opportunities and potentially negative developments that might warrant policy action.

EFMN Brief No. 90 – Global Technology Revolution 2020

EFP Brief No. 79: Russian Critical Technologies 2015

Friday, May 20th, 2011

The Ministry of Education and Science of the Russian Federation conducted a foresight exercise aimed at identifying national S&T priorities and developing the list of critical technologies. The study was organized on a new methodological basis compared to the two previous exercises undertaken in 1996 and 2002. The results obtained were used as a background for the Federal Science and Technology Programme.

EFMN Brief No. 79 – Russian Critical Technologies 2015

EFP Brief No. 71: Technology Foresight Slovenia 2020

Friday, May 20th, 2011

The technology foresight study was conducted as part of the process of preparation for the mid term national R&D Programme 2006-2010 in Slovenia. This was the first national foresight exercise. It had several objectives: to promote the continuous forward thinking practice in society, to foster dialogue among main stakeholders in the innovation process, and to set preliminary R&D priorities for the future research and technology policy.

EFMN Brief No. 71 – Technology Foresight Slovenia 2020