Posts Tagged ‘technology’

EFP Brief No. 255: RIF Research & Innovation Futures

Wednesday, February 20th, 2013

RIF explores possible future ways of doing and organising research in order to inspire fresh thinking among research stakeholders about underlying potentials and looming risks in the present.

Drivers for New Ways of Doing Research

RIF was setting out from the observation that current ways of doing and organising research are experiencing a number of new phenomena, challenges and tensions such as:

  • Increasing demand for public participation in defining research priorities
  • Demand for early economic exploitation of research findings and subsequent protection of intellectual property right
  • Increasing call for creation of socially robust knowledge
  • Emergence of diversity of knowledge claims challenging the monopoly of “science” such as the Rise of citizens scientists
  • New technologies changing science practises such as big data, computer simulation, researcher social networks and e-publishing
  • Call for open access to research findings
  • Established publishing modes challenged by new players
  • Institutional diversification and change of established division of roles
  • Increasing engagement of industry in research activities
  • Turn in Research and Innovation Policy towards mission oriented strategies
  • Established notions of science excellence being contested
  • Increasing relevance of large technical infrastructures
  • Change in the global landscape of research, emergence of new countries leading publications

Tackling Tensions of Future Research Governance

In view of this background the RIF Foresight exercise defined the following objectives:

  • Systematize knowledge of the emerging patterns, trends and drivers of change of ways of doing and organising research.
  • Develop medium-term explorative scenarios of possible future models of doing and organising research in our knowledge societies at a time horizon 2020
  • Anticipate and assess possible challenges and tensions resulting from these scenarios
  • Develop long-term transformative scenarios of alternative development paths of the way we will do and organize research and innovation in our societies at a time horizon of about 2030
  • Identify policy issues and strategic options for the actors and stakeholders affected, as resulting from the two types of scenarios
  • Create an open debate between different communities contributing to knowledge dynamics from their respective perspectives and explore room for joint action.

Explorative and Transformative Scenarios

The core element of the RIF methodology is a two stage scenario process as shown in figure 1.

bild1

In a first stage the RIF team identified current trends and drivers of research practices and organisation through an in-depth stocktaking of literature, forward looking studies and strategy documents (Schaper-Rinkel et al. 2012). In a next step RIF set up a scenario process involving around 70 stakeholders with a wide range of backgrounds and perspectives within three interactive scenario workshops:

In the first workshop participants developed “explorative scenarios” with a mid-term time horizon by extrapolating today’s trends and drivers (c.f. RIF 2012). Out of these explorative scenarios they identified a set of tensions, junctures and dilemmas that could be emerging in the mid-term if current dynamics continue (c.f. figure 2).

The explorative scenario workshop comprised the following interactive methods:

 

  • plenary discussion and multi-criteria assessment for the selection of core trends
  • facilitated group brainstorming for projection of the selected factors into the mid-term future
  • open-space session for the final identification of tensions (c.f. figure 2)
  • self-organised group work for elaboration of the tensions

bild2

In the second transformative scenario workshop the RIF team and a few selected external participants with a background in the most relevant issues brought forward by the preceding workshop developed the “nuclei of change” from the previous workshop into draft transformative scenarios within plenary and group brainstorming sessions.

The third scenario workshop was dedicated to validation and enrichment of the transformative scenario drafts. A world café format enabled a constructive and structured futures’ dialogue:

On each world café table the team had placed a characteristic image and short descriptive paragraph for one transformative scenario draft. In group sessions of ca. half an hour participants commented on the drafts and enriched the scenarios. Several rounds were carried out so each participant was able to comment on at least two scenarios. One table had been reserved in case participants proposed additional scenarios, which was indeed the case when an entirely new wild card scenario was proposed by one of the participants.

In the second session participants relating to the four stakeholder groups science, policy, civil society and industry worked in separate groups. In a first step they defined their core strategic objectives with respect to research. Secondly, they assessed opportunities and threats for these targets for all six scenarios.

The RIF project has now arrived at the midterm of its duration. The next two workpackages will be dedicated to stakeholder debate on policy implications and strategic options emerging from the scenarios. For this purpose several participatory foresight workshops will be held. Some of these strategic conversations will be crosscutting while others will address specific stakeholder groups that are facing particularly relevant strategic issues according to the scenario analysis.

Broad Stakeholder Participation

The RIF team selected the participants of the Foresight exercise on the basis of a stakeholder analysis using (among others) the stakeholder classification scheme developed by Mitchell et al (1997). Representatives from the following institutional backgrounds participated in the workshops:

 

  • University based researchers (Professors, PhDs, students)
  • University administration
  • Research funding agencies
  • Foundations active in research funding
  • Regional policy agencies
  • Public research organisations
  • Research Ministries (national and EU level)
  • Large companies
  • SMEs
  • Science shops
  • Citzens’ science activists
  • Scientific journal editors
  • Science quality control agencies
  • Industrial associations
  • Trade unions
  • Health organisations
  • International researcher networks
  • Large research infrastructures

 

The majority of the participants came from different European countries representing some organisations from regional, national and European level but also from other continents and international organisations. RIF achieved a good balance between female and male participants.

From Slow Science to Competition 2.0

The RIF project is still on-going. Currently, the scenario report containing the explorative and transformative scenarios emerging from the stakeholder process is being finalised. The insights generated by the stocktaking and draft scenario building are available and summarised below.

The stocktaking (Schaper-Rinkel et al. 2012) pointed out six core dimensions of change in ways of doing and organising research:

  • Digitalization and virtualisation
  • Cooperation & Participation
  • Access
  • Impact
  • Globalisation & Internationalisation

Within these dimensions the analysis revealed the following tensions:

  • open science versus commodification of research
  • short-term project-orientation versus long-term development of new forms of research
  • abundance of scientific information versus shortage of individually manageable and reliable information
  • research collaboration versus competition for research funding
  • collaborative research versus individual incentives
  • diversity in research versus quality standards
  • scientific excellence that is associated with value-free, curiosity-driven research versus research that is relevant to contributing to societal needs
  • diversity versus uniformity
  • research efficiency versus foundational breakthroughs
  • diverse epistemic cultures in providing knowledge for decision-making

The foresight process outlined above generated seven transformative scenario drafts within the first two workshops:

Scenario I: Open Research Landscape

European research is coordinated by “Open Research Platforms (ORP)” where different types of globally connected actors align their funding activities. Each ORP runs an open knowledge sharing WIKI platform where researchers integrate their findings. The new gate-keepers of scientific quality are science & society social networks. University performance is judged by their contribution to the ORPs success.

Scenario II Divided Science Kingdom

The research landscape is divided between two extremes: strictly governed publicly-funded research applying traditional quality criteria versus an open “knowledge parliament” where knowledge claims and funding opportunities are continuously negotiated. Universities are highly diversified according to the two realms

Scenario III: Grand Challenges for real

European research and innovation is strictly organized around Knowledge and Innovation Communities (KICs) that develop solutions for key societal challenges through large scale socio-technical research and experimentation aligning diverse actors and knowledge types. Large shares of public budgets are used to finance the KICs in a coordinated manner. This happens in a period of reduced economic growth in Europe, where higher priority is given to other dimensions of quality of life.

Scenario IV: Tailored Research

The research landscape is coordinated through a fully tailored system of functions fulfilled by highly specialised actors that share revenues according to market rules. At the top of the pyramid, Research Assembling Organisations (RAOs) integrate the contributions of second and third tier research service providers into systemic solutions. A few actors define the rules of interaction and control access to research results and resources. Science is viewed as one of the key enablers for winning the global competition race.

Scenario V: Slow Science

A dedicated group of scientists, also known as “slow science community”, is orienting re-search towards societal and policy needs and placing high emphasis on work-life balance and on making the results of their research work effective in practice. The community is locally rooted, globally connected and funded by bottom-up crowd-funding from diverse sources.

Scenario VI: Competition 2.0 – European public research divided

Driven by business pressure, the Europe’s emphasis is on innovation-oriented research with a focus on improving mid-term global competitiveness. Independent basic research has almost vanished and struggles for funding from public sources.

Scenario X Happiness 2030

To reach the ambitious requirements of wellbeing and happiness until 2030, by 2020 a fully distributed research system based on virtual open science communities, micro-funding and real science markets emerges. Virtual communities grow stronger due to shared methods and processes, affordable tools and applications, as well as to ambitious young talents working and striving for societal reputation. Social science entrepreneurs are climbing up the ladder of success and foster bottom‑up innovation.

These scenario drafts are now being consolidated on the basis of the input from the third workshop which is documented in RIF 2012. The full scenario report will be available soon after.

Changing Value System in Research & Innovation

It is too early yet to draw definite conclusions and policy implications from the RIF foresight exercise. Already now it becomes clear however that longstanding certainties are becoming volatile and the future of research will pose major challenges to decision makers on all levels and institutional backgrounds. The lively debates around the “policy table” in the Vienna world cafe on pros and cons of the various scenarios revealed several valuable strategic questions for policy making today. Accordingly we expect the emergence of a number of relevant policy implications from the strategic debate within the two next work packages:

  • Scenario implication assessment (WP3)
  • Strategic options for society and policy (WP4).

The scenario report will present a consolidated version of the scenarios based on the inputs from the third workshop.

Authors: Philine Warnke                         philine.warnke@ait.ac.at
Sponsors: European Commission DG RTD Science in Society
Type: European level  thematic exercise
Organizer: Matthias Weber, AIT Austrian Institute of Technology GmbH, and matthias.weber@ait.ac.at
Duration: 2011-2013
Budget: € 860 ,000
Time Horizon: 2020/2030
Date of Brief: January 2013

Download EFP Brief 255_RIF Research and Innovation Futures

Sources and References

More information on the RIF project including all reports for download can be found at: http://www.rif2030.eu/

Amanatidou, E., Cox, D., Saritas, O. (2012): RIF Deliverable 4.1: Stakeholders in the STI System.

Mitchell, R. K., Agle, B. R. and Wood, D. J. (1997), ‘Toward a Theory of Stakeholder Identification and Salience: Defining the Principle of Who and What Really Counts’, The Academy of Management Review, 22 (4), 853–886.

Schaper-Rinkel, P., Weber, M., Wasserbacher, D., van Oost, E., Ordonez-Matamores, G., Krooi, M., Hölsgens, R. Nieminen, M., Peltonen, A. 2012: RIF Deliverable 1.1 Stocktaking Report.

RIF 2012: Research in Europe 2030: Documentation of the RIF Vienna World Café. http://www.rif2030.eu/wp-content/uploads/2012/12/RIF-Docu-World-cafe-Vienna_final.pdf

(Links for further information, references used, etc.)

EFP Brief No. 254: New Trends in Argentina’s Science, Technology and Innovation Policy

Thursday, February 14th, 2013

The brief describes the historical evolution of the national policy of science, technology and innovation (STI) in Argentina, identifying major turning points from the period of the import substitution model that lasted for 40 years to the current development pattern still in the making, with a sharp shift during the 1990s to a harsh market-led path. Domestic learning processes and emerging international trends led Argentina in the new millennium to adopt a new more proactive, flexible and participatory model of STI, which was further pushed by the creation of the Ministry of Science, Technology and Productive Innovation in 2007. The National Plan of STI 2012-2015 reflects on-going efforts to deepen the redesign of research, technology and innovation policies.

The Redesign of STI Policies and Institutions

Science, technology and innovation policies and institutions in Argentina constitute today an evolving system whose configuration is the result of a several-stage process involving discontinuity regarding priorities, approaches and intervention modalities.

STI policies over most of the 90s implied a significant shift with regards to the pattern prevailing during the four-decade model of import substitution industrialisation (ISI). In a nutshell, this shift involved a drastic move away from state support to the development of basic science and of human resources, as well as from direct public intervention in some sectors deemed strategic or at the technological frontier. The new pattern, framed within a economic policy stressing the opening and deregulation of the economy and the privatization of public assets, strongly emphasized the modernization of the private sector under a quasi-market rationale and made the first moves towards a greater articulation and coordination of STI public institutions. In line with this pattern, a demand-driven approach, under the assumption that firm knowledge requirements set research and development (R&D) lines, and sectoral neutrality (i.e., massive horizontal policies favouring stronger links of individual firms with the supply of advising and training services) set the tone of STI policies.

By the end of the 90s, a more complex set of policies was implemented in order to address the increasingly heterogeneous capacities of the private sector to generate and absorb scientific and technological knowledge, the different “stages of the innovation cycle” and the need to target support by sectors. This shift towards greater policy differentiation and directionality as well as deeper integration and coordination of the national system of STI was invigorated since 2003. Particularly, the creation of the Ministry of Science, Technology and Productive Innovation (MINCYT) in 2007 was a big push in that direction as it gave room to a process of increasing prestige and institutionalization of the STI; this process fuelled, in turn, an important redirection of the rationale for policy intervention.

Three main aspects distinguish this rationale shift: the greater emphasis granted to a systemic vision of support to innovation based on the construction of stronger links with the science and technology dimension; the deepening of the shift from horizontal to more focalized policies; and the gradual move from support targeting individual actors (firms or institutions) to support stressing different types of associative behaviour (value chains, consortia, networks, etc.). This reorientation of the rationality for policy intervention was grounded in the need of the MINCYT to adapt its strategic goals and policies to the particular traits of the context in which it operates, in particular the mounting relevance of technological change and innovation for international competitiveness and the need to upgrade the increasingly complex domestic production structure, the nature of the problems and opportunities calling for public intervention, and the need of a systemic approach in order the enhance the effectiveness of STI policies. This conceptual reorientation has been matched at the instrumental level by the “restyling” of the existing policy instruments as well as the design of new ones in the policy axes that shape today public interventions (see below).

The Conceptual and Empirical Drivers of Policy Changes

The current reorientation of the rationale for policy intervention is in line with STI policy trends in developed countries and in middle-income countries within the developing world. It also echoes academic debates and policy recommendations from technical cooperation agencies.

Limits of the Linear Model

The deepest motive of this reorientation, which comprises three main threads with different degree of progress and articulation, is the awareness of the limits of a static or lineal view of the relationship between science, technology and innovation. In fact, believing in a lineal view means that the new scientific and technological knowledge (usually created through R&D) is easily adopted by producers, without any significant participation or feedback about real needs of knowledge production.

Turning to Customized Production

Several traits of the present production situation reinforce the on-going redefinition of policy rationale. The first is the increasing heterogeneity of the production tissue, which cuts across sectorial and even sub-sectorial boundaries. Concretely, in the same sector and macroeconomic context, firm competitive strategies and practices differ along several dimensions, for instance the way they use technology and behave with regards to innovation. This heterogeneity turns horizontal and non-discriminatory policies, usually grounded on “broad range” market failures (complementary financing, imperfect information, coordination deficits and the like) largely ineffective to tackle down producers’ specific constrains to develop scientific and technological capabilities and to innovate. What it is rather required are policies geared to the provision of “customized” public goods (or “club” goods), in order to attend different needs at different levels of economic activity (firms, clusters, value chains, etc.).

In the same way, it is also important to foster a greater policy focalization through the identification of strategically significant areas as main targets of STI policies. Of course, this does not imply a return to old-fashioned practices of “picking winners” but instead the previous definition of activities and agents to be specifically targeted because of its relevance for upgrading and diversifying the production structure.

Endemic Uncertainty

The second relevant feature of the current production dynamics is not just the increasingly rapid pace of scientific and technological changes and, pari pasu, of the innovation process but the uncertainty of their direction that has led many people to talk about “endemic uncertainty”. Indeed, in an increasing number of production activities as well as in other areas of public interest (for instance, climate change, food safety or health care to mention just a few) it is more and more difficult to predict the next market demand, or, in the same vein, the next natural disaster, animal or plant disease, or virus variety, which will require to create and apply “new generation” scientific and technological knowledge that, in addition, can be rapidly turned into product and process innovations.

This giant uncertainty calls into question traditional notions of progress such as “technological frontier” or “technological catching up”. Knowledge production in these socio-economic and natural contexts calls instead for new policies and institutions that impulse the capacities of agents to search and detect new development opportunities by “de-codifying” them in response to the emerging needs, and to position themselves as providers of precompetitive knowledge for innovation.

The third driver of the reorientation of STI support policies or, to put it more accurately, of the intervention rationale is the fact that innovation – and much of the science and technology knowledge that nurtures it – is the work of inter-organizational networks including firms, public agencies, universities, research centres and other knowledge-producing organizations. Usually born spontaneously, although their emergence is more and more a public policy goal, the distinguishing trait of these public-private articulations is their role as instances of combination, coordination and synthesis of partial and complementary knowledge and resources coming from different disciplinary domains and fields of activity. These multidisciplinary networks tend to proliferate (though not exclusively) in high-technology activities in which it is highly unlikely that a sole agent have all the capacities and expertise to understand how those technologies work and how to apply them therein.

Specialisation of Argentina’s Production

Finally, on empirical grounds, Argentina is no alien to these trends towards increasing heterogeneity of production, acceleration of scientific-technological knowledge and network innovation, although the aggregate data on STI in the country does not properly reflect this. Indeed, in very distinct production activities (farm machinery, wine, technology-based agricultural inputs, nuclear research reactors, screening satellites, television scripts, sport boats, design-intensive clothing, software and boutique off-shore services, among the most relevant), firms or groups of firms have strongly grown, substantially upgraded production and achieved long-term competitive advantages in the domestic and foreign markets over the past decade on the basis of product and process innovation. These experiences share several features that link them to the above trends. Firstly, all involve the development of collaborative forms of production articulating public and private actors from different disciplines and institutional domains (final producers, part, input and service suppliers, science and technology agencies, universities and research centres in an relative reduced space (regions, counties, urban or semi-urban areas, etc.). Secondly, these networks share different but complementary resources (financial, human, etc.) and knowledge that allow them to identify the accelerating and changing innovation requirements and to generate the production responses to meet them. Finally, they include more or less institutionalized arrangements to coordinate knowledge creation, its application to production, the appropriation of the economic benefits accruing from its exploitation and financing that facilitate interest alignment among stakeholders.

Planning in STI Under the New Rationale for Intervention

STI planning in Argentina has shown a renewed vigour in the last decade and a particular concern at present to address the challenges posed by the emerging STI environment. In line with this purpose, the planning exercise for the 2012-2015 builds upon two main intervention strategies: the institutional development of the national system of STI and policy focalization.

Institutional development of the national STI system

The first strategy stresses transversal institutional development and changes required to achieve an effective intervention in the current STI conditions; it may be summarized with the productive innovation-institutional innovation formula under the understanding that the latter is a critical necessary condition of the former. This strategy involves the dimensions of capacity building, system linkage, process improvement and learning for network innovation. The assumption is that a system with strengthened endowments of resources and capabilities and, at the same time, better articulation allows to avoid the duplication of initiatives and actions (with the ensuing deficient resource allocation), to identify blind points, to contribute to align interests, to prioritize efforts and to generate synergies both within the public sector and between public institutions and productive and social actors, among other benefits.

Policy Focalization

As for the focalization strategy, the on-going planning effort has adopted a novel conceptualization cantered on the notion of strategic socio-productive nuclei (SSPN). This involves the identification of intervention opportunities in specific domains on the basis of the articulation of general-purpose technologies (GPT: biotechnology, nanotechnology, and ITC) with a bundle of sectors producing goods and services (agro-industry, energy, health, environment and sustainable development social development, and manufacturing). The rationale of this approach is to take advantage of the potential impact of GTP to generate qualitative improvements in terms of production competitiveness, people quality of life and the country’s standing with regards to emerging technologies and medium- and long-term foreseeable technological development. In other words, this approach seeks to go beyond the logic intervention driven only by the technological supply or demands requirements; looking forward to generate the conditions to adjust or adapt, if needed, transversal actions and policy instruments to the differentiated needs of selected SSPNs.

Both strategies comprise four operational work axes: coordination (inter-institutional, territorial, international), resources (human, infrastructure, information), processes (regulatory frameworks and monitoring & evaluation), and policy instruments and financing. The first three axes look at the new architecture, rules of the game, and agency/management capacities of the system of STI. The axe of instruments and financing concerns more horizontal tools to promote the expansion of the science and technology base, the search for selectivity and directionality in the public interventions to foster innovation as well as the impulse of the connectivity and coordination among STI actors and the mechanisms for funding support policies.

STI Policy Designed to Strengthen the Production Model

The history of STI in Argentina took several models of intervention or no intervention policy under different political rationalities. Nowadays, the development of STI has a greater potential because of the public planning strategies and concrete lines of action according to the production needs of the country. On the whole, this has meant a redesign of public policy institutions in order that science, technology and innovation strengthen the production model by generating greater social inclusion and improving the competitiveness of Argentina’s economy, becoming knowledge the backbone of national development.

Authors: Miguel Lengyel           mlengyel@flacso.org.ar

Maria Blanca Pesado bpesado@flacso.org.ar

Sponsors: n.a.
Type: national exercise
Organizer: Latin American School of Social Sciences
Duration: 2007 – 2010
Budget: n.a.
Time Horizon: 2015
Date of Brief: August 2011

Download EFP Brief No. 254_Argentina’s New STI Policy

Sources and References

Porta, F., P. Gutti and P. Moldovan, “Polìticas de ciencia, tecnología e  innovación en Argentina. Evolución reciente y balance”, Buenos Aires: Universidad de Quilmes y Centro Redes, febrero de 2010.

Sanchez, G., I. Buttler and Ricardo Rozmeberg, “Productive Development Policies in Argentina”, Washington DC: IADB, 2010.

Lengyel, Miguel, “Innovación productiva e innovación institucional: el vínculo virtuoso”, en D. García Delgado (comp.), Rol del estado y desarrollo productivo inclusivo, Buenos Aires: Ediciones Ciccus, 2010.

Programa de las Naciones Unidas para el Desarrollo (PNUD), “Innovación productiva en Argentina”, Buenos Aires: PNUD, 2009.

Sabel, C., “Self-discovery as a Coordination Problem”, forthcoming in C. Sabel, E. Fernández Arias, R. Hausmann, Andrés Rodríguez-Clare  and E. H. Stein (eds.), Self-discovery as a Coordination Problem. Lessons from a Study of New Exports in Latin America, Washington DC. IADB, 2011.

EFP Brief No. 251: VERA – Forward Visions on the European Research Area

Wednesday, February 13th, 2013

The VERA project provides relevant strategic intelligence for the future governance and priority-setting of the research, technology, development and innovation (RTDI) system in the EU and for better adapting science, technology and inno-vation policy to the shifting global environment and upcoming socio-economic challenges. For this purpose VERA carries out an in-depth stocktaking of RTDI related forward looking activities in Europe and internationally and a thorough review of trends and drivers of long-term change of European RTDI governance. On the base of these insights VERA develops scenarios on the evolution of the European Research Area, assesses the critical issues for the ERA’s future capabilities emerging from these scenarios, explores subsequent strategic options and ultimately generates a set of policy recommendations for responsive and future oriented multi-level, multi-domain RTDI policy strategies. As VERA will run until 2014 we will present some intermediary results of the first two work packages in this Brief.

Changes and Tensions within ERA

Recently, ERA has undergone many relevant changes from inside. First of all, research and development became a domain of shared competence between the member states and the EU as a result of the new Lisbon Treaty in 2009. The subsequent strategic processes, such as the Lund Declaration, the Ljubljana Process, the Europe2020 Strategy and the Europe 2020 Flagship Initiative Innovation Union, have provided a solid mandate for a strong and open European Research Area that is highly responsive to societal challenges and provides excellent research and innovation activities in open exchange with the international RTI landscape.

However, in order to realise this ambitious agenda, the share of integrated research expenditure needs to be significantly increased. Furthermore, new coordination mechanisms are required to allow for flexible identification of ERA priorities, mobilisation of the critical mass of funding, and governance of its implementation.

In the last few years, a number of integrative instruments have been developed and implemented, such as:

  • Knowledge and innovation communities (KICs) selected within the European Institute of Innovation and Technology (EIT)
  • ERA Net and ERA-Net Plus allowing for joint funding of EU and member states
  • Joint technology initiatives (JTIs article 187) developed through the European technology platforms (ETPs)
  • Joint programming in research (JPIs)
  • Public private partnerships (PPP)
  • Joint research programmes (article 185)
  • European research alliances
  • European innovation partnerships

Thus a number of opportunities and experiences for more integration and pre-allocating significant chunks of EU funding to joint priorities do exist. At the same time, there are many tensions associated with the implementation of these strategies.

A key challenge and opportunity for ERA development is its relation to and integration with the wider world. The production and composition of knowledge have become globalised. While science always has been international, the scope of actors and the need for coordination and cooperation across the globe has changed dramatically in the face of global challenges. At the same time, there is an increasing specialisation of knowledge production and exploitation. Global division of labour and connecting the global centres of excellence that have emerged is a key requirement of the future. In addition, many of the problems European societies face are either the same as for other societies (obesity, demographic change) or transnational in nature (climate change, pollution, security) while the EU is just one among many international players. The overarching challenge of decoupling economic growth from the depletion of the ecosphere and preserving natural capital demands an unprecedented alignment of efforts on a global scale.

There are a number of changes in the way research and innovation is being embedded in the societal context. Changing values and lifestyles are giving rise to new societal expectations of research and innovation. Changing economic and institutional contexts introduce new rationales into knowledge production. Established boundaries, such as basic and applied research or users and producers of innovation and knowledge, are blurring. New actors such as NGOs, citizens and user groups are increasingly playing relevant roles in the realm of research and innovation.

The need for research and innovation to address the grand challenges in realms such as health, food, security and sustainability is not only increasingly advocated but also poses new kinds of challenges. Transformative socio-technical pathways rather than isolated key technologies need to be explored. Social innovation, service organisation and organisational innovation need to be aligned with breakthrough technological innovation. Experimental approaches are gaining relevance for successful innovation trajectories, in particular when transitions are at stake. These changes make it imperative to situate ERA in the global context.

Identifying the Grand Challenges of the Future

In order to generate custom-made strategic intelligence for the future of ERA, the starting point was, first, to identify Grand Challenges (GC) and, secondly, to do so in relation to research sectors that are relevant to the ERA. The GC were identified based on existing EU documents and discussion papers that had been published in the context of pertinent foresight and horizon scanning projects. These GC were classified into relevant research sectors, for instance health, energy, environment and civil society. This approach allowed a thematic clustering of topics, which then served as a basis for broadening the scanning of FLAs. Ten sectors and more than 760 GC in total from a stock of 71 sources were identified.

The stocktaking was designed so as to collect information that would help reach the objective of the work package, i.e. to answer questions such as,

  • What Grand Challenges in the fields of economy, environment, geopolitics, society and ethics, technology and health are the documents and projects under consideration concerned with?
  • Do these documents and projects represent the discourse on Grand Challenges in the European Union and in other parts of the world?
  • What conclusions can we draw from these documents concerning the future governance needs of the ERA? And what do they tell us about the future requirements of RTI governance?

Sixteen Grand Challenges

The VERA team managed to identify 16 Grand Challenges from the analysis and clustering of 760 individual issues from the inventory and interviews with individual STI experts:

  1. Uncertainty is arising from a multipolar world

Increasing polarisation and regionalisation are driving towards a multipolar world. Possible evolutions and implications of or even solutions for this multi-aspect and multi-level challenge are still hardly understood.

  1. Values and attitudes are changing globally

Attitudes and values are changing globally; societies and particularly policy need to respond to these changes.

  1. The traditional role of the state is challenged

A number of developments require new models of governance that go beyond the traditional model of the state.

  1. The world is becoming more interconnected and thus more vulnerable

The more the world becomes interconnected and interdependent, the more new forms of crime and security threats are interlinked and have far-reaching consequences at all levels of society.

  1. Health concerns of an aging society are rising

The ageing of populations has diverse implications for science, technology, economy and society that are proliferated in the context of new health risks and ineffective health systems.

  1. A risk of financial system failure is emerging

In the financial sector the risk of systemic failures is increasing.

  1. Current non-sustainable economic models come under scrutiny

A growing unease with the current model of economic growth calls for alternative approaches to societal progress at the macro level. At the same time, environmentally sustainable business models are required in all sectors of economic activity.

  1. Migration requires responses

The challenge of migration takes many forms as a consequence of other challenges such as climate change, food and water shortages, natural disasters, pandemics etc., each of which requires a specialised and coordinated response at various levels of governance.

  1. Education is struggling to cope with new demands

The education and training systems in Europe need to be modernised. A more specific demand defines the need for education systems capable of promoting sustainability, innovation and solidarity values, and new professions require highly skilled craftsmanship.

  1. The health situation in deprived regions is deteriorating

Impoverished regions around the world are struggling with acute and virulent health issues.

  1. Climate change is causing new diseases

New health problems are arising globally due to climate change.

  1. Providing basic resources for increasing global demands becomes difficult

Without ecologically, economically and politically sustainable solutions, scarcities of basic resources may lead to extensive and serious social and political problems in some areas of the globe.

  1. Material resources are becoming increasingly scarce

Demand for metals and minerals is growing dramatically, especially due to the fast growth of emerging economies and increasing strategic demand for minerals in industrialised economies.

  1. Our modes of energy supply and use are threatening the survival of humankind

Adopting sustainable forms of energy production and consumption is one of the key means for mitigating climate change.

  1. Transportation systems are coming under strain

Environmental and health impacts from emissions, mitigation of climate change, urbanisation, the need for traffic safety and security, and avoidance of traffic jams are among the drivers pushing towards the reinvention of mobility and full-scale transition of existing transportation systems.

  1. EU competitiveness is endangered

The fragmentation of Europe, poor education and skills as well as rising costs and declining labour force participation caused by demographic change may prevent effective exploitation of Europe’s research and innovation potential.

Facing the Grand Challenges to the Future of Europe Means Facing the Global Ones First

From the analysis of a broad range of sources on Grand Challenges, it becomes clear that we cannot take a European perspective only. Especially not when attempting to identify ways of dealing with the Grand Challenges, or at least some of them. The most pressing challenges are globally interconnected and require global action. Topics like Our modes of energy supply (14), Providing basic resources for increasing global demands (12) and The world becoming more interconnected (4) are the ones most frequently discussed. They also show the need to accept shared responsibility on a global scale, which implies that the EU countries cannot lay back and point to other countries to take action. On the contrary, from a European perspective, European countries are among the major contributors to the drivers of the Grand Challenges and among the major countries affected as well, although the impacts of the Grand Challenges are more widespread globally than the drivers are.

The sixteen clusters identified and discussed above also seem to be the ones that call for policy action most immediately and represent the cases where such action could make a substantial difference if planned and executed in a systemic way.

To face the Grand Challenges to the future of Europe, most of all we need to cope with the global ones. If we make a major contribution to the global ones, we will be better equipped to cope with the challenges that lie ahead for Europe.

What we as Europeans have to face is that our lifestyle and the underlying economic model must be considered the root of fundamental problems with devastating global consequences. Many studies and independent resources have pointed this out before. It is of course not only the European lifestyle but also that of all developed economies. At the same time, the global interconnectedness that seems to make this lifestyle transferable to emerging, lagging and, in the long term, even to undeveloped economies also makes societies vulnerable to shocks in many respects.

Facing the Grand Challenges means to introduce fundamental changes in many areas of our lives and activities, thereby affecting global liaisons as well. Even if radical changes are unrealistic, the changes required in tackling the Grand Challenges will be felt by every European citizen. Policy-makers are in a crucial role as these changes will not occur without fundamental and coordinated policy measures in almost every policy area.

Furthermore, it becomes clear that the scope of these Grand Challenges is in essence societal. We need to take this into account when we talk about policy action, for example in the area of research, technology and innovation policy – in the respective work packages of the VERA project and beyond. We especially need to consider what the impact of that societal scope is with regard to the systemic character of handling the Grand Challenges.

Text Analysis and Discussion with “ERA Thinkers”

The second set of tasks performed was to synthesise the existing insights on trends, drivers and key dimensions of change in European RTDI governance. A computer-assisted analysis helped to characterise the body of discourse on ERA in a systematic and quantitative manner. The analysis of text data on ERA was expected to allow interpretations and descriptions of the attitudes, structures, values and norms that currently dominate STI governance. In view of the large quantities of data in textual form, text analysis provided an important means of discovering obscured meanings and unveiling hidden relationships. The computer-assisted analysis took as a point of reference a pre-understanding of ERA constituencies gained through literature review. Following the digitisation of the entire corpus, linguistic analysis software was used for cleaning and formatting, unitising and indexing. The development of categories and dictionaries, as well meaningful associations, relied on qualitative analysis techniques.

Quantitative text-analysis software allowed to produce an aggregation of unit-level coding. Statistical and network analysis software was used to highlight frequencies, trends, comparisons, networks and maps of relevant factors influencing STI governance.

Subsequent interviews with ERA “thinkers” served to obtain additional types of information (i.e. narratives, accounts, fronts, stories and myths).

Relevant factors identified by means of discourse and interview analysis provided the basis for a so-called key-factor workshop with key stakeholders. The insights on potential key factors were synthesised into a background document.

Based on these insights, VERA developed scenarios on the evolution of the European Research Area. VERA’s uniqueness is grounded in the systematic knowledge base it creates, for example, by stocktaking exercises such as the one on Grand Challenges described above. They are publicly accessible and intended to be used widely. At the same time, the results of these exercises feed the scenario process, the subsequent assessment of the scenarios, and the exploration of strategic options. Another distinct feature of VERA is that it pays particular attention to the assessment and policy implications of the scenarios, which will help to make scenario results useful for policy-making and thinking about the future of ERA.

Authors: Susanne Giesecke         Susanne.Giesecke@ait.ac.at

Philine Warnke             Philine.Warnke@ait.ac.at

Effie Amanatidou           effie.amanatidou@mbs.ac.uk

Sponsors: European Commission, DG Research, Social Sciences and Humanities Programme
Type: Multiple issue brief
Organizer: Fraunhofer Gesellschaft – ISI, Karlsruhe Germany, Stephanie Daimer, Stephanie.Daimer@isi.fraunhofer.de
Duration: 2012-2014
Budget: € 1,940,000
Time Horizon: 2030
Date of Brief: Decemeber 2012

Download EFP Brief No 251_VERA

Sources and References

References

The Lund Declaration (incl. its addendum), July 2009; available for download at

http://www.vr.se/download/18.7dac901212646d84fd38000336/ Lund_Declaration.pdf

Links to further results of the VERA project at http://www.eravisions.eu

The inventory contains 726 individual Grand Challenges named by the 67 screened FLAs. It has been submitted in an independent report and can be downloaded at http://vera.dev.zsi.at/stocktaking/list

EFP Brief No. 244: Survey of Future Market Research and Innovation Needs

Tuesday, January 29th, 2013

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. The WBC-INCO.NET project seeks to promote the bi-regional dialogue on science and technology between the EC, the member states and the Western Balkan countries. The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

Future Research and Market Needs for the Western Balkans Region

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. WBC-INCO.NET partners from the Western Balkans include research and policy stakeholders from the following countries: Albania, Bosnia and Herzegovina, Croatia, FYRo Macedonia, Montenegro, Serbia and Kosovo (under UNSCR 1244). The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

The findings of the survey will support other activities that together will provide a clear overview of the region’s current situation and future needs in regard to innovation. These activities should help to prepare an action plan for further cooperation in innovation between the Western Balkan countries (WBC) and serve to establish closer cooperation between research and innovation stakeholders in the region (i.e. publicly funded researchers and innovative companies). This should include expertise from the industrial sectors and the fields of innovation management and market entry. It should also involve exploring EU programmes, other than FP7, and supporting programmes of other institutions that are directed toward increasing innovation in the WBC.

Survey among Stakeholders

Two questionnaires were jointly designed by the European Commission JRC-IPTS (Seville) and the Ivo Pilar Institute of Social Sciences (Croatia). The questionnaires addressed market and research stakeholders, including selected firms and entrepreneurial researchers, and aimed to identify current and future research and innovation needs in order to support the design of a joint action plan towards 2030.

The methodology employed consisted of five phases:

  1. Initially, a literature review on innovation was conducted to identify important aspects that would have to be taken into account when designing the questionnaires. The selected aspects were:
  2. i) Importance of different stakeholders in the innovation process.
  3. ii) Specific actions that can improve regional cooperation as well as innovation.

iii)   Factors necessary to stimulate regional cooperation divided in human resources, entrepreneurship infrastructure, expert assistance and cooperation between industry and research, fiscal and financial obstacles, and national and local regulations.

  1. iv) Likely outcomes of enhanced regional cooperation.
  2. The first questionnaire was submitted to selected firms in the WB region.
  3. Building on the results of the first questionnaire with the aim to compare them, a second questionnaire was sent to research stakeholders in the region.
  4. A statistical analysis was conducted for both questionnaires and the results were crosschecked.
  5. The results were circulated within the consortia for final refinements.

It must be emphasised that the findings indicate only  potential needs in the region, which need to be refined by further analysis and discussed with industry, research and regional stakeholders, for instance in a workshop for this purpose.

The response rate of the industry questionnaire was low: only 20 firms replied, which nevertheless allowed the team to perform some analyses. The response rate of the researcher questionnaire was higher.

Interesting Results of the Industry Survey

The respondents were asked to assess the importance of 14 stakeholders for firms’ innovation capacities.

Top Three Stakeholders

As the top three stakeholders, the respondents identified:

  1. Employees in the respondents’ enterprise or enterprise group
  2. Professional and industrial associations
  3. Universities and colleges
Bottom Three Stakeholders

The bottom three stakeholders were:

  1. Cluster networks
  2. Suppliers and customers from the WBC region
  3. Venture capital firms/angel investors
Interesting Results of the Researcher Survey

Figure 1 (below) compares the proportion of researchers that ranked various factors influencing university-industry collaborations as highly important. A majority of the researchers assessed all the factors as more important in the future than today, which suggests that the researchers feel that other barriers need to be overcome in the short-term.

Figure 1. Important factors for university-industry cooperation today and 2030
244_bild1

Industry and Research: Diverging Views on the Needs for Research and Innovation

Based on the results of the surveys in the field of research, the following points can be highlighted:

  • The most important actions to improve cooperation between business and research in the region, both in the present and in the future are (1) more funding for knowledge/technology transfer activities and expert consultations and (2) more funding for collaborative research between universities and businesses.
  • Whilst state and local regulations as well as expert assistance seem critical for innovative performance today, investment in human resources and infrastructure emerge as crucial to enhance cooperation in the future.
  • The analysis of the questionnaire administered to both research and business stakeholders reflects disagreement as to which potential outcomes of enhanced regional innovation collaboration are to be considered more relevant. The only outcome that both equally perceive as important is access to new markets. This suggests the need to build both more awareness of new opportunities and (new) capabilities in the region. To this end, improved communication, including the respective infrastructure (e.g. ICT), and mobility seem to be critical.
  • The answers industry and researchers give when asked about the most important actions to improve regional innovation activities differ substantially. The three actions least important to industry are among those actions that the participating researchers considered most important:
    • common programmes for mobility of personnel in the region between universities and business to establish cooperation between science and industry,
    • a consistent legal framework aimed at facilitating foreign direct investments in the WB region, and
    • the progressive liberalisation and mutual opening of the service market within the WB region.

The only action that business and researchers both perceive as important (ranking third for both of them) is developing regional initiatives for large infrastructural projects. Such an outcome highlights the need for enhanced communication and understanding between these two groups of stakeholders in order to achieve a joint agenda.

  • Finally, of the research topics identified by industry as important to trigger regional innovation through collaboration, the ones that the researchers also appear to be interested in are
    • the environment,
    • information management systems: monitoring through ICTs and the automation of information management systems, artificial intelligence and agent-based software and
    • new approaches and frameworks to enhance foreign direct investment and cross-regional investments in the region.

Diverging Views  between Industry and Research

Hot Policy Topics:
Need for More Technology Transfer

A strong divergence between the views of industry and research in terms of present and future actions as well as areas for collaboration has emerged. This call for policy measures aims at improving communication between the two groups of stakeholders to facilitate the move towards a common agenda.

Presently, a strong need is also felt for policies that provide more funding for knowledge/technology transfer activities and expert consultations as well as collaborative research between universities and businesses.

Action Needed: Improving Innovation Capacities

This exercise is part of a wider project that aims at defining a long-term strategy for scientific collaboration within the Western Balkan countries and between them and Europe.

The critical issues that emerged in the survey call for further analysis and discussion. In particular, it is suggested that industry and the research community gather to discuss the following aspects:

  • Investments in knowledge and technology sharing, expert consultations and collaborative research
  • Decrease in regulation
  • Strengthening of human resources
  • Improvements in infrastructure (including ICT)
  • Building of awareness of innovation benefits
  • Fostering of mobility
  • Enhancement of communication between different stakeholders
Shaping the Future: Critical Factors

This project was part of the larger WBC-INCO.NET project, which ultimately will develop a joint action plan for the WBC. The results will feed directly into the process at three levels:

  1. The development of a common vision for the WBC: This vision should set the longer-term objective(s), which are to be defined by authoritative experts in the field and endorsed politically.
  2. The translation of the vision into a strategic research agenda (SRA), which entails specific, measurable, achievable, realistic and time-based (SMART) objectives. The strategic research agenda should make the vision operational and link the implementation of the vision’s objectives with existing competences in Europe (or in the region) and new ones to be developed.
  3. The implementation of the SRA: All participating public authorities should gear their programs and funding towards the implementation of the SRA in a coherent manner. The full toolbox of public research instruments should be explored and used to implement the individual joint programming initiatives. Regular monitoring and evaluation of progress against the SMART objectives should be ensured and the results reported to the political level.
Authors: Cristiano Cagninc         cagnin@cgee.org.br

Elisabetta Marinelli       Elisabetta.Marinelli@ec.europa.eu

Sponsors: European Commission
Type: Quantitative survey

(The survey was conducted as part of the WBC-INCO.NET project)

Organizer: EC – Joint Research Centre – Institute of Prospective Technological Studies
Duration: 2008-2012
Budget: n.a.
Time Horizon: 2030
Date of Brief: July 2012

Download EFP Brief No. 244_Research and Innovation Needs in the Western Balkan Countries

Sources and References

For sources and references see the WBC-INCO.NET website:

http://wbc-inco.net/

The brief is based on the report by IPTS in collaboration with IVO-PILAR:

http://wbc-inco.net/object/document/7423

EFP Brief No. 235: Nanotechnology for Podlaskie 2020

Friday, December 21st, 2012

The general purpose of the project was to elaborate a strategy of nanotechnology development up to 2020 based on the desired priority directions of the Polish Podlaskie province development oriented towards the application of nanotechnologies and the identification of the key nanotechnology research trajectories.

Nanotechnology to Boost Disadvated Region

The project Technological foresight NT FOR Podlaskie 2020. Regional strategy of nanotechnology development was granted the financial support from the EU Operational Program „Innovative Economy 2007-2013” (Priority 1: „Research and development of new technologies”, Measure 1.1.: „Support for scientific research for the building of knowledge based economy”, Sub-measure 1.1.1: „Research projects with the use of foresight method”.)

The project is an attempt of breakthrough technologies promotion in situation when the development of the traditional sectors does not contribute to regional growth. It is located in one of the least economically developed regions of Poland (and of the European Union) with a low level of population’s economic welfare, little business competitiveness and low innovation intensity in the spheres of technology, processes and products. The project is based on the feed forward logic which assumes that the future changes of the environment will be effectively forestalled owing to the project results. This should allow the region to chart the development trajectory which doesn’t imitate others but heads in the direction where the leaders will be in the future. The assumed goals of the programme are:

  • elaborate a strategy of nanotechnology development in Podlaskie province till 2020
  • identify and mapp critical nanotechnologies up to 2020
  • identify the most important factors influencing the development of nanotechnologies
  • put forward scenarios of nanotechnology development
  • stimulate the process of regional vision building between the key stakeholders.

Nanotech Research Defined by Six Panels

Six panels defined the research priorities for the project:

  1. Nanotechnologies in Podlaskie economy (RF1)
  2. Nanotechnology research for Podlaskie developement (RF2)
  3. Key factors of nanotechnology development (RF3)

In addition to the three content-oriented panels another three focusses on methodologies: STEEPVL and SWOT panel (SSP), Technology mapping and Key technologies panel (TMKTP), Scenarios and Roadmapping panel (SRP) (figure 1).

The results of the six panels are integrated by the Key Research Team (KRT) which is also a platform of interaction and knowledge transfer between the panels.

From STEEPVL Analysis to Strategy

The methodology of the project is based on the intuitive logics school of scenario construction and comprises the following research methods and techniques: STEEPVL analysis, SWOT analysis, technology maping, key technologies, scenario method, roadmapping (figure 2). The main research methods are supported by brainstorming, moderated discussion and bibliometrics.

The selection of methods and techniques was conditioned by the aim of the project, planned funds, research duration and availability of data – both quantitative and qualitative.

One of the innovative elements of the project is the implementation of the concept of triangulation to experts’ recruitment in the aspect of researcher triangulation, data triangulation and theoretical triangulation.

Researcher triangulation was manifested in the project by the involvement of experts representing varied professional background, sex and age. Special attention was paid to the recruitment of women and young people (under 35) (min. 30%).

Data triangulation was achieved by involving experts representing different institutions as well as by drawing information about the factors shaping nanotechnology development via experts’ opinions verified by the existing published works (reports, books, publications, Internet sources on nanotechnologies).

Theoretical triangulation consisted in the involvement of experts representing different research fields, but still salient to the nanotechnology development in Podlaskie province.

Other innovative element of the project was the application of the two-dimensional assessment of STEEPVL factors taking into account (1) the influence and importance of factors and (2) the application of factor analysis in order to reduce the number of considered factors that shape the nanotechnology development.

Great attention in the project was paid to the development of technology mapping methodology, to the identification and the assessment of wild cards methodology and to roadmapping methodology.

Scenarios of Nanotechnology Development in Podlaskie Province

 

As a result of the conducted sequence of procedures four scenarios of nanotechnology development in Podlaskie province were developed. They were constructed along two axes, one of which related to the level of R&D in the region and the other to the level of collaboration among the actors from business, science and administration spheres (fig. 3).

Basic characteristics of the produced scenarios are presented in table 1. Further in the process, each scenario was enriched with a detailed description of the remaining 19 STEEPVL factors. Short descriptive visions were also written in each of the four cases.

  1. Megatrends

Scenarios formulation was preceded by a detailed characteristics of megatrends influencing the nanotechnology development. Following megatrends were identified:

  • technological progress,
  • ageing population,
  • increasing importance of alternative energy sources,
  • intensified activity of the states in the realm of security,
  • new patterns of social inequality,
  • shaping of the new economy,

All megatrends were further divided into branching trends.

  1. Priority technology groups

Additionally, seven priority technology groups for the Podlaskie region were identified by the experts:

  • nanomaterials and nanosurfaces in medical equipment (T20),
  • composite materials for dentist fillings (T17),
  • powder technologies in plastic, paint and varnish production (T31),
  • surface nanotechnologies in biomedicine (T21),
  • nanotechnology for cutting instruments and wood processing (T3),
  • nanotechnology for specialised textiles (T24),
  • nano-structuring of metals (T38).

The leading project experts attempted to embed the priority nanotechnologies into four scenarios by assessing the chances of each technology’s development in the context of a particular scenario. The results of that exercise are presented in fig. 4.

According to experts’ opinions in conditions of high R&D potential for nanotechnology and effective regional collaboration of business, science and administration, very high chances of development have five out of seven technologies, namely: powder technologies in plastic, paint and varnish production (T31), composite materials for dentist fillings (T17), surface nanotechnologies in biomedicine (T21), nanotechnology for cutting instruments and wood processing (T3), nanomaterials and nanosurfaces in medical equipment (T20). In S2 scenario high chances of development have only nanotechnologies for specialised textiles (T24). The situation in S2 and S3 scenarios changes fundamentally as there are no nanotechnologies of high chances of development.

For each identified key technology a roadmap of its development was elaborated comprising layers such as: resources, R&D, technology and applications.

Increasing R&D and Strengthening the Network

Technology foresight NT FOR PODLASKIE 2020. Regional strategy of nanotechnology development has allowed to identify the most important factors of the nanotechnology development in the region. In the course of the project, the participating experts identified key technologies that might contribute to creating a competitive advantage of the province. The scenarios presented will be the basis for developing the roadmaps of nanotechnology development and eventually for formulating a regional strategy to that end.
 
As the results of the project have shown so far, increasing the region’s R&D potential and strengthening the networks of entrepreneurs, scientists and authorities would create an environment most conducive to the development of nanotechnology in Podlaskie province. These two key factors therefore will be the vital elementsof the nanotechnology development strategy to be formulated at a later stage. The strategy, according to the project organisers, will set the direction for the introduction of nanotechnology into the economy of Podlaskie province and provide a sound proposal for a path towards the sustainable development of the region.
Authors: Anna Kononiuk a.kononiuk@pb.edu.pl

Lukasz Nazarko l.nazarko@pb.edu.pl

Joanicjusz Nazarko j.nazarko@pb.edu.pl

Joanna Ejdys j.ejdys@pb.edu.pl

Katarzyna Halicka k.halicka@pb.edu.pl

Urszula Glinska u.glinska@pb.edu.pl

Alicja Gudanowska a.gudanowska@pb.edu.pl

Sponsors: European Regional Development Fund, Operational Program „Innovative Economy 2007-2013”

Ministry of Science and Higher Education of the Polish Republic

Type: regional/technological foresight exercise
Organizer: Bialystok University of Technology

Joanna Ejdys j.ejdys@pb.edu.pl

Joanicjusz Nazarko j.nazarko@pb.edu.pl

Duration: Apr 2009-Jun 2013 Budget: 588,256 € Time Horizon: 2020 Date of Brief: Aug. 2012  

Download: EFP Brief No. 235_Nanotechnology for Podlaskie 2020.

Sources and References

Feasibility study of Technology foresight „NT FOR Podlaskie 2020”. Regional strategy of nanotechnology developement [Studium wykonalności projektu Foresight technologicznyNT FOR Podlaskie 2020”. Regionalna strategia rozwoju nanotechnologii], Białystok 2008.

EFP Brief No. 232: STRATCLU

Tuesday, December 4th, 2012

STRATCLU, the ‘entrepreneurial’ strategy process of the German ‘spitzen’-cluster (leading-edge cluster) MicroTEC Südwest meets the needs of multi-actor, multi-governance-level and multi-sector research and innovation (R&I) policies. The forwardand outward-looking process exemplifies how a broad range of regional R&I actors can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic R&I investments and collective actions, and focus their diverse competences in microsystems as a general purpose technology to tackle societal challenges and enter future markets globally.

Research & Innovation Programmes Addressing Challenges of the 21st Century

In line with a more systemic understanding of research and innovation (R&I) policy (OECD 2005), the respective support programmes introduced the perspective of global, societal challenges to be tackled by scientific and technological breakthroughs. The German government, for instance, launched its High-Tech Strategy 2020 (HTS 2020) in 2006 with the aim to make Germany a leader when it comes to solving global challenges (climate/energy, health/nutrition, mobility, security, communication) and providing convincing answers to urgent questions of the 21st century. The German Strategy for Internationalisation of Science and Research stresses that, to realise optimised solutions to these challenges, it is necessary to leverage science and innovation potential worldwide. In the same vein, the Europe 2020 strategy and its flagship initiative “Innovation Union” aim at refocusing R&I policy on the challenges facing society, and the EU Cohesion Policy 2014-2020 asks the member states and regions to develop innovation strategies for smart specialisation. The ‘entrepreneurial process’ of developing regional innovation strategies for smart specialisation (RIS3) (Foray et al. 2009) focuses on unique regional assets with a view to developing competitive products and services in international markets. If the different RIS3 are developed in alignment with the European context, synergies can be leveraged to further develop the European Research Area.

Against this backdrop, clusters as local nodes of global knowledge flows and ‘innovative hot-spots’ in globalised value chains provide the base not only for developing technological answers to the urgent problems of the 21st century but also for producing adequate, strategic knowledge for cutting-edge (and trans-regionally aligned) R&I programming (Sautter/Clar 2008). In 2007, the German government launched the ‘spitzen’-cluster competition as the flagship of the HTS 2020 and cornerstone of the national Strategy for the Internationalisation of Science and Research to support the development and implementation of future-oriented R&I strategies. The overall objective is to tackle key societal challenges and thus position the ‘spitzen’-clusters in the global knowledge economy and make them attractive for talented, creative people as well as innovative companies and forward-looking investors. MicroTEC Südwest in Germany’s south-western state of Baden-Württemberg and one of the winners of the competition started a forward-looking cluster strategy process inspired by the Strategic Research Agenda of the European Technology Platform on Smart Systems Integration (EPoSS), and focused on the priority fields of the German HTS 2020: climate/energy, health, mobility, security, communication.

‘Spitzen’-Cluster Strategy on Smart Microsystems Technology (MST) Solutions to Global Challenges

The MicroTEC Südwest cluster, closely linked withneighbouring parts of France and Switzerland, covers the competences needed along the value chain of the GPT (General Purpose Technology) miniaturised systems: from basic research, for instance in nano-, micro- or bio-technologies, to the design and production of smart microsystems, to the integration of such systems in ‘intelligent’ products (e.g. driver assistance systems in cars or point-of-care diagnostic systems in the healthcare sector). Besides global players like Bosch and Roche Diagnostics, the 350 actors involved in the cluster include top universities and research centres, and many small and medium-sized enterprises.

In order to focus the different competences on synergistic R&I investments, a ‘spitzen’-cluster proposal was developed with two application-oriented priorities to generate breakthrough innovations in global lead markets (health and mobility) and two technology-related priorities to develop and produce next generation microsystems for future fields of application. The funds (50-50 public-private) for implementation amount to nearly 90 million EUR, from national and regional ministries, regional bodies and enterprises.

The MicroTEC Südwest proposal was highly evaluated in the competition not only for the quality of its research projects but also for its additional structural projects on innovation support, qualification and recruitment, internationalisation and the STRATCLU strategy process.

From Ad-hoc Strategy Building to Systematic Learning Cycles

The STRACLU project has been set up to advance the successful ‘spitzen’-cluster project and to broaden and consolidate the participative decision-making process in the cluster. Stakeholder groups (cluster board, strategy panel etc.) have been established and strategic policy intelligence (SPI) tools combined in a learning cycle with three main stages:

· Stock-taking (incl. outward-looking): Review of cluster position in the global context (major SPI tools: audit, evaluation, benchmarking)
· Forward-looking: Longer-term perspectives & priorities (foresight, impact assessment)
· Action-planning: Roadmaps with milestones and specific joint actions (roadmapping, GOPP)

An operational learning cycle has been put in place as well to monitor the implementation of the joint actions. With these learning cycles, STRATCLU both guides individual actors in their strategic decision-making and develops MicroTEC Südwest itself into a learning ‘smart innovation system’, which continuously

· identifies global challenges and promising future markets,
· formulates long-term and ‘open’ RTDI strategies for smart MST-based solutions,
· builds local competences and capacities, looks for strategic partners along global value chains,
· encourages key local and global actors to join forces in common strategies and thus
· ensures long-term success in global competition.

MicroTEC Südwest AGENDA 2020+

Related to the national priorities of the HTS 2020, and based on detailed science and market analyses, the investigation and discussion of global trends and an assessment of their specific impacts along the strategic learning cycle (fig. 1), the MicroTEC Südwest strategy panel prioritised a joint AGENDA 2020+ with the following five major crosscutting priority fields for R&I, and an additional focus on cross-industry innovation and education and training.

These five R&I-related priority fields for smart MSTbased solutions address and leverage synergies across all key application fields (in particular with regard to the national priorities of the HTS 2020).

This topic was assessed as the most relevant. The renaming of the microsystems technology (MST) division of the German Ministry of Education & Research into Demographic Change: Human-Technology Interaction in the context of the German BMBF Foresight Process (Cuhls 2010) underlines the relevance of this issue. The big challenge is to develop smart MSTbased solutions adapted to people’s needs and providing them with real value added.

Here, the focus is on the integration of smart systems in superior systems: from smart systems to smart things like cars to comprehensive systems such as the transportation system (cf. cyber-physical systems or Internet of Things). The big challenge is to handle the increasing complexity that comes with a higher degree of system integration.

Energy converters (e.g. important for energy harvesting) and storage along with self-sustaining systems are preconditions to realise the systems-of-systems approach and to develop mobile and functional intelligent devices.

In the future, the production of smart systems and things has to be closely related to mass-customisation in order to provide the users (consumers) with wellcustomised and cost-efficient solutions.

Resource efficient production and consumption systems, total life cycle assessment (including the recycling stage) etc. are important issues in this priority field.

Roadmaps to Tackle Societal Challenges

Continuing along the strategy cycle, the AGENDA 2020+ provides the strategic framework for roadmapping exercises at multiple levels: Cluster actors develop R&I roadmaps towards market-focussed and MST-based breakthrough innovations to tackle societal challenges in prioritised joint action areas (e.g. in personalised medicine, factories of the future or green cars). These roadmaps will be aligned with other roadmaps, for instance of the European Technology Platforms EPoSS or MINAM, and integrated in the MicroTEC Südwest Cluster Roadmap 2020+, which involves also horizontal support measures like qualification, recruitment etc. and will be communicated to public and private investors (‘agenda setting’). Furthermore, the roadmaps will be transferred to SMEs in the cluster to support them in their own longer-term business development and R&I investment strategy.

Taking a Big Step Towards Smart, Sustainable and Inclusive Growth

The participative forward- and outward-looking strategy process in the German ‘spitzen’-cluster MicroTEC Südwest shows successfully how regional R&I consortia can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic investments and collective actions. By enabling actors to systematically develop future strategies together, to asses them and develop actorspecific, synergistic approaches to successful implementation, the overall risk of longer-term R&I investments can be reduced significantly, for the current participants and for foreign direct investment.

The strategy approach of MicroTEC Südwest meets the needs of (new) future-oriented, multi-actor, multigovernance level and multi-sector R&I policies in manifold ways. First, it focuses local competences in a general purpose technology on tackling grand societal challenges with the aim of entering global markets. Second, it strives to attract complementary competences and foreign direct investment from other regions, and to work together with strategic partners along global value chains. Third, it combines ‘bottom-up’ with ‘topdown’ activities by taking up and assessing external inputs from a regional perspective: for instance, the German High-Tech Strategy or the BMBF Foresights, European and other R&I policies and strategy processes, such as Joint Programming Initiatives or the Japanese NISTEP Delphis, respectively. Against this backdrop, the MicroTEC Südwest approach can be seen as a test bed for an ‘entrepreneurial process’ suggested by the European Commission to develop regional smart specialisation strategies and to capitalise on them to advance the European Research Area.

To fully benefit from the regional assets across Europe, strategic capacity building has to be strengthened, not only in Europe’s world-class clusters. If more clusters such as MicroTEC Südwest develop and align their longer-term strategies in order to raise, structure and optimise overall private and public (EU, national, regional) investments, with one focus on pooling forces and jointly tackling common challenges, a big step could be taken towards smart, sustainable and inclusive growth.

Download: EFP Brief No. 232_STRATCLU.

Sources and References

Cuhls, K. (2010): The German BMBF Foresight Process, in European Foresight Platform, EFP Brief No. 174.

Foray, D., David, P.A. and Hall, B. (2009): “Smart specialisation: the concept”, in Knowledge for Growth: Prospects for science, technology and innovation, Report, EUR 24047, European Union.

OECD (2005): Governance of Innovation Systems: Volume 1: Synthesis Report, OECD Publishing.

Sautter, B., Clar, G. (2008): Strategic Capacity Building in Clusters to Enhance Future-oriented Open Innovation Processes, in The European Foresight Monitoring Network, Foresight Brief No. 150.

Web links for more information:

www.microtec-suedwest.de

www.smart-systems-integration.org

www.minamwebportal.eu

www.era.gv.at/space/11442/directory/11767.html

www.steinbeis-europa.de/rsi.html

www.steinbeis-europa.de/stratclu_en.html

EFP Brief No. 229: Taiwan Agricultural Technology Foresight 2025

Friday, November 23rd, 2012

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach. The goal was to identify research topics relevant to shaping the future of agriculture in Taiwan. Applying roadmapping, the project presented policy suggestions at the end of 2011. The suggestions have been incorporated into the Taiwanese govern-ment’s Council of Agriculture (COA) research agenda as evidenced by COA’s call-for-projects announcement.

The Role of Agriculture in Taiwan

Taiwan was one of the leading countries in subtropical agriculture several decades ago, but now agriculture has lost its importance in job creation, domestic production and international trade. However, agriculture is still at the root of the economy and has many functions beyond production – it provides the food we eat, conserves the environment we live in, and is a force for social stability.

Taiwan, with nominal GDP $427 billion US dollars and GDP (PPP) per capita $35 thousand US dollars in 2010, is known for its manufacturing capabilities today, but it used to be exporting a lot of agricultural products and technologies to many countries long time ago. Since 1959, more than 100 agricultural missions have been dispatched to more than 60 countries, among which about half missions are currently at work in Africa, the Middle East, Latin America, and the Asia-Pacific.

In fact, Taiwan’s total land area is about 36,000 square kilometers, most of which is mountainous or sloped. Therefore, agriculture is practiced mainly in the plains, which comprise 29 percent of the country. As a subtropical island characterized by high temperatures and heavy rainfall, Taiwan offers bio-diversities for agriculture, but also lends itself to the breeding of insects and disease. Particularly, there are frequently typhoons causing natural disasters in the summer and autumn every year.

There have been significant changes in Taiwan’s agricultural exports over the years however. Years ago, Taiwan exported sugar cane, rice, and canned mushrooms or asparagus. Now Taiwan’s main exports are aquaculture products (e.g. tuna, eel, tilapia), leather and feathers, and its main agricultural imports include corn, soybeans, wine, tobacco, cotton, lumber, beef and wheat. In 1953, the average value of agricultural production increased 7.3 percent annually and exports increased at a rate of 9.3 percent, but beginning in 1970, agricultural exports fell behind agricultural imports. In 2010, imports were USD 12.8 billion and exports were USD 4 billion. The production value based on agriculture is estimated approximately 11.2 percent of GDP, while primary production accounts for only 1.5 percent of GDP in Taiwan.

The Revitalization of Agriculture in Taiwan

In order to revitalize the agriculture sector to meet the challenges of trade liberalization, globalization, the knowledge- based economy and particularly, climate change, the Taiwanese Government’s Council of Agriculture (COA) commissioned a project- Taiwan Agricultural Technology Foresight 2025 – to the Taiwan Institute of Economic Research (TIER). This four-year project (2008–2011), with an annual budget of USD 350 000, conducted foresight-related activities including demand surveys, trend and policy analyses, horizon scanning, visioning, essay contests, training workshops, two-round Delphi surveys, road mapping and development of policy suggestions (short-, mid- and long-term development plans and priorities) (see Figure 1).

The project aimed to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Environmentally-Freindly Farming for Taiwan’s Future

In 2008, TIER set up a task force with six researchers and two assistants to learn the foresight techniques, mainly from Japan. It built up a data-base of social needs, technological trends, research resources, critical issues and agricultural policies nationwide and worldwide.

Under the support and approval of COA, the project set up the Planning Committee, including government officers, agricultural experts, senior research fellows, social scientists and an economist. The Planning Committee decided that the project’s target year was 2025, and that the purpose of the foresight was to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Visioning for Research Topics

In order to link the foresight and policy, the project set up the Strategy Formation Committee, with ten subcommittees corresponding to the ten research areas of COA, each of which was comprised of agricultural experts and senior scientists. The members of the Strategy Formation Committee were nominated by the Planning Committee and then approved by COA. The duty of the Strategy Formation Committee was to depict 2025 visioning in each research area and to figure out the research topics to meet the needs for shaping the future agriculture in Taiwan identified by the Planning Committee.

In 2009, the Strategy Formation Committee proposed more than 100 research topics for the project. The TIER task force tried to consolidate some of them and organize them in a uniform format. Then, the Planning Committee identified the final 74 research topics and the related key questions for the Delphi questionnaire.

In 2010, the TIER task force built up an on-line survey platform and carried out two rounds of Delphi survey. There were 675 experts and scientists on the list of the first round, 546 of which participated in Delphi survey (response rate of 80 percent), and 512 of which questionnaire were effective. Then there were 546 experts and scientists on the list of the second round, 413 of which participated in Delphi survey (response rate of 76 percent), and 407 of which questionnaire were effective.

Based on the survey responses to 74 research topics, the project compiled the indices of industrial development, environmental protection, life quality, national priority and government support respectively to measure the research topics in different aspects. The standard deviations of all indices at the second round became smaller than those at the first round, so it implies that the Delphi survey of the project did converge for reaching consensus.

The survey shows that the government should support those research topics with higher ratings in environmental protection as well as in life quality particularly due to agricultural multi-function (externality). It is, however, slightly correlated between industrial development and government support to be needed for those research topics because some of them could be developed by the private sector. These research topics have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

Attracting the Young Generation

Besides, in order to attract the young generation to think about the future of agriculture, the project invited young people to participate in the Taiwan Agricultural Technology Foresight 2025 contest (see Figure 2).

Foresight for Policy and as Policy

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach, in order to identify the research topics to meet the needs for shaping the future agriculture in Taiwan. The project made policy suggestions by road mapping at the end of 2011, and these have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

The major contribution of the project has been the government’s support for the research topics of ‘national priority’ in terms of industrial development, environmental protection and life quality, with equal weights embedded in the vision of making a better living in Taiwan. The project is expected to improve farmers’ productivity and livelihoods, particularly for smallholders; to develop resource-efficient and environmentally-friendly ways to do farming in Taiwan’s limited land area; to reinforce the links between production and consumption of agricultural products by implementing a traceability system.

Authors: Julie C. L. Sun           juliesun@tier.org.tw

 

Sponsors: Council of Agriculture, Taiwan

 

Type: National foresight exercise
Organizer: Taiwan Institute of Economic Research, Julie C. L. Sun      juliesun@tier.org.tw
Duration: 2008–2011 Budget: 1 Mill USD Time Horizon: 2025 Date of Brief: July 2012  

Download: EFP Brief No. 229_Taiwan Agricultural Technology Foresight 2025.

References

The website of Taiwan Agricultural Technology Foresight 2025, http://agritech-foresight.coa.gov.tw

COA R&D project management system, http://project.coa.gov.tw

EFP Brief No. 221: Priority Setting for Research on Information Society Technologies

Friday, August 3rd, 2012

This follow-up brief recapitulates the foresight exercise of the “Foresight on Information Society Technologies in the European Research Area (FISTERA)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned and ask what the mid-term to long-term implications of this foresight exercise are, in particular how effective the FISTERA project was in feeding the findings derived from the foresight exercise into a process of strategic priority-setting in information society technologies at the European level.

Creating a Common Vision for Our Information Society

The central purpose of the FISTERA project was to contribute to creating a common vision and approach by 2010 for developing an enlarged Europe towards an information society. As a thematic network, FISTERA’s aim was to provide a European platform involving a wide range of national and European policymakers that, through a structured foresight process, could inform the setting of priorities by providing support for targeted R&D funding in specific areas of information society technologies (IST) and thus contributing to future IST policy and research in Europe.

FISTERA was based on a combination of top-down and bottom-up approaches. “As part of the bottom-up approach, FISTERA focused on the analytical dimensions, making use of its findings to set functional, S&T and socio-economically driven priorities. The top-down approach concentrated on the normative, process-oriented dimension to identify and prioritise policy options, building on what FISTERA calls the ‘success scenario’ for the European information society.” (Compaño, R. et al., 2006: 7).

The findings of the FISTERA foresight exercise intended to contribute to the evolution of policy thinking regarding the prospects of IST as part of the Lisbon objective. In sum, its overall aim was

(a) to compare the results of national foresight exercises and exchange visions for the future;

(b) to provide a new forum for consensus building on future visions for IST;

(c) to contribute to constructing the European Research Area through benchmarking, community building and providing a dynamic European platform on foresight;

(d) to provide inputs to the ongoing process of identifying key areas for research on which to concentrate public as well as private funding.

 

Delphi Highlighted Education and Learning

The FISTERA foresight process was based on three components: (a) a technology mapping (i.e. a study of the main technological trajectories in IST), (b) a Delphi study and (c) the development of scenarios. Through the implementation of a Delphi study, FISTERA gathered inputs from a wide variety of stakeholders concerning which areas of IST applications they thought most likely to yield benefits in terms of the goals defined by the Lisbon agenda.

The most outstanding result of the Delphi study was the strong focus on one particular application area, namely education and learning. Based on the findings of the Delphi study, FISTERA elaborated multiple scenarios in order to explore the plausibility of a set of diverse futures. For this purpose, various trends and countertrends and the ways they will likely interact in the future were studied. Four scenarios were proposed that brought together the S&T developments and fields of social application as a basis for dissemination activities. FISTERA was based on a ‘success scenario’ approach to examine the policy priorities required to produce the conditions for a desirable future in which the EU’s Lisbon objectives would be met as far as possible. The scenario-building exercise was aimed at providing options for a long-term development of IST for the economy and society.

On the other side, FISTERA tried to match the socio-economic needs with future technological trends and the consequences of potential IST applications. Therefore, a technology mapping was carried out that provided a perspective on the technological trajectories of IST. Due to the systemic nature of information and communication technologies (ICT), however, it was not possible to monitor the whole range of IST trends and provide prospective assumptions concerning the application and use of single technologies in the future. Instead, the focus was placed on clusters of technologies with similar functions while, at the same time, these clusters included competing and complementary technologies. The forward looking assessment of the evolution of these clusters was used to identify ‘technology trajectories’.

Identification of ‘Technology Trajectories’ in IST

The identification of a ‘technology trajectory’ followed a number of steps. First, a trajectory had to be defined. Then, information about individual ICT contributing to this particular technology trajectory needed to be collected, and this information had to be linked to the expected evolution of the trajectories. In a third step, the individual technologies were linked to possible applications and services.

The overall aim of this procedure was to identify particular technologies with the potential to influence the future development path of other technologies. In order to identify emerging patterns of relationships between technologies, a specific algorithm was used that analysed the strength and pattern of the link of a particular technology with other technologies as a function of time. Through this method, FISTERA was able to identify patterns of ‘technology attractors’ as well as trends of ‘technology disruptions’ and relate them to time horizons.

Some of the ‘technology attractors’ identified through this method were the following: (a) Batteries that are expected to have a profound influence on the evolutionary progress in many fields of IST. (b) Progress in bandwidth, understood as the transmission capacity at access level (rather than the network capacity on backbones), which will likely stimulate the advance in both optical, optoelectronics and electronics. (c) The growth of storage that will likely drive the creation and development of completely new industries. (d) Embedded systems that have been identified as the most crucial field for the future evolution of the overall market. (e) Information semantics that will act as an attractor technology with a profound influence on changes in the field of information value since it results from the merging of storage, computation and communication. (f) Developments in radio propagation that are expected to work as another attractor through the stimulation of new businesses and new applications. (g) Micro kernels and ad hoc protocols that are expected to have a stimulating effect on the evolution of communications infrastructures and the creation of new business opportunities at the edge of network structures.

With the help of the ‘technology trajectories’ concept, some of the technologies have been identified as being ‘disruptive’, meaning that their impact would be conducive to profound changes in technological systems as we know them today. The ‘disruptive’ potential of technologies may for example result from (a) the convergence between a number of diverse technological trajectories, (b) the shift from products to services, (c) the disappearance of the personal computer, (d) ubiquitous seamless communication, (e) changing traffic patterns, (f) unlimited bandwidth, (g) disposable products and (h) the shift from content to packaging.

 

FISTERA Inspired National Foresights on IST

By and large, the FISTERA foresight contributed important inputs to the debate about priority-setting in IST research in Europe and thus provided important impulses to the Seventh Framework Programme (FP7). Three levels of contributions have been identified (Compaño et al., 2005: 38):

(a) FISTERA generated valuable input that helped to identify and make transparent why some fields in IST research are more appropriate as priorities for the European Research Area than others.

(b) FISTERA helped to identify functional requirements that need to be met to translate these priorities into reality in the context of the European Research Area.

(c) FISTERA helped to identify the building blocks for consistent priority-setting. In this sense, the foresight process fulfilled an important function in legitimising public policy intervention in the field of IST research in Europe.

Although FISTERA did not embark on a comprehensive analysis of specific policy interventions to stimulate research in particular priority areas, the identification of promising technological trajectories in the field of IST was an important step towards investigating the future European positioning within these trajectories. FISTERA also prompted complementary action at the level of the member states by giving impulse to several follow-up foresight initiatives at the national level. For example, Austria (Foresight on Information Society in Austria – FISTA), and Hungary (Information Society Technology Perspectives – IT3) used the FISTERA approach to develop national IST foresights. We can therefore conclude that FISTERA not only contributed to establishing foresight for forward looking IST priority-setting at the European level but that it also inspired foresight practitioners at the national level.

However, with regard to the translation of the findings from the FISTERA foresight into priority-setting at the European level, there are also some lessons to be learned that might improve the efficiency of future foresights aimed at inspiring priority-setting processes at different levels.

The Methodological Framework

Regarding the methodological framework of the FISTERA foresight process, the following points were indicated during the follow-up interviews, which were carried out with individuals directly involved in the design and implementation of the FISTERA foresight:

(a) The implementation of the FISTERA foresight process was based on inter-disciplinary teamwork. The sub-optimal integration of the different skills and perspectives towards the broad area of IST was due to a lack of a coherent joint framework able to accommodate these interdisciplinary differences. Future projects should have a stronger focus on embedding inter-disciplinary foresight teams in a more coherent framework for collaboration.

(b) The insufficient integration of the technology-centred and the socio-economically-centred contributions were a methodological weak point of the FISTERA foresight. This might have created a bias towards promoting certain emerging technological paradigms and may have operated at the expense of devoting more attention to certain societal challenges that should not be neglected in priority-setting in practice.

(c) The interviewees indicated that since scenario development was very much on the macro level, priority-setting (in particular with a view to individual technological fields) was very difficult. Therefore, a better linking of the components of the foresight process to each other (in particular the technology mapping and scenario development) might improve future foresight initiatives in this field and help formulate more targeted priorities.

(d) It was further mentioned that the identification of thematic priorities was very difficult to translate into priority-setting in practice because technologies were clustered and no specific areas were focused upon.

Dissemination through Road Shows

The dissemination of the results of the FISTERA project was facilitated through various communication channels. The organisation of national road shows and communication papers contributed greatly to the broad dissemination of the project results to a variety of audiences. Although a book (Compaño et al., 2005) was published, according to a member of the FISTERA consortium, the transfer of the findings to high-level academic audiences remained behind its actual potential.

Reaching the Policy Level

Although FISTERA did not embark on a comprehensive analysis of particular policy interventions to support research in specific areas of priority in the field of IST, the interviews emphasised that the results of the foresight process provided important impulses to sharpen the perception of EU policymakers. According to one interviewee directly involved in FISTERA, an important accomplishment of the foresight was that it opened a debate on ICT in Europe towards a more multidisciplinary view and thus contributed to improving the framework conditions for a European dialogue about the future of ICT and ICT policy formulation (Pascu et al., 2006). Another interviewee who had knowledge of the internal decision-making processes within the EU Directorate General Information Society and Media (DG INFSO) stated that the results of the FISTERA foresight informed several initiatives that figured prominently in the work programme (for example Assisted Ambient Living).

Furthermore, it appears that FISTERA reached the policy level through direct interaction with the European Commission and its core advisory groups in the field of IST. There is no doubt that FISTERA had an impact on institutions that were directly or indirectly involved in European ICT policy formulation (Pascu et al., 2006). According to one interviewee, FISTERA’s impact was tangible on the policy level as reflected in the work of the IST Advisory Group (ISTAG), which is the most influential industry-oriented expert group advising DG INFSO on the IST programme. Furthermore, the same interviewee indicated that all decision-makers on IST issues in Brussels were exposed to the FISTERA results. In some sense, the FISTERA results also “paved the way” for subsequent projects, such as the PREDICT (Prospective Insights on R&D in ICT), which are still running today and provide inputs for policymaking at DG INFSO.

FISTERA results also proved to be relevant to several European think tanks.

However, foresight exercises are most successful whenever decision-makers go beyond the mere role of receivers of end products, such as reports on future scenarios, and become an integral part of the foresight process. In this sense, one interviewee stated that FISTERA failed to develop into an operational network for the interaction among different communities that hold stakes in the formulation of European IST policy development.

Priority Setting for IST Research through Foresight Practice

The FISTERA foresight marked an important milestone in counteracting forward looking perceptions based on technological determinism in the field of IST, which fail to provide an adequate perspective of technological futures. The timing for the establishment of a pan-European platform was favourable as foresight tools for priority-setting are proliferating, although it was stated during the interviews that FISTERA stayed far behind its set goal to establish a pan-European community concerned with IST futures. Nevertheless, FISTERA’s contribution to creating a European vision for IST has been an important first step towards establishing a discussion platform for IST foresight from a European perspective. Nonetheless, continued efforts to communicate the evolving European vision with ongoing priority-setting efforts in IST at the national level will be necessary. In this sense, it remains to be seen how the technology trajectories that have been identified by using the concept of “technology trajectories” will relate to forward-looking priority-setting exercises both at the national and at non-European levels. In light of the ERA’s increasing multilateral cooperation initiatives in particular, European priorities need to be related to the priorities of other regions of the world.

Inspiring Future Directions of Forward Looking Priority-setting

Based on the findings of the FISTERA foresight process, possible priorities for European IST research were identified. Foresight, however, can do no more than inspire the priority-setting process. It can help legitimise policy interventions in emerging fields, but it cannot anticipate concrete technologies that should be the recipients of targeted funding activities, and it should not generate expectations among policymakers that it can do so.

Authors: Dirk Johann                                   dirk.johann.fl@ait.ac.at
Sponsors: European Commission DG Information Society
Type: International foresight activity covering the enlarged European Union, focusing on the thematic area of Information Society Technologies
Organizer: The Institute for Prospective Technological Studies (JRC-IPTS), Telecom Italia Lab, The University of Manchester, The Institute for Technology Assessment and Systems Analysis (ITAS – Research Centre), Austrian Institute of Technology (AIT), Gopa Cartermill
Geographic coverage: Europe
Duration: 2002 – 2005
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: June 2012

Download: EFP Brief No. 221_FISTERA_Follow-up

Sources and References

Compaño, R., C. Pascu, M. Weber (eds.) (2005), Challenges and Opportunities for IST Research in Europe, Bucharest: The Publishing House of the Romanian Academy.

Compaño, R., C. Pascu, J. C. Burgelman, M. Rader, R. Saracco, G. Spinelli, B. Dachs, M. Weber, S. Mahroum, R. Popper, L. Green, I. Miles (2006), Foresight on Information Society Technologies in the European Research Area (FISTERA) – Key Findings, Luxembourg: Office for Official Publications of the European Communities.

 

Pascu, C., J. C. Burgelman, L. Nyiri, R. Compaño (2006), Foresight on Information Society Technologies: Lessons Learnt for Policy Intelligence Building in Europe, Second International Seville Seminar on Future-Oriented Technology Analysis: Impact of FTA Approaches on Policy and Decision-Making, Seville, 28-29 September 2006.

Weber, Matthias (2006), “FISTERA – Foresight on Information Society Technologies in the European Research Area 2020”. EFMN Foresight Brief No. 9. Online at http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-9-FISTERA.pdf.

 

EFP Brief No. 211: Towards Transformative Innovation Priorities

Wednesday, April 4th, 2012

This brief synthesises the findings of forward-looking activities that were recently carried out in different European countries with a focus on research and innovation. In order to structure the activities’ outcomes, a framework is used that distinguishes different types of outcomes. The findings of the activities are then presented along this framework. The last section suggests some conclusions for European-level, challenge-driven research and innovation priority setting. The study was conducted for the expert group Global Europe 2030-2050 http://ec.europa.eu/research/social-sciences/fwl-experts-groups_en.html and financed by the European Commission’s Social Science & Humanities Programme.

National Innovation Priorities Addressed

The countries in focus were France, UK, Germany, Spain, Poland, Finland, Ireland, Luxemburg, the Netherlands and the region of Flanders. All nine activities adopted forward-looking methods for a structured assessment of possible pathways for research and innovation. All activities were based on intense involvement of experts and stakeholders with diverse backgrounds. Some adopted very large-scale participation and reached out to broad publics (FORSK2015, NL Horizon Scan); others were more confined to core actors with specific expertise (UK TIF, T&I Flanders, BMBF Foresight). Moreover, some of the activities aimed at generating possible pathways of change within a certain time horizon or even pursued fully fledged country scenarios, as in the case of Poland and Ireland. Others were more interested in scanning signals pointing towards relevant changes (Foresight.fi, NL Horizon Scan), and again others sought to collect and assess a wide range of proposals for research and innovation (R&I) topics (FORSK2015, FNR, ClésTech).

While some of the activities focused on assessing technological trends (ENCYT2020, T&I Flanders, ClésTech) others adopted a very broad perspective on up-coming socio-economic change and its consequences for research and innovation (France 2025, Poland2020). Other activities put particular emphasis on linking established realms of research and innovation, on the one hand, and areas of need and problems in new future-oriented ways (BMBF-Foresight, NL Horizon Scan).

With this rich diversity of approaches, all selected activities have one ultimate goal in common: defining a research and innovation agenda that best addresses future needs. Most of the activities used a set of criteria for assessing RTI topics composed of global challenges, on the one hand, and national objectives, on the other. Thus, the synthesis may well provide valuable insights on the challenges ahead when orienting research and innovation towards the grand societal challenges of our times, as envisaged in the European Innovation Union Initiative.

Categorising Future Research & Innovation Priorities

In the synthesis the categories will be used as follows:

Research and innovation topics: Specific topics for research and innovation assessed as highly future relevant and therefore to be prioritised. Due to the nature of the activities, these topics usually stem from engineering and natural science realms. Example: Metamaterials (UK TIF).

Application domains: Domains and sectors where significant applications of the technology and innovation areas are expected. Example: Transport (ENCYT, UK TIF).

Socio-economic change signals: Changes in society and economy assessed as highly relevant for priority setting in research and technology innovation (RTI). Example: New forms of ownership (Foresight.fi, UK TIF)

“Grand Challenges”: Major challenges for society expected to drive the research and innovation agenda in the future. Example: Need for preservation of ecosystem services (FORSK2015, FNR)

Crosscutting priority areas: Proposed RTI focus areas linking several elements out of the four previous aspects. Example: Manufacturing on demand (UK), ProductionConsumption2.0 (Germany)

Some activities contribute in depth to one of the categories; others address two or more aspects as illustrated in Figure 1.

Converging Topics

Despite national specificities and differences among the countries, a certain convergence of R&I priorities can be observed. Topics related to energy transition as well as sustainable patterns of production and consumption are high on the agenda of several countries followed by health related topics and information and communication technologies.

Signals of Socio-economic Change

A number of the activities emphasise socio-economic change as a key element of the innovation arenas. In particular, several activities point out the need to explore new forms of identity-forming, cultural diversification and community building to understand successful innovation pathways.

The Foresight.fi blog specifically considers changes in socio-economic patterns as a core part of research and innovation futures. Issues such as changing attitudes towards product ownership, identity formation, self-expression, changing innovation patterns, new concepts of work, new types of jobs, new work and communication attitudes, open data, open science, new growth models, information owner-ship/control are discussed at some length and seen as relevant drivers not only for society overall but also for the direction of technological innovation. Another study that considers socio-economic innovation in depth is the NL Horizon scan. Some of the proposed priority topics explicitly address socio-cultural research, focusing for example on the socio-cultural meaning of an aging population. Another cluster is dedicated to new forms of work and education. Two other topics deal with global political and economic changes. The UK TIF study deals in depth with intellectual property rights as an area of innovation in its own right.

Furthermore, the following areas of socio-economic change are mentioned as relevant for the research and innovation fields in at least three activities:

  • Values, lifestyles, behaviours, determinants of choices, in particular of coming generations
  • Social fabric (age, culture)
  • Patterns of consumption/use
  • Value creation patterns, business models
  • Conception of humanness
  • Economic patterns, growth models
  • Work/life patterns
  • Modes of governance
  • Public sector, transparency, open data
  • Science-society interaction, citizen participation
  • Modes of communication and trust building
  • Leadership challenges

Application Domains

The domains where the innovations are expected to be applied are similar in all activities. Across activities, there is a striking emphasis on food and agriculture, both in terms of security and safety and as a key aspect of environmental sustainability and culture. The other two top innovation target areas are energy and transport followed by health, housing, communication, education, public administration and security.

Some national differences can be clearly identified. France, for instance, is putting strong emphasis on agriculture whereas Luxembourg is focusing on multimedia and service innovation. Germany is innovating along traditional production paradigms whereas the UK is pushing innovative manufacturing technologies in combination with new service and business concepts. Finland is especially concerned with the future of the countryside.

“Grand Challenges”

Most of the activities did not explicitly attempt to define the grand challenges driving research and innovation activities but rather adopted them from well-known documents such as the Millennium goals. In one case (Ireland), competitiveness of national industry was used as the only relevant criterion, but also several other national activities chose technology and innovation areas with a strong emphasis on securing advantages over competing economies.

However, most activities saw the need to address global challenges as an important rationale for RTI priority setting and adopted a mix of selection criteria combining competitiveness and challenge-oriented criteria.

The following societal challenges are explicitly mentioned as drivers for RTI priority setting:

  • Energy (securing energy supply and decarbonising energy production through new sources and efficient use)
  • Counteracting climate change
  • Preserving biodiversity
  • Food safety and security
  • Preserving ecosystems services/securing a clean environment
  • Adapting to climate change
  • Securing water supply
  • Combating chronic and infectious diseases
  • Handling global conflicts
  • Understanding and dealing with changes in social fabric, in particular demographic change but also diversity
  • Ensuring well-being and quality of life
  • Ensuring resource security

Towards Socio-technical Breakthrough

None of the activities highlights one particular technology area as likely to yield radical breakthrough innovations in the near or mid-term future. However, most activities aim towards breakthrough transformations in key innovation arenas through alignment of innovations from technological and socio-economic realms in order to achieve change in addressing societal challenges. By definition, such transformative priorities require research across engineering, natural and social sciences as well as the humanities, as they target aligned social and technological breakthrough innovation rather than just isolated technological change.

The synthesis offered here focuses on the most striking convergences within the national foresight activities. Accordingly, the transformative priority arenas outlined below are far from covering all relevant topics for research and innovation identified by the activities.

Conclusions for the Innovation Union

The transformative priorities emerging from the national forward-looking activities outlined in the previous section directly link with the “grand societal challenges” addressed in the Lund declaration and the Innovation Union initiative. Moreover, they are perfectly in line with the Innovation Partnerships proposed by the Innovation Union Flagship, both in terms of set-up and content. In particular, the areas Smart Cities and Smart Mobility as well as Agricultural Sustainability outlined by the Commission Communication fit well into the framework presented in this paper. But also the challenge-driven approach, the strong role of social innovation and the need to go beyond the “technology focus of the existing instruments” fit with the Innovation Union approach.

Transition Arenas Must Not Be Isolated

Several of the societal challenges are closely interlinked. It is obvious that the evolution of living spaces is closely tied to the underlying infrastructures and energy sources, which again co-evolve with the patterns of production and consumption. Therefore, the transition arenas cannot be easily separated. Optimising one aspect without taking into account the other is bound to fail, as several activities point out using the example of potential conflicts of biodiversity and bio-resource use.

Cultural Diversity Matters

Although several activities converge around certain socio-technical breakthrough arenas, the meaning is still different in each cultural context. This is obvious in the case of the living spaces of the future. Even though some countries have proposed almost identical priorities, the main concerns behind these propositions differ: The Fins are very much concerned with life in the countryside as a key element of their culture; the Dutch in turn expect to free space by changes in agricultural use and think of new possibilities for making good use of scarce space; the French focus is on the future of agriculture and food quality whereas the Germans, with their recent experience of shrinking cities in Eastern Germany, are considering flexible spaces to adapt to changing life-styles. Similar observations hold for all other transition arenas. Accordingly, when acting at the European level, “normalising” national diversity into one-size-fits-all approaches is bound to fail. The rich diversity needs to be kept as a particular strength.

Defining and Implementing Transformative Priorities Requires Participatory Processes

Transformative breakthrough priorities, as suggested here, are not a purely a matter of science and technology but involve substantial social and cultural innovation. Accordingly, they cannot be addressed through research alone but require aligned social and technological experimentation. This again cannot be enforced by top-down priority setting in the realm of science and technology. Participatory processes involving not only researchers and engineers but also European citizens are needed to define the adequate designs for these experimental spaces. The activities investigated here give some indications how this could be done, also at the European level. In particular, the Netherlands Horizon Scan and the Danish Forsk2025 seem to offer feasible routes for orienting research and innovation in society and technology towards shared goals by a creative and participatory linking of problems and solutions.

Authors: Philine Warnke                               Philine.Warnke@isi.fraunhofer.de
Sponsors: European Commission, DG Research
Type: Overview Brief
Organizer: Fraunhofer Gesellschaft, Institut für System- und Innovationsforschung (FhG-ISI)
Duration: 2011 Budget: N/A Time Horizon: 2020-2025 Date of Brief: Feb 2012

Download EFP Brief No. 211_Towards Transformative Innovation Priorities

Sources and References

National forward-looking activities covered:

France: France2025 http://www.strategie.gouv.fr/article.php3?id_article=811

Germany: BMBF-Foresight http://www.bmbf.de/en/12673.php

UK: UK TIF Technology and Innovation Futures UK Growth Opportunities for the 2020s

Spain: ENCYT2020 Estrategia Nacional de Ciencia y Tecnología (ENCYT) 2020. Ejercicio de Prospectiva a 2020

Poland: Poland2020 Edwin Bendyk: Poland 2020. A Look from the Future. Alternative Visions of Poland’s Development Based on the National Foresight Programme Poland 2020 Scenarios

Flanders: T&I Flanders Technology and Innovation in Flanders: Priorities. Summary Report and Recommendations. http://www.vrwi.be/en/publications/study-18a

Finland: Foresight.fi http://www.foresight.fi/

Ireland: Ireland2025 Sharing Our Future: Ireland 2025 – Strategic Policy Requirements for Enterprise Development

France: ClésTech Étude Technologies clés 2010 http://www.industrie.gouv.fr/techno_cles_2010/html/sommaire.php

Luxemburg: FNR FNR FORESIGHT – THINKING FOR THE FUTURE TODAY. http://www.fnrforesight.lu/

Netherlands: NL Horizon Scan: Horizon Scan Report 2007: Towards a Future Oriented Policy and Knowledge Agenda

EFP Brief No. 208: Forecasting of Long-term Innovation Development in Russian Economic Sectors: Results, Lessons and Policy Conclusions

Saturday, March 17th, 2012

The exercise presented includes scenarios of key Russian economic sectors and determines necessary technologies in accordance with such scenarios. As key sectors, the foresight team investigated the energy, iron and nonferrous-metals industry, agriculture, the chemical industry and pharmaceutics, the aircraft industry, commercial shipbuilding and the information sector.

Intensifying Foresight Efforts to Modernise the Russian Economy

Over the last years, we have seen increasing activity of federal and regional authorities in innovation and industrial policy in Russia. This activity has led to a series of documents and commissions concerned with the long-term development of the Russian economy. Among them are industry strategies (in more than 15 sectors), a conception of long-term socio-economic development for the Russian Federation (RF), priority directions for the development of science and technologies, and the Commission for Modernization and Technological Development of Russia’s Economy under the RF’s President.

The year 2006 marked the first “Concept for Long-Term Russian S&T Forecast till 2025” in the country’s modern history. This was developed and approved in cooperation with key ministries and science and business representatives. In 2006, practical steps toward implementing some of the foresight and forecast projects were launched (by 2012 we will have more than 50 key projects at different levels, including the national, regional and corporate level).

The first serious attempt to organise a foresight project at the national level was conducted more than 30 years ago within the Complex Program of S&T Development for the USSR. It aimed at S&T forecasting for a period of 20 years and can be considered a project of the first foresight generation (according to the definition by Georghiou et al., 2008). For the next 10-15 years, there was an absence of foresight and forecast exercises. In recent years, a number of initiatives have been launched to overcome this deficiency (for more information, see Sokolov & Poznyak, 2011).

Modern foresight projects in Russia today are very much in line with the current fifth generation of foresight exercises in developed countries, which includes a focus on social context and a strong policy-advisory orientation. Thus, we can say that Russian foresight development has taken a shortcut in these years and “leapfrogged” directly to what is currently considered the state of the art in foresight methodology.

The main challenges that these projects address are:

  • the need for diversification and a decreasing energy-output ratio of national GDP,
  • the increasing role of modernisation,
  • the transition to the innovation path proposed by the government,
  • threats from emerging countries (China, India) to Russia’s traditional markets,
  • changes in the global value chain, and the need to find new niches and markets,
  • opportunities to cooperate with foreign countries.

The key objectives of these projects are to:

  • identify key drivers and trends for the Russian economy,
  • identify the most critical technologies,
  • elaborate scenarios for key sectors and S&T fields,
  • develop policy recommendations at the federal and regional levels,
  • identify research priorities,
  • build expert networks around research organisations,
  • create pilot technology roadmaps for S&T fields and key sectors.

Methodology and Database for Foresight of Russian Economic Sectors

To achieve our aim, the database was based on two pillars. The first included information and relevant data from foreign and Russian forecasts, foresights at the country, industry and corporate level, and key Russian documents on S&T and industry development. The second pillar comprised data from various industry experts, representatives of key industries and consulting companies.

To construct various sector scenarios, we used elaborated qualitative models, which included sector analysis (characteristics of the technological base, organisation structure, role in exports, etc.), the identification of basic strategic alternatives for future sector development (e.g. technological and institutional), the construction of models of sector development, future visions, and the identification of priorities for S&T development in the sector in question for each vision.

This resulted in four to eight prospective scenarios for each key sector. To discuss the preliminary visions and present a final set of scenarios, we held a series of round tables and conferences. We also formed a multi-level pool of experts: the core included so-called “system experts” – high level professionals who were able to provide a comprehensive evaluation of the vision for the sector in question (2-3 persons for each sector); the next level included sector analysts who could contribute in-depth knowledge of different aspects relevant to the particular scenario (e.g., on markets and technologies; 7-12 persons for each sector); the last level was public relations experts and experts familiar with governmental and administrative processes and included representatives of industry journals, key federal and regional authorities (about 10-15 persons for each sector). We conducted focus groups, in-depth interviews and surveys to gain information from the experts participating in the project.

The beneficiaries of the project results are business (large, small and medium enterprises, business associations, industry institutions), government (state institutes for innovation development, federal and regional authorities), science (the system of Russian academies, research institutes), universities (leading institutes and labs in the Russian higher education system), and experts in the fields under consideration.

Project Results: Sectoral Models and Critical Paths

Some of the main sectoral results indicated that key sector development scenarios took institutional and technologic alternatives into account while identifying the main technologies necessary for implementing the scenarios. The results for the various sectors were highly diverse due to different sectoral structures and the number of sectors (ten). The table and illustration below briefly show some results for two sectors.

Medical Equipment and Pharmaceutics

After the sector analysis, we elaborated seven alternative paths of development for the pharmaceutics and medical equipment sector based on a literature review along the criteria mode of regulation, position in value-added chain, degree of modernisation and management. Then we verified alternatives by consulting industry experts and developed the five most probable models.

Information and Communication Technology

In case of the ICT sector, most experts agreed that a transition to the most preferable scenarios (“niche leader” or “technological leader”) cannot be accomplished directly. The only way to achieve them is to establish bridgeheads and use the competitive advantages gained to further advance toward the goal. Each scenario in Figure 1 contains a description of a future vision, possible barriers and risks, pros and cons, and recommendations for a shift in policy.

The exercise led to the following three policy-oriented results: (1) alternative “preferable” visions for the development of key sectors that are not limited only to the simple dichotomy of “bad” or “good” as in major government S&T documents; (2) recommendations for integrating long-term S&T forecasting as a basic instrument for strategic policymaking; (3) formation of a multi-level expert pool to serve as a communication network for discussing and constructing Russian S&T policy.

Foresight Culture Still Underdeveloped in Russia

We believe that the lessons and experience obtained during this project are representative of the whole field of foresight and forecast initiatives in modern Russian history. One of the key success factors in foresight is participation of key stakeholders and experts involved in shaping the future. In the case of Russia (at least 3-4 years ago), a lack of foresight culture has resulted in an “a priori”, indiscriminately negative perception of foresight initiatives. This can be explained historically by the fact that there have been some serious gaps between science and business and, as a result, in the supply of and demand for innovation. Mutual complaints are voiced to that effect. Business shows little interest in projects oriented toward long-term outcomes, lacks receptivity to innovations and displays low levels of global competition. We can say that the key actors (government and business) responsible for shaping the future are not fully up to the task. They have lost the “habit” of planning for a time span of more than 2-3 years.

One of the repercussions of the Soviet heritage is a lack of experts capable of acting as so-called “integrators”: experts able to devise strategies based on combining market pull with technological push. As a result, we have to first nurture a new generation of experts, typically to be recruited from representatives from the “technology” side, with the skills required to adopt a more comprehensive perspective of the sector as a whole.

Apart from qualification, a lack of expert commitment poses another problem in that experts show low interest in collaborative work and are more intent on lobbying and pushing their own individual interests.

Another serious drawback in foresight culture in Russia is an insufficient commitment to the processes required to formulate visions and scenarios on part of federal and regional authorities: they usually want to see “ready-to-use” results instead of participating in the process from the beginning.

We believe that a serious obstacle to the development of foresight culture in Russia is the lack of actually working, sustainable, systematic communication platforms for discussing different foresight results. Only in the past 2-3 years have they grown in number, particularly platforms launched by national research universities, technology platforms, etc. (for further information see Simachev, 2011).

Development of a common “cure” for deficiencies in foresight culture in Russia is complicated by the fact that Russian economic sectors are of a multi-structural nature, technologically and institutionally: some basic technologies are 100-150 years old and modernisation processes have not yet been completed in most industries. As a result, we observe a low level of innovation receptivity among Russian companies. Taking this into account, government policy should switch from “one-size-fits-all” instruments towards an innovation policy tailored to the specific situation in each sector or sub-sector.

Authors: Alexander Chulok, National Research University Higher School of Economics                                                       achulok@hse.ru
Sponsors: Ministry of Education and Science (Russian Federation)
Type: National foresight exercise
Organizer: Interdepartmental Analytical Center (www.iacenter.ru), Alexander Chulok, achulok@hse.ru
Duration: 2009-2010 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011  

 

EFP Brief No. 208_Forecasting Innovation in Russian Economic Sectors

Sources and References

Georghiou, L., Cassingena Harper, J., Keenan, M.; Miles, I. & Pooper, R. (eds.) (2008): The Handbook of Technology Foresight: Concepts and Practice. Cheltenham: Edward Elgar Publishing.

Sokolov A. & Poznyak A. (2011): Building Foresight Capacities for the Modernisation of the Russian Economy, EFP Brief No. 193, available for download at http://www.foresight-platform.eu.

Simachev Y. (2011): Technology Platforms as a New Instrument of the Russian Innovation Policy. available for download at http://www.iacenter.ru/publication-files/157/133.pdf