Posts Tagged ‘roadmap’

EFP Brief No. 253: Egypt’s Desalination Technology Roadmap 2030

Thursday, February 14th, 2013

This project was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Stud-ies in the Egyptian Cabinet’s Information and Decision Support Center, with the aim of identifying the future needs for desalination technology development, charting a series of research and development activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet the national future needs, and providing short and long term action agenda to guide desalination research and investments in Egypt till the year 2030.

Investment to Meet National Needs

Water shortage is a worldwide problem, where 40% of the world population is suffering from water scarcity. In Egypt, the per capita water share was 771 CM/capita/year in 2005, which is below the international standards of “water poverty line” of 1000 CM/capita/year. Due to the long time horizon required to implement the Upper Nile development projects, directing efforts towards non-conventional water sources – such as; water recycling; reuse of drainage water; treated industrial and sewage effluents; rainfall harvesting; and desalination – provides a short term solution to the water shortage problem. Water desalination should top the agenda of developing non-conventional water resources, since desalination technologies have developed substantially over the last fifty years, especially with the development of “Reverse Osmosis” (RO) technology in the sixties leading to significant reductions in the cost of desalination. Therefore, due to the great advances which occurred in the field of desalination globally, and the noticeable increase in awareness of the importance of such a technology among decision-makers in Egypt, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt in the year 2030. The desalination roadmap is a program-planning document that identifies the most appropriate desalination technologies and their related R&D projects that Egypt needs to invest in to meet the national needs.

Developing and R&D Agenda

The desalination roadmap is a program-planning document that identifies different desalination technology alternatives and their related R&D projects, and the milestones for meeting future national needs of water resources. Due to its role in investigating the future of Egypt in different areas, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt. The project objectives are:

  1. To identify future needs for desalination technology development.
  2. To chart a series of R&D activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet future national needs.
  3. To establish development activities that will accelerate the rate of improvement of current-generation desalination technologies, and therefore allowing these technologies to better meet the short-term national needs.
  4. To develop short-term and long-term action agendas for the required desalination R&D projects in Egypt till 2030.
  5. To improve communication within the R&D community and between this community and the end users.

Technology Roadmapping Methodology

The desalination technology roadmap project was divided into three main phases: roadmap initiation, technical needs assessment, and technical response development. The first phase was concerned with the preparation of the actual roadmapping process and involved agreement on the roadmap’s scope, leadership, participants and deliverables. This phase involved constituting the Desalination Steering Committee (DSC), validating the need to roadmap and clearly portraying this need in a clear vision statement.

The second phase was Technical Needs Assessment: which involved technical needs definition, by assessing current capabilities and identifying the capability gaps and associated R&D goals. This was carried out by the Steering Committee’s core research group who conducted research in the field of desalination, in general, and in Egypt, in particular to determine recent breakthroughs in desalination technologies and how far Egypt has reached in this field. This was followed by identifying and specifying the areas of technical risks/opportunities, and correspondent technical solutions that are either available, or currently under development through a series of brainstorming sessions to identify potential alternate solutions. This phase resulted in a number of critical objectives associated with each need highlighted in the vision statement, and which certain research projects are meant to fulfill. These targets aim at challenging the R&D community to pursue and achieve major technological breakthroughs to be used in future projects, and should only be developed if key projects are not scheduled to start for another 10 years or more.

The final phase of the project was the Technical Response Development, which involved identifying relevant technological areas and research projects (e.g thermal, membranes, alternative, reuse, and cross-cutting research areas) to meet the metrics of each critical objective, and involved brainstorming to identify all possible technical approaches which represent the mechanisms for achieving the critical objectives. This phase resulted in a Broad Strategic Action Agenda which serves as a guideline for the R&D projects required on the short and mid/long term by providing prioritized suggested R&D projects, their duration and an estimated budget.

Most activities associated with the roadmapping process were conducted through committees or workgroups, and a number of focus group meetings were sequenced and scheduled for all work groups to come together, share results, and reach consensus on the defined targets or critical objectives. In addition, a number of individual follow-up meetings took place.

The Desalination Roadmapping Team was composed of the Desalination Steering Committee (DSC) and the Desalination Working Group (DWG). The main responsibility of the DSC was to oversee the technology roadmapping process, and guide it in the direction of achieving the vision statement or the final goal. The DWG is a committee representing a group of experts in desalination technology, environmental engineering, water resources planning, and energy resources. Their main responsibilities were to brainstorm technology options responsive to the technology strategies provided by the DSC, as well as the costs, benefits and risks of the different options.

Good Water Quality Free of Charge

Upon identifying the steering committee, a meeting was held to highlight the main national needs facing Egypt’s water resources in the future till 2030. This meeting was held among a number of prominent experts in the field of water resources and desalination, and accordingly, the following broad vision for desalination was formulated and agreed-upon to cover the main national needs as below:

“Develop desalination technologies that aim to secure cost-effective, drinkable, fits for its uses and sustainable water for Egypt in 2030”.

National Needs and Critical Objectives to Meet National Needs

Following the extensive literature review carried out by the research team during the second phase of the roadmapping process, the technical needs of Egypt in the field of desalination were identified and were mainly focused on capitalizing on the availability of abundant renewable resources in Egypt, mainly solar and thermal energy. As determined by the agreed-upon vision, Egypt’s main national needs with respect to water can be categorized as:

  • Cost-effective water: In Egypt, as in many countries, there is no direct charge for water services provided for agriculture, while water provided for domestic and industrial uses is subsidized. Farmers receive water free of charges and are only responsible for pumping costs from the manual pump to the field. However, the provision of water free of charges to farmers began to pose an increasing burden on the government especially in the face of increasing costs for O&M and irrigation and drainage system rehabilitation, due to the increasing population and construction of mega projects. As with regards to the municipal and industrial sectors, it is estimated that government subsidies amount to 70% of water service in the industrial sector and 88% in the municipal sector. The rate for domestic water supply in Greater Cairo is about LE 0.13/m3, which is much lower than the cost of providing raw water (around 0.56/m3). Charging users for water and water services in Egypt is a sensitive issue, as it involves political, historical, social, and economic factors.
  • Drinkable water: Access to safe drinking water and sanitation is considered a basic human right, however providing this service and securing the required investments are a real challenge for the government. In Egypt, over 90% of Cairo’s drinking water is drawn from the Nile, which has provided high quality water during the 1970’s and 1980’s. However, the Nile’s water quality showed increasing deterioration in the 1990’s due to increased industrial and agricultural discharges, and also contamination from human sewage. In addition, water quality provision was increasingly threatened by the inefficient infrastructure and deteriorating distribution systems and water treatment plants.
  • Water fits for its uses: Given the worsening water situation in Egypt due to the massive and increasing demand by the agricultural sector, supplementary non-conventional sources including desalination of sea and brackish water, and reuse of waste water, represent very important sources to ensure maximum water allocation for its uses. In general, desalinated seawater costs about more than twice the price of freshwater used in irrigation and hence is considered too expensive for all types of agricultural production. However, desalination costs have decreased to nearly one-tenth of what it was 20 years ago, and are likely to continue falling due to continuous advances in the field. This declination in cost is likely to make the use of desalinated sea or brackish water feasible for wide use in both agricultural and industrial fields.
  • Sustainable water. Achieving the national need of providing sustainable water resources requires that policy makers widen their scope on the main users of water, to include the environment as well as the traditional industry, agriculture and household users. This measure is crucial in the future in order to overcome the unsustainable “hydrological” debt that Egypt faces today, as its future water flows are more or less fixed while consumption is increasing at an enormous rate leading to water depletion.
Quantifying the Objectives

These are the objectives for each national need that the different proposed desalination technologies are expected to fulfill. These objectives gained consensus by the experts who have participated in this study.

Near Term Critical Objectives (2015):

  • Reduce capital cost by 20%
  • Increase energy use by 10%
  • Decrease operating and maintenance cost by 20%
  • In-house manufacture of renewable energy (RE) units
  • Increase public awareness, education/training on the importance of desalination.
  • Water quality meets drinkable water standards identified by Egyptian Environmental Affairs Agency (EEAA)
  • Develop science related concentrate specific regulations
  • Microbial removal
  • Provide water for supplementary irrigation coupled with greenhouse irrigation
  • Water use in industry
  • Reduce cost of desalinated water by 20%
  • In-house manufacture of RE
  • Maintain stability of reclaimed water over time
  • Brine reuse for other purposes


Mid/Long Term Critical Objectives (2030):

  • Reduce capital cost by 50%
  • Increase energy efficiency by 50%
  • Reduce operating cost by 50%
  • In-house manufacture of multi stage flashing (MSF)/Multi Effect Distillation (MED) desalinating plants
  • Develop small desalination units for remote areas
  • Address cumulative issues related to concentrate and enhance regulations
  • Wider water for supplementary irrigation coupled with greenhouse irrigation
  • Wider water use in industry
  • Reduce cost of desalinated water between 60-80%
  • Development of new systems projects
  • Use of nuclear energy for large desalination plants using CANada DUterium Oxide Uranium (CANDU) technology.
Desalination Technologies to Address Critical Objectives: Research Areas with the Greatest Potential

The Roadmapping Team identified three main technology areas where R&D is needed in order to create the next-generation desalination technologies. These technologies and their associated research areas are:

  1. Solar/Thermal Technologies:
  • Design and manufacture of solar stills
  • Application of a reflection reduction solution to the glass of solar desalination units
  • continuous improvement in material enhancement for solar desalination unit
  • Multistage evacuated solar desalination system
  • Multiple effect humidification/ dehumidification at ambient temperature (solar)
  • Solar multistage condensation evaporation cycle
  • Enhancement of reverse engineering of national made (5000 m3/day) MSF (or MED) units (existing 5000 m3/day of Sidi Krir & Euon Mosa could be used for verification)
  • Solar PV-RO system
  • Develop solar ponds for energy and concentrate management
  1. Membrane Technologies
  • Enhancement of in- house manufacture of RO technology
  • Enhanced evaporation through Multistage Condensation Evaporation Cycle
  1. Other Technologies
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day)
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients).
  • Ionization of salty water for irrigation
  • Secondary treatment of brine for salt production
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients )
  • The biology of salty water, including understanding of environmental impacts, using bacteria for beneficial treatment, etc.

Expectations of Impacts

Given that the critical objectives that are to be achieved by the roadmap are divided into short-term and mid/long term, it was seen as most suitable to divide the strategic plan for desalination into a strategic plan to achieve short term critical objectives and another strategic plan to achieve mid/long term critical objective

Mid/Long Term High Priority R&D Projects
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day). Duration: 10 years, Expected Cost: L.E10 million.
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients). Duration: 5 – 10 years, Expected Cost: L.E 2.5 million.
  • Storage of brackish water aquifers all over the country. Duration: 10 years, Expected Cost: LE 5 million
  • Bio technology using Bacteria, micro, plants…etc, that reduce amount of salt in seawater (e.g. Man-Grove). Duration: 12 years, Expected Cost: 2 million.
  • Combined nuclear power & desalination plants. Duration: 20 years, Expected Cost: 50 million.
Authors: Dr. Abeer Farouk Shakweer

Reham Mohamed Yousef

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion
Organizer: Center for Future Studies
Duration: 2006 – 2007
Budget: n.a.
Time Horizon: 2030
Date of Brief: June 2011

Download EFP Brief No. 253_Desalination Technology Roadmap 2030

Sources and References

Abou Zaid, Mahmoud, “Desalination in Egypt between the Past and Future Prospects”, The News Letter of The Middle East Desalination Research Center, Issue 9, March 2000.
El-Kady, M. and F. El-Shibini, “Desalination in Egypt and the Future Application in Supplementary Irrigation”, National Water Research Center, Ministry of Public Works and Water Resources, July 2000.

Food and Agriculture Organization of the United Nations (FAO), “Raising Water Productivity”, Agriculture 21 Magazine, Agriculture and Consumer Protection Department, March 2003,

National Research Council “Review of the Desalination and Water Purification Technology Roadmap”, The National Academies Press, Washington DC, January 2003.

EFP Brief No. 232: STRATCLU

Tuesday, December 4th, 2012

STRATCLU, the ‘entrepreneurial’ strategy process of the German ‘spitzen’-cluster (leading-edge cluster) MicroTEC Südwest meets the needs of multi-actor, multi-governance-level and multi-sector research and innovation (R&I) policies. The forwardand outward-looking process exemplifies how a broad range of regional R&I actors can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic R&I investments and collective actions, and focus their diverse competences in microsystems as a general purpose technology to tackle societal challenges and enter future markets globally.

Research & Innovation Programmes Addressing Challenges of the 21st Century

In line with a more systemic understanding of research and innovation (R&I) policy (OECD 2005), the respective support programmes introduced the perspective of global, societal challenges to be tackled by scientific and technological breakthroughs. The German government, for instance, launched its High-Tech Strategy 2020 (HTS 2020) in 2006 with the aim to make Germany a leader when it comes to solving global challenges (climate/energy, health/nutrition, mobility, security, communication) and providing convincing answers to urgent questions of the 21st century. The German Strategy for Internationalisation of Science and Research stresses that, to realise optimised solutions to these challenges, it is necessary to leverage science and innovation potential worldwide. In the same vein, the Europe 2020 strategy and its flagship initiative “Innovation Union” aim at refocusing R&I policy on the challenges facing society, and the EU Cohesion Policy 2014-2020 asks the member states and regions to develop innovation strategies for smart specialisation. The ‘entrepreneurial process’ of developing regional innovation strategies for smart specialisation (RIS3) (Foray et al. 2009) focuses on unique regional assets with a view to developing competitive products and services in international markets. If the different RIS3 are developed in alignment with the European context, synergies can be leveraged to further develop the European Research Area.

Against this backdrop, clusters as local nodes of global knowledge flows and ‘innovative hot-spots’ in globalised value chains provide the base not only for developing technological answers to the urgent problems of the 21st century but also for producing adequate, strategic knowledge for cutting-edge (and trans-regionally aligned) R&I programming (Sautter/Clar 2008). In 2007, the German government launched the ‘spitzen’-cluster competition as the flagship of the HTS 2020 and cornerstone of the national Strategy for the Internationalisation of Science and Research to support the development and implementation of future-oriented R&I strategies. The overall objective is to tackle key societal challenges and thus position the ‘spitzen’-clusters in the global knowledge economy and make them attractive for talented, creative people as well as innovative companies and forward-looking investors. MicroTEC Südwest in Germany’s south-western state of Baden-Württemberg and one of the winners of the competition started a forward-looking cluster strategy process inspired by the Strategic Research Agenda of the European Technology Platform on Smart Systems Integration (EPoSS), and focused on the priority fields of the German HTS 2020: climate/energy, health, mobility, security, communication.

‘Spitzen’-Cluster Strategy on Smart Microsystems Technology (MST) Solutions to Global Challenges

The MicroTEC Südwest cluster, closely linked withneighbouring parts of France and Switzerland, covers the competences needed along the value chain of the GPT (General Purpose Technology) miniaturised systems: from basic research, for instance in nano-, micro- or bio-technologies, to the design and production of smart microsystems, to the integration of such systems in ‘intelligent’ products (e.g. driver assistance systems in cars or point-of-care diagnostic systems in the healthcare sector). Besides global players like Bosch and Roche Diagnostics, the 350 actors involved in the cluster include top universities and research centres, and many small and medium-sized enterprises.

In order to focus the different competences on synergistic R&I investments, a ‘spitzen’-cluster proposal was developed with two application-oriented priorities to generate breakthrough innovations in global lead markets (health and mobility) and two technology-related priorities to develop and produce next generation microsystems for future fields of application. The funds (50-50 public-private) for implementation amount to nearly 90 million EUR, from national and regional ministries, regional bodies and enterprises.

The MicroTEC Südwest proposal was highly evaluated in the competition not only for the quality of its research projects but also for its additional structural projects on innovation support, qualification and recruitment, internationalisation and the STRATCLU strategy process.

From Ad-hoc Strategy Building to Systematic Learning Cycles

The STRACLU project has been set up to advance the successful ‘spitzen’-cluster project and to broaden and consolidate the participative decision-making process in the cluster. Stakeholder groups (cluster board, strategy panel etc.) have been established and strategic policy intelligence (SPI) tools combined in a learning cycle with three main stages:

· Stock-taking (incl. outward-looking): Review of cluster position in the global context (major SPI tools: audit, evaluation, benchmarking)
· Forward-looking: Longer-term perspectives & priorities (foresight, impact assessment)
· Action-planning: Roadmaps with milestones and specific joint actions (roadmapping, GOPP)

An operational learning cycle has been put in place as well to monitor the implementation of the joint actions. With these learning cycles, STRATCLU both guides individual actors in their strategic decision-making and develops MicroTEC Südwest itself into a learning ‘smart innovation system’, which continuously

· identifies global challenges and promising future markets,
· formulates long-term and ‘open’ RTDI strategies for smart MST-based solutions,
· builds local competences and capacities, looks for strategic partners along global value chains,
· encourages key local and global actors to join forces in common strategies and thus
· ensures long-term success in global competition.

MicroTEC Südwest AGENDA 2020+

Related to the national priorities of the HTS 2020, and based on detailed science and market analyses, the investigation and discussion of global trends and an assessment of their specific impacts along the strategic learning cycle (fig. 1), the MicroTEC Südwest strategy panel prioritised a joint AGENDA 2020+ with the following five major crosscutting priority fields for R&I, and an additional focus on cross-industry innovation and education and training.

These five R&I-related priority fields for smart MSTbased solutions address and leverage synergies across all key application fields (in particular with regard to the national priorities of the HTS 2020).

This topic was assessed as the most relevant. The renaming of the microsystems technology (MST) division of the German Ministry of Education & Research into Demographic Change: Human-Technology Interaction in the context of the German BMBF Foresight Process (Cuhls 2010) underlines the relevance of this issue. The big challenge is to develop smart MSTbased solutions adapted to people’s needs and providing them with real value added.

Here, the focus is on the integration of smart systems in superior systems: from smart systems to smart things like cars to comprehensive systems such as the transportation system (cf. cyber-physical systems or Internet of Things). The big challenge is to handle the increasing complexity that comes with a higher degree of system integration.

Energy converters (e.g. important for energy harvesting) and storage along with self-sustaining systems are preconditions to realise the systems-of-systems approach and to develop mobile and functional intelligent devices.

In the future, the production of smart systems and things has to be closely related to mass-customisation in order to provide the users (consumers) with wellcustomised and cost-efficient solutions.

Resource efficient production and consumption systems, total life cycle assessment (including the recycling stage) etc. are important issues in this priority field.

Roadmaps to Tackle Societal Challenges

Continuing along the strategy cycle, the AGENDA 2020+ provides the strategic framework for roadmapping exercises at multiple levels: Cluster actors develop R&I roadmaps towards market-focussed and MST-based breakthrough innovations to tackle societal challenges in prioritised joint action areas (e.g. in personalised medicine, factories of the future or green cars). These roadmaps will be aligned with other roadmaps, for instance of the European Technology Platforms EPoSS or MINAM, and integrated in the MicroTEC Südwest Cluster Roadmap 2020+, which involves also horizontal support measures like qualification, recruitment etc. and will be communicated to public and private investors (‘agenda setting’). Furthermore, the roadmaps will be transferred to SMEs in the cluster to support them in their own longer-term business development and R&I investment strategy.

Taking a Big Step Towards Smart, Sustainable and Inclusive Growth

The participative forward- and outward-looking strategy process in the German ‘spitzen’-cluster MicroTEC Südwest shows successfully how regional R&I consortia can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic investments and collective actions. By enabling actors to systematically develop future strategies together, to asses them and develop actorspecific, synergistic approaches to successful implementation, the overall risk of longer-term R&I investments can be reduced significantly, for the current participants and for foreign direct investment.

The strategy approach of MicroTEC Südwest meets the needs of (new) future-oriented, multi-actor, multigovernance level and multi-sector R&I policies in manifold ways. First, it focuses local competences in a general purpose technology on tackling grand societal challenges with the aim of entering global markets. Second, it strives to attract complementary competences and foreign direct investment from other regions, and to work together with strategic partners along global value chains. Third, it combines ‘bottom-up’ with ‘topdown’ activities by taking up and assessing external inputs from a regional perspective: for instance, the German High-Tech Strategy or the BMBF Foresights, European and other R&I policies and strategy processes, such as Joint Programming Initiatives or the Japanese NISTEP Delphis, respectively. Against this backdrop, the MicroTEC Südwest approach can be seen as a test bed for an ‘entrepreneurial process’ suggested by the European Commission to develop regional smart specialisation strategies and to capitalise on them to advance the European Research Area.

To fully benefit from the regional assets across Europe, strategic capacity building has to be strengthened, not only in Europe’s world-class clusters. If more clusters such as MicroTEC Südwest develop and align their longer-term strategies in order to raise, structure and optimise overall private and public (EU, national, regional) investments, with one focus on pooling forces and jointly tackling common challenges, a big step could be taken towards smart, sustainable and inclusive growth.

Download: EFP Brief No. 232_STRATCLU.

Sources and References

Cuhls, K. (2010): The German BMBF Foresight Process, in European Foresight Platform, EFP Brief No. 174.

Foray, D., David, P.A. and Hall, B. (2009): “Smart specialisation: the concept”, in Knowledge for Growth: Prospects for science, technology and innovation, Report, EUR 24047, European Union.

OECD (2005): Governance of Innovation Systems: Volume 1: Synthesis Report, OECD Publishing.

Sautter, B., Clar, G. (2008): Strategic Capacity Building in Clusters to Enhance Future-oriented Open Innovation Processes, in The European Foresight Monitoring Network, Foresight Brief No. 150.

Web links for more information:

EFP Brief No. 229: Taiwan Agricultural Technology Foresight 2025

Friday, November 23rd, 2012

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach. The goal was to identify research topics relevant to shaping the future of agriculture in Taiwan. Applying roadmapping, the project presented policy suggestions at the end of 2011. The suggestions have been incorporated into the Taiwanese govern-ment’s Council of Agriculture (COA) research agenda as evidenced by COA’s call-for-projects announcement.

The Role of Agriculture in Taiwan

Taiwan was one of the leading countries in subtropical agriculture several decades ago, but now agriculture has lost its importance in job creation, domestic production and international trade. However, agriculture is still at the root of the economy and has many functions beyond production – it provides the food we eat, conserves the environment we live in, and is a force for social stability.

Taiwan, with nominal GDP $427 billion US dollars and GDP (PPP) per capita $35 thousand US dollars in 2010, is known for its manufacturing capabilities today, but it used to be exporting a lot of agricultural products and technologies to many countries long time ago. Since 1959, more than 100 agricultural missions have been dispatched to more than 60 countries, among which about half missions are currently at work in Africa, the Middle East, Latin America, and the Asia-Pacific.

In fact, Taiwan’s total land area is about 36,000 square kilometers, most of which is mountainous or sloped. Therefore, agriculture is practiced mainly in the plains, which comprise 29 percent of the country. As a subtropical island characterized by high temperatures and heavy rainfall, Taiwan offers bio-diversities for agriculture, but also lends itself to the breeding of insects and disease. Particularly, there are frequently typhoons causing natural disasters in the summer and autumn every year.

There have been significant changes in Taiwan’s agricultural exports over the years however. Years ago, Taiwan exported sugar cane, rice, and canned mushrooms or asparagus. Now Taiwan’s main exports are aquaculture products (e.g. tuna, eel, tilapia), leather and feathers, and its main agricultural imports include corn, soybeans, wine, tobacco, cotton, lumber, beef and wheat. In 1953, the average value of agricultural production increased 7.3 percent annually and exports increased at a rate of 9.3 percent, but beginning in 1970, agricultural exports fell behind agricultural imports. In 2010, imports were USD 12.8 billion and exports were USD 4 billion. The production value based on agriculture is estimated approximately 11.2 percent of GDP, while primary production accounts for only 1.5 percent of GDP in Taiwan.

The Revitalization of Agriculture in Taiwan

In order to revitalize the agriculture sector to meet the challenges of trade liberalization, globalization, the knowledge- based economy and particularly, climate change, the Taiwanese Government’s Council of Agriculture (COA) commissioned a project- Taiwan Agricultural Technology Foresight 2025 – to the Taiwan Institute of Economic Research (TIER). This four-year project (2008–2011), with an annual budget of USD 350 000, conducted foresight-related activities including demand surveys, trend and policy analyses, horizon scanning, visioning, essay contests, training workshops, two-round Delphi surveys, road mapping and development of policy suggestions (short-, mid- and long-term development plans and priorities) (see Figure 1).

The project aimed to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Environmentally-Freindly Farming for Taiwan’s Future

In 2008, TIER set up a task force with six researchers and two assistants to learn the foresight techniques, mainly from Japan. It built up a data-base of social needs, technological trends, research resources, critical issues and agricultural policies nationwide and worldwide.

Under the support and approval of COA, the project set up the Planning Committee, including government officers, agricultural experts, senior research fellows, social scientists and an economist. The Planning Committee decided that the project’s target year was 2025, and that the purpose of the foresight was to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Visioning for Research Topics

In order to link the foresight and policy, the project set up the Strategy Formation Committee, with ten subcommittees corresponding to the ten research areas of COA, each of which was comprised of agricultural experts and senior scientists. The members of the Strategy Formation Committee were nominated by the Planning Committee and then approved by COA. The duty of the Strategy Formation Committee was to depict 2025 visioning in each research area and to figure out the research topics to meet the needs for shaping the future agriculture in Taiwan identified by the Planning Committee.

In 2009, the Strategy Formation Committee proposed more than 100 research topics for the project. The TIER task force tried to consolidate some of them and organize them in a uniform format. Then, the Planning Committee identified the final 74 research topics and the related key questions for the Delphi questionnaire.

In 2010, the TIER task force built up an on-line survey platform and carried out two rounds of Delphi survey. There were 675 experts and scientists on the list of the first round, 546 of which participated in Delphi survey (response rate of 80 percent), and 512 of which questionnaire were effective. Then there were 546 experts and scientists on the list of the second round, 413 of which participated in Delphi survey (response rate of 76 percent), and 407 of which questionnaire were effective.

Based on the survey responses to 74 research topics, the project compiled the indices of industrial development, environmental protection, life quality, national priority and government support respectively to measure the research topics in different aspects. The standard deviations of all indices at the second round became smaller than those at the first round, so it implies that the Delphi survey of the project did converge for reaching consensus.

The survey shows that the government should support those research topics with higher ratings in environmental protection as well as in life quality particularly due to agricultural multi-function (externality). It is, however, slightly correlated between industrial development and government support to be needed for those research topics because some of them could be developed by the private sector. These research topics have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

Attracting the Young Generation

Besides, in order to attract the young generation to think about the future of agriculture, the project invited young people to participate in the Taiwan Agricultural Technology Foresight 2025 contest (see Figure 2).

Foresight for Policy and as Policy

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach, in order to identify the research topics to meet the needs for shaping the future agriculture in Taiwan. The project made policy suggestions by road mapping at the end of 2011, and these have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

The major contribution of the project has been the government’s support for the research topics of ‘national priority’ in terms of industrial development, environmental protection and life quality, with equal weights embedded in the vision of making a better living in Taiwan. The project is expected to improve farmers’ productivity and livelihoods, particularly for smallholders; to develop resource-efficient and environmentally-friendly ways to do farming in Taiwan’s limited land area; to reinforce the links between production and consumption of agricultural products by implementing a traceability system.

Authors: Julie C. L. Sun 


Sponsors: Council of Agriculture, Taiwan


Type: National foresight exercise
Organizer: Taiwan Institute of Economic Research, Julie C. L. Sun
Duration: 2008–2011 Budget: 1 Mill USD Time Horizon: 2025 Date of Brief: July 2012  

Download: EFP Brief No. 229_Taiwan Agricultural Technology Foresight 2025.


The website of Taiwan Agricultural Technology Foresight 2025,

COA R&D project management system,

EFP Brief No. 207: From Future Scenarios to Roadmapping: A Practical Guide for Exploring Innovation and Strategy

Saturday, March 17th, 2012

This methodology brief describes a procedure where we combine scenarios that allow us to anticipate and prepare for multiple futures with the process of roadmapping serving as a systematic decision support tool. This specific foresight exercise, from scenarios to roadmapping, can be conducted as a one to two-day workshop with 20-30 lead engineers or managers to gather information in an organisation.

Visionary Approaches for Corporate Foresight

Managing technologies and strategic planning of business development goes hand in hand in today’s knowledge economy. Business planning in the long run involves planning of emerging technologies as well as anticipating and preparing for disruptive change in economy and society. This involves tremendous uncertainties. Both scenarios and roadmapping are flexible tools fitted to deal with uncertainties. Scenario-making is one way of anticipating possible futures to make better decisions today. Yet, scenarios leave us with many plausible futures, thereby making it difficult to choose which path to follow as each scenario projects a storyline with emphasis on different drivers and ridden with uncertainties. Traditionally, scenarios have been developed to support the formulation of a vision and mission statement for the most desired path of development. However, scenarios have been criticised for being too distant to support strategy development. Roadmapping, on the other hand, is a very precise tool oriented towards decision-making in the present, but it may exclude important uncertainties as the focus is on one single future. The roadmap is a way to illustrate and communicate alignments of technology, product development and market requirements and the right timing guided by a common vision (Phaal et al., 2004 and 2009). Technology management literature defines it as visualising the strategy and showing the route from the current situation to the desired future (Goenaga and Phaal, 2009).

In general, roadmapping is described as a structural, yet flexible tool when navigating in a sea of uncertainties. However, we claim there is a weak point in roadmapping not dealt with in foresight or roadmapping literature, namely where the vision comes from. The reason could be that technology roadmapping so far has mostly been part of technology management where the vision is given. This may stand in opposition to strategic management where the vision is developed. For sure, a shared vision is a strong driver for any process. The vision may be developed by top management, but in organisations it is important to actually make it a shared vision leading to shared actions (eventually a driver for the mission statement).

While participatory scenario-making provides visions for multiple futures, a roadmap operates with one vision only. In this paper, we propose combining the flexibility of multiple visions of scenarios with action-oriented roadmapping.

Positioning of a Systematic Decision Support Tool

Only a few previous studies in foresight have dealt with the practical side of linking scenarios with roadmapping. Lizaso and Reger’s article from 2004 provides a theoretical discussion of the value of linking roadmapping with scenarios for strategic technology planning. They describe a step-by-step process of creating scenarios to open up a variety of possible futures. However, they also perceive visions as desirable pictures of conceivable futures. Yet this is not necessarily so. In line with Saritas and Aylen’s article from 2010 that roadmapping usually builds on one future and scenarios on multiple futures, we suggest that combining these methods will add value by exploring possible innovation paths and identifying knowledge gaps and critical decision-points at a given time, thus improving strategy-making. However, in contrast to Saritas and Aylen, who build one roadmap for each scenario, we use the scenarios to develop a common understanding, a common vision, which is a necessary requirement in a corporate setting.

This methodology therefore combines the four scenarios that allow us to anticipate and prepare for multiple futures based on a common vision, which serves as the driver for the roadmapping processes. Linking scenario-making to roadmapping involves moving from an exploratory study of possible futures towards a more goal-oriented strategic roadmap – meaning in this case that the scenario exercise is a playground for building visions.

From Four Visions to Consensus

Our point of departure is a group of lead engineers, technology managers or a division of a company – public or private – involved in exploring innovation and future developments (20-30 persons). The group has some insight in the present strategies of a company and the challenges it faces. The STEEPV acronym for the six themes of thinking about the future, social, technology, economics, ecology, politics and values, guides the search for future uncertainties (Loveridge, 2002; id. and Saritas, 2009). Examples are climate change, new technologies, political change and policy drivers, scarce resources (e.g. oil, gas and minerals), economic crisis, and social factors, such as demographic change, change in access to skilled staff, costumer needs etc. We use the STEEPV themes for trends and drivers up to 2025 to facilitate the construction of four future scenarios. The scenarios are constructed based on two identified uncertainties and a number of market drivers (Figure 1).

Managers justifiably involve experts in technology management to give technical and market advice, but often no one really exactly knows where technologies and markets are heading in the long run. This is where scenario thinking becomes important because it allows raising important questions:

Which set of multiple futures might be likely?

How can the company prepare for them?

The exercise divides the participants into four groups, a group for each scenario. The task is to give the scenario a name and formulate a short narrative formulated into a vision. A vision is explained as a desired picture of the company’s position in each scenario given the uncertainties. Figure 2 illustrates the results.

The next step is to synthesise the four visions into one common vision for the following participatory technology roadmapping exercise to build upon. Based on the four scenarios, the participants develop a common vision for the firm to meet the challenges envisaged up to 2025.

A Common Vision Is Developed in Plenum

The common vision exercise provides a bridge from the four scenarios to the explorative roadmapping process. It is based on a consensus process integrating the four visions from the scenarios into one shared vision. The common vision acts as the driver in the technology roadmapping process and provides guidance toward the desired future.

The group is then introduced to roadmapping, moving from an explorative strategic landscape towards a more goal-oriented technology roadmap. In plenum, the group is presented with a framework of the strategic landscape. The participants again apply the STEEPV themes, but this time they have a common vision and a timeline.

The common vision is placed in the framework to highlight the common direction. Post-its are placed along the timeline from the present up to 2025, aligning the layers as illustrated in Figure 3 and 4. Brief comments and discussion are welcomed as the post-its are placed along the layers.

The information gathered using the post-its from the previous exercise is condensed into the plenum roadmap, and specific issues or new innovation ideas are placed, discussed and eventually ranked by each participant, placing a red dot on the most important ideas to be explored using the roadmap framework.

In our exercise, five technology roadmaps were developed, as there were five groups, providing five new ideas and five development paths for each idea or issue, which were in line with the common vision. The common vision should be seen as the key driver in the innovation process.

In general, the roadmap provides a visual representation of layers of information related to developments of technologies in the context explored.

The focus on condensing the complex information into one graphical framework is a key benefit of technology roadmaps, allowing to visualise market pull and technology push while checking for consistency in alignments of market and business drivers with product and services and R&D development to ensure the right timing for entering the market (Goenago-Larranaga and Phaal, 2010).

Manuel for a One-day Workshop: A Practical Guide to Our Methodology

First, we include a brief theoretical introduction to scenario thinking to create awareness among the participants for the social shaping of the future by showing the possibility of equally plausible alternative paths of development.

After the introduction follows a brainstorm session. First, each participant produces post-its for trends and drivers up to 2025 using the STEEPV themes as guidance. Thereafter, we conduct collective brainstorming in plenum where all post-its are placed on a large whiteboard. As facilitators, we cluster the post-its according to the STEEPV themes. The participants then vote on the most uncertain and most likely trends and drivers. The plenum consents on two drivers for constructing the scenarios. Using a simple matrix, the plenum constructs a framework for four scenarios up to 2025. Four groups work on constructing a scenario each based on one vision.

After the groups present each scenario and their vision, a consensus process in the plenum leads to formulating a consensual vision. The major value of this procedure is building cohesion around this common vision before introducing the roadmap framework.

The roadmapping exercise works with two types: strategic landscape and technology roadmapping. The common vision is the driver for the roadmaps since it guides the process towards achieving a desired future. The participants vote to determine the five topics they consider most import to be explored via roadmapping.

Five technology roadmaps – one on each topic – are developed in newly formed groups. The roadmaps support identifying current knowledge gaps if the desired future is to be reached. The framework allows the participants to recognise challenges and critical decision-points that one needs be aware of to respond in time to windows of opportunity.

The process ends by evaluating the exercises in plenum.

Meta-level Considerations

1. Learning from scenario-making: We see scenarios as a creative way of inspiring innovation. The lesson to be learned from the scenarios is that the decisions made in the present are of strategic relevance to the future and thus actually part of shaping it since the long-term future is an open process. We therefore conclude that scenario thinking creates awareness of socially shaping the future by showing the possibility of equally plausible alternative paths of development in industry.

2. Learning point from the roadmap: The point of the roadmap was to provide a strategic framework for aligning market trends and drivers with technology developments and setting priorities for R&D.

3. Combining scenario and roadmapping: The value of combining scenario-building and roadmapping in this exercise is that scenarios allow us to anticipate and prepare for multiple futures while roadmapping enables identifying options for shaping a technology in more than one direction.

4. The strength of a common framework: Our experience from using this guide testifies to the importance of familiarising the participants with the methodology as a flexible framework and exercise. All of the elements are key ingredients to bring together, for instance, lead engineers or stakeholders in an innovation system with the goal of developing a common vision, initiating innovation efforts, and aligning technology and innovation efforts with trends and market drivers in time to be able to effectively respond to market changes and create the right timing for a new technology. Of course, neither roadmapping nor scenarios are silver bullets. Scholars such as Rob Phaal (Phaal et al., 2003) have argued that the true value of roadmapping lies in the on-going process. We very much agree as roadmapping, albeit a strong tool for decision-making, has no miraculous future-telling powers. As practitioners of strategic projects know, uncertainties change and competing or promising technologies sometimes fail to reach market.

Creating the Future Through Visioning and Roadmapping

Linking scenarios with technology roadmapping initiates an exploratory and creative phase aimed at identifying and understanding uncertainties. Scenario-building creates awareness for the possibility of more than one future, each of which is equally plausible. Roadmapping provides a framework for condensing all information into a single map and timeframe – revealing windows of opportunity and thus linking decision-making with alternative futures. The step from scenario-building to technology roadmapping requires creating a common understanding of challenges and establishing a common vision.

In exploring possible futures and visions, the participants are exposed to the basic assumption in foresight that the future in 20 years is open and it is possible to sense and seize opportunities and develop new technical and organisational skills or utilise existing ones.

An exercise of this kind can be conducted as a one-day workshop. However, we do recommend a two-day workshop since it leaves more time for group work and presentations. The role of the facilitator is of great significance; it is important to keep a positive attitude and perceive the workshop as an interactive learning process. Furthermore, the structured and systematic framework ensures a common context that makes facilitating the process easier. It may even provide a starting point for the participants to establish networks in the future based on this shared learning experience.

In conclusion, combining future scenarios and roadmapping can be useful in that the creativity provided by scenarios may help in making better decisions in developing the paths spelled out in the roadmap.

Authors: Lykke Margot Ricard             ,

Kristian Borch                       

Sponsors: Technical University of Denmark, DTU Management
Type: Methodology Brief
Organizer: Technical University of Denmark, DTU Management,
Duration: N/A Budget: N/A Time Horizon: 2025 Date of Brief: Jan 2012  


Download EFP Brief No. 207_From Scenarios to Roadmapping

Sources and References

Goenaga, J.M., Phaal, R., 2009. Roadmapping Lessons from the Basque Country. Research-Technology Management 52, 9-12.

Goenago-Larranaga, J.M., Phaal, R., 2010. Roadmapping in industrial companies: Experience. DYNA-BILBAO 85, 331-340.

Lizaso, F., Reger, G., 2004. Linking roadmapping and scenarios as an approach for strategic technology planning. International Journal of Technology Intelligence and Planning. Volume 1, 68-86.

Loveridge, D., 2002. The Steepv Acronym and Process: A Clarification, Ideas In Progress. Paper No. 29. PREST, University of Manchester.

Loveridge, D., Saritas, O., 2009. Appreciation and Anticipation in the Evolution of the Nano-Field – a Case for Systemic Foresight.

Phaal, R., Farrukh, C., Mitchell, R., Probert, D., 2003. Starting-up roadmapping fast. Research-Technology Management 46, 52-58.

Phaal, R., Farrukh, C.J.P., Probert, D.R., 2009. Visualising strategy: a classification of graphical roadmap forms. International Journal of Technology Management 47, 286-305.

Phaal, R., Farrukh, C.J.P., Probert, D.R., 2004. Technology roadmapping – A planning framework for evolution and revolution. Technological Forecasting and Social Change 71, 5-26.

Phaal, R., Muller, G., 2009. An architectural framework for roadmapping: Towards visual strategy. Technological Forecasting and Social Change 76, 39-49.

Phaal, R., Muller, G., 2007. Towards visual strategy: An architectural framework for roadmapping. Picmet ’07: Portland International Center for Management of Engineering and Technology, Vols. 1-6, Proceedings, 1584-1592.

Saritas, O., Aylen, J., 2010. Using scenarios for roadmapping: The case of clean production. Technological Forecasting and Social Change 77, 1061-1075.

EFP Brief No. 205: Technology Roadmap High Performace Metals 2020

Tuesday, January 3rd, 2012

To establish a basis for informed decision-making, the BMVIT, the Austrian ministry for traffic, infrastructure and industry commissioned the creation of a technology roadmap for high performance metals. The project was carried out by the Austrian Society for Metallurgy and Materials, ASMET, and its two project partners, the University of Leoben and the Austrian Institute of Technology (AIT former ARCS Seibersdorf). More than 100 experts from 80 institutions, mainly from industry, participated in preparing the technology roadmap. The breadth of contributors facilitated looking at and analysing trends and technology development from many viewpoints. The outcome is a representative picture of relevant trends and technological developments to be expected in the future in high performance metals.

Inter-institutional Technology Roadmap Approach for High Performance Metals

Austria, with its companies and research foci, puts an emphasis on materials and materials technology. Among the materials, high performance metals play a crucial role for the Austrian economy and its future development. In terms of technology policy, the questions to be answered by the development scenarios and the measures to be taken represent a generic challenge for a national technology strategy.

For Austrian businesses and research institutions, the very turbulent economic developments of the last years clearly show that focusing on technological and systematic development of these strengths can be seen as an essential contribution to economic survival. Operating in a field of tension between suppliers, competitors and customers, they must be well prepared for future technological scenarios.

We can assume today that new technologies have to be developed by 2020. For the study of high performance metals, a variety of development challenges will appear in advance of these future technological developments. In order to seize these industrial developments as an opportunity for innovation, materials development has to start significantly earlier in time. All new high-performance metals require an at least ten-year period for development before an innovation finds its way into practical applications. Even for incremental improvements of high performance metals, we must expect a development period of three to five years. It is therefore very important that industry and technology policy together work out development strategies beforehand.

To lay the groundwork for informed decision-making, a cross-technology roadmap for high performance metals processing has been developed, supported by BMVIT funding. The project was carried out by the Austrian Society for Metallurgy and Materials, ASMET and their project partners University of Leoben and ARCS Seibersdorf. More than 100 experts from 80 institutions were actively involved in creating the technology roadmap. The breadth of contributors made it possible to look at and analyse trends and technology developments from many different angles, giving a picture of the relevant developments in the future of high performance metals from the participants’ perspective.

The Roadmapping Process: Expert Opinions and Scenario Workshops

Methodically, the roadmapping process consisted of two major phases. A first phase was concerned with determining whether action is needed for creating a national inter-institutional technology roadmap for high performance metals in general. The key issues to be addressed in the roadmap were also defined. During this exploratory phase, more than 30 Austrian experts and managers were interviewed. It clearly showed that there is massive demand for an inter-institutional roadmap.

In order to place the need for action identified in the exploratory phase in a comprehensive overall context, the second phase of the technology roadmap considered industry-oriented technological developments and developed actions and necessary measures for advancing high performance metals. The leading industries investigated ranged from power engineering to the mobility industry, with the sub-sectors aerospace, automotive and railway, and from the metallurgical sector to mechanical engineering. In addition to the sector specific perspective, technological trends in the crosscutting field of environment and resource management were addressed. In a detailed analysis beforehand, existing technology roadmaps in similar areas were examined, especially from English-speaking countries. The analysis determined what the lasting changes in the respective industry were and what had led to these changes.

Participation and Workshops

In a series of workshops, we identified the relevant developments and measures that have to be taken. The workshops were attended by representatives from industry and research in the field of high performance metals and representatives of companies downstream in the supply chains of a particular industry.

A total of eight workshops were conducted, involving between 10 and 20 participants each. Each workshop was structured such that relevant trends were verified in the beginning and discussed in a first phase. Subsequently, the changes expected in the market by 2020 were identified.

In order to highlight the relevant developments, the selected challenges were prioritized. In a next step, the developments expected in the field of high performance metals and their production and processing technologies were worked out. The workshops concluded by prioritizing these developments.

The last part of each workshop was devoted to developing individual measures suited to meet the challenges. Written reports of the individual workshops were compiled to inform the participants about the results.

Subsequently, the results of all the workshops were condensed into a single report. This condensed report was then sent to all participants in the roadmap process for further comments. At the same time, the report served to clarify whether or not further experts needed to be consulted to answer additional questions or further expert meetings were required to address identified knowledge gaps.

Aggressive Research Needed for Austria to Maintain Position

All industries showed the same crossover scenarios. The problem of future energy availability is turning into a major driver of development. Global scenarios predicting social and economic growth outside of Europe dominate the critical paths of development for the business location Austria in the field of high performance metals. An essential result of the roadmap is that we can expect growth only in sectors where aggressive research efforts are combined and focused on technology for innovative processes and products. However, this will only happen in favourable niches or at least in areas where it is possible to defend the current position in the field of high performance metals. Basically, the proposed measures recommended in the technology roadmap can only succeed if Austria remains committed to being a production site for high performance metals. Regardless of the sector considered, the technology roadmap shows that a positive image for high performance metals and related production technologies must be built in order to attract appropriate human resources, to train junior staff and to increase the pool of knowledge workers significantly.


Progress in the whole area of mobility is linked most intensively and significantly with innovations in the field of high performance metals. The technology roadmap focused on the automotive industry, aviation and railways. All three sectors are generally expected to grow by 2020 although the current economic crisis will reduce the growth rate. The pressure to innovate by creating new products and processes is growing, driven by international competition based on established research resources.

Dominant development issues in the field of mobility are lightweight, energy conservation and new drive concepts. The need for lightweight construction leads towards a unique competition of materials by substitution in the field of high performance metals. Considering the high performance metals only, those will be favoured that have low densities or perform with extremely high strength and stiffness properties. Life cycle assessment and the possibilities of recycling high performance metals after the use phase will gain much more importance than today in the selection of materials.

High performance metals, required to achieve new economic goals and technological solutions, are still in the basic research stage. Within the period considered in the technology roadmap, high performance metals have to be developed and optimised across all process steps in the value chains. Areas of development mentioned are metallurgy, metal forming, casting techniques, joining and surface technology. Solutions for technological problems will be increasingly coupled with a focus on cost-efficient production technologies. Today’s technologies are often limited by an increasing lack of technological development potential. The development of new breakthrough technologies would be required to implement innovations in the field of high performance metals.

The measures proposed aim at reaching a stronger interdisciplinary integration of research and technical areas and pursuing important systemic research issues in supercritical and visible international research units based on a sustainable and topic-oriented research funding landscape.

Power Engineering

The energy industry is characterized by strong growth in demand combined with inadequate availability and uneven global distribution of energy resources. Development scenarios show both an investment boom in the area of high performance power plants as well in the area of more local, autonomous power supply units. Performance and efficiency gains in thermal power plants are only possible with an increase in operating temperatures, pressures and in the dimensions of the major components and assemblies. Today’s materials solutions based on high performance metals do encounter limits in terms of fatigue, creep and corrosion resistance and can only be extended further by intensive materials science advancements. Innovation challenges are the development of customized materials solutions combined with a reliable and reproducible production technology. The increasing size of critical parts such as valves, turbine rotors or casings set technological limits to currently used technologies, such as casting or forming.

In the field of renewable energies, which will likely allow an autonomous energy supply, Austria’s development potential and thus the need for developing high performance metals was not rated very highly by the participating experts and companies. An issue that will gain even more importance in the future is energy transport and energy storage. The participants assessed them to be very user- and market-oriented already now.

Measures to promote high performance metals in the field of energy technology require a concentrated effort at developing knowledge about already known materials, including the development and optimisation of manufacturing technologies, such as casting, forming and joining technologies, and the structural design and testing of large components. This development must be aligned internationally and performed within major international networks to develop efficient and economically viable solutions. This also requires aligning research funding and grants accordingly. The subject of energy technology and high performance metals must in general be given more room and attention and must receive more sustainable funding in the Austrian research promotion and funding landscape because of its national strategic importance.

Metallurgical Engineering

The trends of development in metallurgical engineering again reflect the developmental needs and the developmental orientations of other industries. Thus, metallurgical mechanical engineering is faced with increasingly larger magnitudes of processed materials, growing demands on strength and difficulties in processing high performance metals. Due to the required heavy investment in development units, it is not expected that a breakthrough technology can be realized within the time frame of the roadmap. Improvements will rather have an incremental character; development potentials for high performance metals are identified where an increase in process efficiency and effectiveness can be realised or the lifetime of production facilities can be increased at higher levels of utilisation. Measures recommended are again intensified networking of metallurgy research with the metallurgical and downstream industries, as well as the increased use of modelling and simulation based on a sophisticated database. This will lead to better process control and knowledge-based further development of technological standards.

Environment and Resources

Environment and resource protection in the production of high performance metals is clearly a very important crosscutting issue, which no group of high performance metals can escape. The rising global demand for raw material resources raises questions concerning the availability and accessibility of raw materials by 2020. As demonstrated in the days before the economic crisis, volatile commodity prices are a serious problem, which cannot be solved by technological measures alone. From a technological perspective, the use of recycled materials in the production of high performance metals constitutes a major factor in relaxing this problem. The use of secondary metals to produce high performance steels has been successfully practiced for a long time already. However, in the field of high performance non-ferrous metals, there is still a lot of potential but also a correspondingly great need for research both in materials as well as in technology development.

Strong Stakeholder Interest in a Common Strategy

The revised report was submitted to the BMVIT for authorization. After the BMVIT released the results of the technology roadmap, they were presented to the general public and especially to the key players in the field of high performance metals as well as to all members of the ASMET association.

The stakeholders showed strong interest in the results of the process and appreciated the formulation of a common strategy document, which can be considered an informal effect of the project in the sector. The policy recommendations developed in the roadmapping process have been partially implemented in the context of targeted measures and individual projects.

Furthermore, in 2011, a project consortium, consisting of ASMET, the University of Leoben and the Austrian Institute of Technology, proposed a follow-up foresight to succeed the roadmapping process. The aim of the suggested foresight is to highlight the societal context of future developments in the materials sector on a global scale to go beyond a narrowly technological perspective in the roadmapping process. In addition, the submitted foresight proposal aims at identifying relevant framework conditions in order to facilitate political decision-making, not only in the field of high performance metals but for the Austrian materials sector as a whole.

Authors: Dr. Erich Kny               

Dana Wasserbacher    

Sponsors: Federal Ministry for Transport, Innovation and Technology (BMVIT)
Type: Single Issue
Organizer: ASMET – The Austrian Society for Metallurgy and Materials
Dr. Heimo Jäger          

Montanuniversität Leoben
Dr. Brigitte Kriszt         

Duration: 07/2008–11/2009 Budget: € 150,000 Time Horizon: 2020 Date of Brief: Nov 2011  


Download EFP Brief No 205_Technology Roadmap High Performance Metals 2020


Jäger, H. (2009): Technology Roadmap High Performance Metals 2020. Final report, 1st issue. Leoben: ASMET– The Austrian Society for Metallurgy and Materials.

EFP Brief No. 194: Envisioning Digital Europe 2030: Scenarios for ICT in Future Governance and Policy Modelling

Monday, September 19th, 2011

This foresight exercise was conducted as part of the CROSSROAD Project – A Participative Roadmap for ICT Research on Electronic Governance and Policy Modelling, a FP7 Support Action that aimed to provide strategic direction, define a shared vision, and inspire collaborative, interdisciplinary and multi-stakeholder research in the domain. This research set out to help policy makers implement the Digital Agenda for Europe, the flagship initiative of the EU 2020 strategy launched to increase EU growth and competitiveness in the fast-evolving global landscape and address the grand challenges our world is confronted with today.

Combining ICT for Governance and Modelling to Assess Policy Impacts

In 2009, the European Commission’s Seventh Framework Programme (Work Programme ICT 2009-2010) launched a programme of research on ICT for governance and policy modelling, joining two complementary research fields that have traditionally been separate:

  • the governance and participation toolbox, which includes technologies such as mass conversation and collaboration tools; and
  • the policy modelling domain, which includes forecasting, agent-based modelling, simulation and visualisation.

These ICT tools for governance and policy modelling aim to improve public decision-making in a complex age, enable policy-making and governance to become more effective and more intelligent, and accelerate the learning path embedded in the overall policy cycle.

In 2010, the European Commission funded the support action: CROSSROAD A Participative Roadmap for ICT Research on Electronic Governance and Policy Modelling ( in order to advance the identification of emerging technologies, new governance models and novel application scenarios in the field of governance and policy modelling.

The main goal of the CROSSROAD project was to design the Future Research Roadmap for this domain and to structure a research agenda, which could be fully embraced by the research and practice communities.

Overall, the research roadmap aims to push the boundaries of traditional e-government research to new limits and help resolve the complex societal challenges Europe is facing by applying ICT-enabled innovations and collaborative policy modelling approaches, which include the harnessing of collective intelligence, agent-based modelling, visual analytics and simulation, just to mention a few.

In this context, a foresight exercise was conducted to look at the future of ICT-enabled governance and develop a vision of the role of ICT research in shaping a digital European society in 2030 through four thought-provoking visionary scenarios.

The scenario design developed aimed to provide a structured framework for analysis of current and future challenges related to research on ICT tools for governance and policy modelling techniques. The scenario framework proposed was chosen to stimulate further debate and reflection on possible, radical alternative scenarios. It takes today’s world and constructs images of possible future worlds, highlighting ways in which key uncertainties could develop. The aim is to present clues and key impact dimensions, thus increasing the ability to foresee possible development paths for the application of ICT tools for governance and policy modelling techniques. Thus risks can be anticipated and better preparation can be made to take advantage of future opportunities. In turn, this outlines key elements to be taken into consideration for the further roadmapping and impact assessment of future research in this domain.

Four Views on European Information Society

Instead of attempting to forecast possible future ICT-enabled scenarios, four internally consistent – but radical – views were defined of what the future European Information Society might look like in 2030. These give four distinctly different visions of what Europe’s governance and policy making system could be and what the implications of each could be for citizens, business and public services.

Following the mapping and analysis of the state of the art in research themes related to ICT for governance, policy modelling and the identification of emerging trends, the main impacts on future research in this area were defined. They were further refined through an analysis of existing scenario exercises and the current shaping of policies and strategies for the development of the European Information Society.

The uncertainties underlying the scenario design were: 1) the nature of the dominant societal value system (more inclusive, open and transparent or exclusive, fractured and restrictive), and 2) what the response (partial or complete, proactive or reactive) could be to the acquisition and integration of policy intelligence techniques in support of data processing, modelling, visualisation and simulation for evidence-based policy making.

Accordingly, the key impact dimensions were classified on two axes: degree of openness and transparency (axis y) and degree of integration in policy intelligence (axis x). The axes represent ways in which social and policy trends could develop.

Based on these dimensions, scenarios were then developed in a narrative manner as descriptions of possible outcomes in selected key areas, representative of the European context, where emerging trends related to the development of ICT tools for governance and policy modelling techniques could have an impact.

The Open Society…

The vertical axis indicates the degree of openness and transparency in a society in terms of democratic and collaborative governance, which could be further enabled by ICTs. The most open and transparent society would be one where even traditional state functions are completely replaced by non-state actors through opening-up and linking public sector information for re-use. Such a society would be characterised by open standards and principles of transparency and accountability in governance and public management. An important aspect of this scenario would be the regulatory and technological solutions and also the socio-cultural attitudes to the basic digital rights underpinning the future Information Society. In fact, the concept of openness is not strictly related to technological solutions but rather to socio-cultural and organisational aspects that can be enabled and supported by technological advancement.

…and the Integration of Knowledge

The horizontal axis shows the degree of integration of data and knowledge and the mode of enabling collaboration between all stakeholders in policy design and decision-making. This involves the possibility – enabled by ICTs – to mash up data and information available from different sources in an ‘intelligent way’, meaning in a way that is efficient, effective and suitable to generate public value. It also involves the extent to which users, individually or as members of formal and informal social networks, can contribute to the co-design of policies, simulating and visualising the effects of legal and policy decisions, and engage in real-time monitoring and prior assessment of possible expected impacts at local, regional, national and pan-European levels. This horizontal axis is also associated with the capacity and willingness of policy actors to share power and change decision-making mechanisms in order to facilitate the redefinition of basic democratic freedoms in a collaborative fashion. This could go to the extreme of redesigning the traditional mission of the state and the role played by governance stakeholders. Again, ICTs are not the driving force; rather change is driven by changes in social values, attitudes and new paradigm shifts in terms of information management, knowledge sharing and the allocation of resources.

Scenarios for Digital Europe 2030

In the Open Governance Scenario, users will enjoy unprecedented access to information and knowledge. By shifting cognitive capacities to machines, humans will be freed from the work of memorising and processing data and information and will be able to focus on critical thinking and developing new analytical skills. This will enhance collective intelligence (both human and ICT-enabled). Humans will be able to use policy modelling techniques to help solve global challenges. Possibilities for the provision of personalised and real-time public services will be opened up. The online engagement of citizens and various governance stakeholders will increase. Citizens, businesses and researchers will have direct access to data they need, and this will create new opportunities for people to interact with and influence governance and policy-making processes and help to make progress in solving societal problems. Governance processes and policy-making mechanisms will be based on intelligent, ICT-enabled simulation and visualisation systems, which will be able to find meaning in confusion and solve novel problems independently of human-acquired knowledge. New, open ways of producing and sharing knowledge will radically change traditional governance and decision-making. This will herald an era of open innovation, with unimagined opportunities for research and technological development. Public, private and third sector institutions will start to listen more carefully to their stakeholders, and a sort of ‘molecular democracy’ will arise.

The Leviathan Governance Scenario assumes that an ‘enlightened oligarchy’ will emerge that uses high-tech tools and systems to collect and manage public information and services. Judgement and decision-making will be based on analytical processing of factual information from the many by the few for the benefit of all. Full-scale automatic simulations and policy intelligence tools will facilitate decision-making and the oligarchs will simply approve the recommendations of these tools for the best policy option for the majority of citizens. ‘Real-time governance’ will be possible where the government/citizen relationship is under total control. Public service delivery will be personalised without people having to ask, thus saving a great deal of time. Citizens will trust the government and will be willing to delegate their right of initiative. They will be persuaded to be happy with this situation, as no human-caused problems will exist; emotions and thoughts will be controlled and directed towards the public good. Citizens’ choices will be restricted by predefined and pre-calculated algorithms that optimise people’s performance. However, information overload or potential failure of information systems to respond to critical, unforeseen situations would result in chaos, with humans and devices not knowing how to respond.

In the Privatised Governance Scenario, society will be shaped by decisions taken by corporate business representatives. Discussion on social issues and about the role and behaviour of citizens will be muted, as people will be pawns whose needs and desires will be managed by large corporations. Interactive and participatory governance mechanisms will be sidelined, along with democracy as we know it today. Simulations based on data gathered by sensors and collected from continuously monitoring and analysing networks, businesses, customers and the environment will produce global information that will nonetheless be fragmented and owned by corporations. Systems will be threatened by frequent attacks from independent groups and dissident communities. The media will be owned by the large corporations and will generally support them. Misinformation and jamming campaigns will be launched, making it necessary to verify all information and data. In this scenario, there will be opportunities for high innovation and development due to the pressure of competition on a free market. However, such opportunities will be useful only for the limited number of users able to afford them. Risks will arise due to private interests and fragmentation of the public good, leading to a ‘fragmented society’ where social welfare services will not be guaranteed to all, thus exacerbating possible social tensions and conflicts.

The Self-service Governance Scenario envisages a society where citizens will be empowered to play the role of policy makers. In small expert communities, citizens will devise policies according to the do-it-yourself principle; they will choose from a menu of public services those they need and consent to. This ICT-enabled, self-organised society will be able to address emerging problems faster than traditional government could. Its creative, contextual solutions could prove to be more robust and resilient in a crisis. Nevertheless, the diversity of opinions between discrete communities may result in the deepening of existing divides and a lack of social cohesion. Insularity will afflict minorities most severely, as they lack local social networks and may run into communication problems due to language and cultural differences. However, thanks to efficient translation tools, the dissipative communities may, in the end, create a vibrant cross-cultural and multi-language society. The difference between success and failure will be marked by the distinction between creative group thinking and ‘crowd stupidity’. The process of the gradual disappearance of institutions and lack of trust in government will result in the need for new trust providers. Reputation management, for content and people, will play a significant role in service provision. As the majority of citizens will not be interested in participating in governance due to the lack of engagement culture, new Caesars may emerge who unify disparate groups but damage the subtle equilibrium between self-serving and collaborative cultures.

A Radically Different World Due to ICT Disruptions

In all the scenarios developed, the world in 2030 is expected to be radically different from today’s due to the unprecedented growth and speed of ICT uptake in several fields and the related impact ICT tools that enable governance and policy modelling techniques may have. The influences and drivers of innovation and renewal in the public sector, combined with increased financial pressure on states, will result not only in change, but will also affect the pace at which the state adapts to the new environment, to its new roles and to increased engagement with stakeholders and users.

Whichever scenario dominates in the future, conventional wisdom and familiar governance models will be challenged in the coming years as ICT-based disruptions impinge on democratic, consultative and policy-making processes. There is already evidence that the scope and scale of the transformations to come will have a major impact on society.

Since 2005, there has been a phenomenal growth in mass on-line collaborative applications, which has captured the imagination and creative potential of millions of participants – particularly the younger generations. In addition to new forms of leisure pursuits, community-building activities have also entered the political arena. Hence, these tools herald the transition to a different form of dynamically participative governance models.

Current Governance Models Not Appropriate

While such scenarios are readily imaginable, it is recognised that we currently do not have appropriate governance models, process flows or analytical tools with which to properly understand, interpret, visualise and harness the forces that could be unleashed. Present governance processes provide laws and regulations, interpret and define societal norms and deliver societal support services. Their legitimacy is derived through democratic processes combined with a requirement for transparency and accountability.

In a world that is increasingly using non-physical communication and borderless interaction, the traditional roles and responsibilities of public administrations will be subject to considerable change, and classical boundaries between citizens and their governments will become increasingly blurred. The balance of power between governments, societal actors and the population will have to adapt to these challenging new possibilities.

The scenarios developed as part of CROSSROAD served as an input to be compared with the integrated analysis of the state of the art in the domain of ICT for governance and policy modelling. Based on this comparison, a gap analysis was conducted to identify an exhaustive list of specific gaps where on-going research activities will not meet the long-term needs outlined by the future scenarios.

Through a participatory foresight process it was possible to bring together not only experts and interested parties from academia and research, industry and government, but also to involve directly policy-makers and other interested stakeholders. This exercise resulted in a substantial contribution to shaping the roadmapping of future research in the domain, thus proving to be useful and needed.

New Tools to Fully Exploit Mass Collaboration

Altogether, and due to the increasing demand for openness, transparency and collaboration that address broad governance and policy-making challenges, the scenarios identify the need for developing and applying ICT tools and applications that fully exploit the potential of mass collaboration and the open and participatory paradigm underpinning future technological developments and policy directions in Europe.

Research and innovation investment in this domain could create value for the EU community and avoid fragmentation of research efforts. It will require the development of a joint strategic research agenda on ICT for governance and policy modelling to support the building of an open, innovative and inclusive Digital Europe 2030. Innovation, sustainability, economic recovery and growth will in fact depend more and more on the ability of policy makers to envision clearly and effectively both the root causes and the possible solutions to complex, globalised issues.

Author: Gianluca Misuraca
Sponsor: European Commission, Seventh Framework Programme, Work Programme ICT 2009-2010
Type: 1. European/international – covering issues from a European or even global perspective

2. Field/sector specific: focusing on ICT for governance and policy modelling

Organizer: European Commission, Joint Research Centre, Institute for Prospective Technological Studies
(JRC-IPTS), Seville, Spain
Duration: 01-12/2010 Budget: N/A Time Horizon: 2030 Date of Brief: June 2011  


Download EFP Brief No. 194_Digital Europe 2030

Sources and References

European Commission, JRC-IPTS Scientific & Technical Report (2010) Envisioning Digital Europe 2030: Scenarios for ICT in Future Governance and Policy Modelling, Editors: Gianluca Misuraca and Wainer Lusoli, EUR 24614 EN – 12/2010 –

EFP Brief No. 184: Future Potential of Nanoelectronics in Germany

Friday, July 29th, 2011

Nanoelectronics is one of the key enabling technologies to open up new paths for inventing new products and processes and advancing current technology. Potential for Germany as a location for suppliers and manufacturers in nanoelectronics is seen especially in exploiting emerging technology paths in which the current technological position as well as framework conditions for valorisation are considered to be more favourable than in the current miniaturisation path. The aim of this study is firstly to identify those technological developments and applications that are important for commercialisation (e.g., high market potential). Secondly, development paths together with related barriers are identified as a basis for a strategic approach to exploit the potential of these developments.

Nanoelectronics – Emerging Economies Competing with High-tech Countries

Micro-/nanoelectronics has been in the focus of the strategic policies of various countries for decades now. Industrialised and especially emerging countries expect high impact on growth and on highly skilled employment in related high-tech industries. Significant changes can truly be seen in the geographic distribution of this industry and related markets within the last decade:

  • After tremendous shifts in the last two decades, the Asian countries dominate the demand for nanoelectronic products with a combined market share of about 70%. In contrast, Europe only accounts for 13% of the worldwide demand.
  • In Europe, the share of worldscale production capacity has decreased between 2000 and 2009 from 15% to below 10%. Germany as the largest producer in Europe has also lost ground.
  • In R & D-intensive chip design, American sites are still leading, but indvidual Asian countries (especially Taiwan) are catching up. European companies are focusing mainly on chip design for automotive and industrial electronics.

These changes cannot be explained by the catch-up strategies of emerging countries only. Fierce international competition is ongoing even at the technological frontier. To remain competitive, European countries, such as Germany, have to keep pace with the leading edge of technological development. But strategic advice on how to accomplish this cannot be given easily. Nanoelectronics is neither a clearly defined technology, nor is its future development evolutionary and foreseeable as in the past when it consistently followed a dominant technological trajectory (the Moore’s law) for decades. Instead, nanoelectronics is usually broadly defined and includes all areas of electronics in which fine structures at the level of nanometres are used. Besides developments that simply downscale design principles known from microelectronics up to nanoscale (“More-Moore” path), other technological paths have recently received higher attention.

The “More-than-Moore” path is concerned with the extension of functionalities, while the “beyond CMOS” path addresses radical new components besides the traditional CMOS (complementary metal-oxide semiconductor) technology, which is the semiconductor technology used in the transistors that are manufactured into most of today’s microchips. Especially in the new technology paths, the knowledge base in Germany is often rated as highly competitive (e.g., Thielmann et al. 2009). However, it remains unclear which developments and applications are the most favourable to exploit and should be in the focus of R&D- and commercialisation activities. Hence, the current study aims to identify key emerging technology paths in which Germany can take an internationally leading position. In addition, it reveals related development paths and key barriers to enable and foster a transparent discussion on the development of a strategic approach. The study concentrates on a short (< 4 years) and a mid- to long-term outlook (> 8 years).

Combining Online Survey with Roadmapping

In order to reach the various aims of the study, we used a mix of methods resulting in two major steps. First, an online survey was conducted in order to identify those technological developments and applications important for commercialisation in Germany (defined by assumed market potential). Second, a technology roadmap was elaborated that allows the formulation of development paths and barriers. These methods are described below in more detail. Both steps were conducted by the project group as a whole with Fraunhofer ISI as the responsible partner for these two work packages. The work of the project group was accompanied by a steering group, which consisted of experts from academia and industry in the field of nanoelectronics in order to assure high quality standards.

Online Survey

The questionnaire for the online survey consisted of three major parts. First, an overall assessment of the relevance of the main technology trends (“More-Moore etc.) was requested. The second part contained three sub-parts and asked which materials and production processes, system components, and fields of application will become relevant in which time period (<3 years; 3-8 years: >8 years) and what their functional advantages will be (e.g., miniaturisation, reduction of production costs etc.). The third part consisted of statements for key technological developments and innovation barriers. These statements were based on expert interviews as well as on knowledge from earlier projects. They were discussed and re-formulated at a meeting with the steering group.

The questionnaire was online between early July and early October 2010. Two approaches were used in selecting the sample for the survey. First, experts of the steering group compiled a list of experts and contacted them by e-mail. Second, these experts were requested to forward the e-mail to other experts (snowball system). In total, 90 experts answered the questionnaire; the return rate of the experts directly contacted amounted to 37 %. About one half of the respondents were from academia and the other half from industry (mostly big companies). About two thirds of the respondents were closely related to the electronics sector; the other third was affiliated with a wide range of other areas (e.g., automotive industry, medical technology). While we cannot rule out in principle that the sample might lead to some biased results, we could identify neither any major differences in the answers between the respondents nor any other indications of underlying biases.


The task of the roadmap was to display the development paths over time, thus visualising the time sequence of the single steps of knowledge and technology development. For this purpose, we conducted an expert workshop with experts from academia and industry from different sectors in October 2010. The results of the second part of the online questionnaire (market relevance assessment of materials, production processes and system components) provided the main basis for the workshop. The aim was to formulate the development paths leading up to today’s market potential. Combining the results of the online-survey with the roadmap workshop allowed us to start the workshop from an advanced level of analysis and thus to describe and discuss the development paths in more detail.

In contrast to existing roadmaps (above all the International Technology Roadmap for Semiconductors – ITRS), we placed the regional focus on Germany combined with a high level of detail. However, the high awareness of the ITRS among the participants became evident during the roadmap workshop. Keeping the experts’ minds open to other developments posed a considerable challenge.

Sectors Absorbing Nanoelectronics

At the start of the survey, the participants were asked to rank the following six technological sectors in the order of importance for the German electronics industry:

  • scaled microelectronics (“More-Moore”)
  • functional diversification (“More-than-Moore”)
  • new building blocks (“beyond CMOS”)
  • packaging of integrated circuits
  • testing and test equipment
  • production lines

Among the sectors listed, “More-than-Moore”-technologies were ranked in the first position. Two thirds of the respondents voted them as of highest importance for the German electronics industry. A clear position was also taken in case of “production lines”, which were ranked in last place. “Testing and test equipment” was judged a little bit more important and placed in second to last place. All other technological sectors were judged ambiguously. This becomes especially obvious for “beyond CMOS” technologies, which seem to divide the respondents into two groups. However, a cross-analysis of the votes by professional background of the respondents failed to show any underlying pattern.

In the main part of the questionnaire, participants could choose between three areas of interest in which more detailed questions were posed: materials and production technologies, system components, and applications. In the part containing questions on system components, three of the previously listed technological sectors again were the subject of a single question. We were interested in the relevance of system components for the realisation of nanoelectronics’ worldwide market potential. The ranking under this aspect was different from the initial ranking. The answers were nonetheless quite comparable and unambiguous. “CMOS” technologies (“More-Moore”) was voted as of highest relevance, “packaging technologies” also as of high relevance, but “beyond-CMOS” only of moderate relevance. One can say that the group of experts who chose to answer here displayed a quite uniform opinion compared with all the respondents who ranked the six technological sectors at the beginning.

In order to identify the notably relevant topics from the entire collection of topics listed, we chose a special kind of technique for interpreting the responses. At earlier workshops, we could observe a typical behaviour among participants to rate those aspects as important that are expected to be available in the near future. Therefore we used a filter in order to identify important aspects while offsetting this effect. We looked for aspects that were judged as relevant even though they were not expected to become available anytime soon.

Sorted in the order of estimated availability, we could identify the following materials and production processes as of particular relevance:

  • double patterning
  • atomic layer deposition (ALD)
  • organic semiconductors
  • EUV-lithography
  • carbon based materials

The following system components could be identified as of particular relevance:

  • CMOS (evolutionary development)
  • auto-diagnosis
  • through-silicon via 3D integration
  • nanoelectronic and optoelectronic mechanical systems
  • auto-correction
  • piezoresistive sensors

Nanoelectronics Applications

The relevance of nanoelectronics for certain industrial sectors and some exemplary applications was the subject of the third sub-part. For the industrial sectors, the relevance was stated as high or very high by at least 50% of all respondents. Nanoelectronics is considered of high importance especially for the sectors electronics, automotive/aeronautics and medical technologies.

Investigating preferable development objectives for the individual sectors of application yielded further interesting results: The selected objectives differ considerably between the fields of application. For machinery/chemicals/metals, electronics and environmental/security technologies, integration of functions or new functions are of main importance. In contrast, the emphasis is on fault tolerance as the main objective for the automotive/aeronautical sector while for energy supply the issue of energy consumption/efficiency of course comes out on top. Interestingly, for medical technologies performance/miniaturisation and (integration of) new functions are ranked higher than fault tolerance/resilience, which is probably considered a precondition rather than a developmental goal for nanoelectronics.

Roadmap Workshop

The primary objective of the roadmap workshop was to determine the connections between products, system components, design concepts, design methods, key processes and materials. While the whole roadmap cannot be explained in full detail in this context (see ACATECH 2011), there are some general observations and conclusions worth noting. First, the strong impact of the IRTS and the long pursued path of downscaling to the nanoscale led participants to neglect possible alternative paths in regard to the new paradigm of “beyond CMOS”. Second, it became obvious that “smart” products as well as products with a high demand of customisation and application-specific development solutions should be the focus of production in Germany. Nevertheless, it was considered a reasonable scenario to expect some standard components to still be produced domestically in the future.

Refocus Policy on European Scale

Regarding policy actions, the roadmap first highlighted some key research areas, which should be more in the focus of funding:

  • devices based on organic semiconductors,
  • devices based on carbon-based materials,
  • system integration and reliability of sensors and actuators,
  • novel devices, such as magnetic devices, plasmonic devices, cellular automata, superconducting components and biological components.

The roadmapping exercise revealed a missing consideration of alternative development paths compared to the ITRS with its focus on further miniaturisation. This is why policy should support overcoming the current lock-in, for instance, by initiating a special “beyond CMOS” roadmap.

Challenges with European Scope

The results derived from the online questionnaire, which are in line with previous policy studies on nanoelectronics published by the project team, allow some further recommendations (Thielmann et al. 2009, Wydra et al. 2010), especially regarding collaboration between the various stakeholders. First, there is definitely a need for closer cooperation, which has yet to be achieved. This may be accomplished by exchanging personnel and upgrading regional research centres across federal borders.

Second the majority – although not all – of the German stakeholders agree that most of the challenges (e.g., integration of widespread technology know-how) are only achievable at the European level, which would imply intensifying collaboration between the various clusters and stakeholders. This is no easy task since several funding instruments are in place across Europe, which unfortunately are dominated by national interests (Wydra et al. 2010).

Authors: Rolf Gausepohl (ISI)             

Sven Wydra (ISI)                   

Sponsors: German Ministry of Research and Education (BMBF)

Commission micro-/nanoelectronics Saxony (KOMINAS)

Fraunhofer Institute for Integrated Circuits (Fraunhofer IIS)

Type: National Future Study on nanoelectronics
Organizer: Fraunhofer ISI (in cooperation with Technical University Munich and ACATECH)
Duration: 04/2010-04/2011 Budget: N/A Time Horizon: 10-15 years Date of Brief: 05/2011  


Download EFP Brief No. 184_Future Nanoelectronics

Sources and References

ACATECH (2011): Nanoelektronik als künftige Schlüsseltechnologie der Informations- und Kommunikationstechnik in Deutschland, acatech bezieht Position Nr. 8,

Thielmann, A., Zimmermann, A., Gauch, S., Nusser, M., Hartig, J., Wydra, S., Blümel, C., Blind, K. (2009): Blockaden bei der Etablierung neuer Schlüsseltechnologien. Office of Technology Assessment at the German Parliament. Berlin, Working Report vol. 133,

Wydra, S., Blümel., C., Thielmann, A., Lindner, R., Mayr, C. (2010): Internationale Wettbewerbsfähigkeit der europäischen Wirtschaft im Hinblick auf die EU-Beihilfepolitik am Beispiel der Nanoelektronik. Office of Technology Assessment at the German Parliament. Berlin, Working Report vol. 137.

EFP Brief No. 158: MONA: A European Roadmap for Photonics and Nanotechnologies

Tuesday, May 24th, 2011

Photonics and nanotechnologies are highly multi-disciplinary fields and two of the principal enabling technologies for the 21st century. They are key technology drivers for industry sectors such as information technologies, communication, biotechnologies, transport, and manufacturing. Photonics/nanophotonics and nanomaterials/nanotechnologies can benefit from each other in terms of new functions, materials, fabrication processes and applications. The MONA Roadmap identifies potential synergies between photonics/nanophotonics and nanomaterials/nanotechnologies. The challenge of mastering nanoelectronics and nanophotonics science and technologies at an industrial scale is of utmost strategic importance for the competitiveness of the European industry in a global context.

EFMN Brief No. 158_MONA

EFP Brief No. 157: Roadmap Robotics for Healthcare

Tuesday, May 24th, 2011

The main aim of this study was to provide key research policy recommendations for the application of robotics in healthcare in the research programmes of the EC. The study also aimed at raising awareness about important new developments in this field among a wider audience. To this extent, a roadmap of promising applications of robotics in healthcare and associated R&D was developed, taking into account the state of the art as well as short and long-term future possibilities with a time horizon ending in 2025.

EFMN Brief No. 157_Robotics for Healthcare

EFP Brief No. 156: Healthy and Safe Food for the Future – A Technology Foresight Project in Central and Eastern Europe (Futurefood6)

Tuesday, May 24th, 2011

Futurefood6 is a project developed to assist Central and Eastern European countries in reaching international standards throughout the whole food chain and, in turn, to enhance overall European competitiveness by developing an industry that stands for safety, diversity, sophistication and products of a high quality. It mobilises stakeholders from the food industry, research, academia, the state and public sector, decisionmaking bodies and the public to create a desirable set of future visions for the food industry in Central and Eastern Europe (CEE) for 2020.

EFMN Brief No. 156_Futurefood6