Posts Tagged ‘markets’

EFP Brief No. 244: Survey of Future Market Research and Innovation Needs

Tuesday, January 29th, 2013

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. The WBC-INCO.NET project seeks to promote the bi-regional dialogue on science and technology between the EC, the member states and the Western Balkan countries. The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

Future Research and Market Needs for the Western Balkans Region

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. WBC-INCO.NET partners from the Western Balkans include research and policy stakeholders from the following countries: Albania, Bosnia and Herzegovina, Croatia, FYRo Macedonia, Montenegro, Serbia and Kosovo (under UNSCR 1244). The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

The findings of the survey will support other activities that together will provide a clear overview of the region’s current situation and future needs in regard to innovation. These activities should help to prepare an action plan for further cooperation in innovation between the Western Balkan countries (WBC) and serve to establish closer cooperation between research and innovation stakeholders in the region (i.e. publicly funded researchers and innovative companies). This should include expertise from the industrial sectors and the fields of innovation management and market entry. It should also involve exploring EU programmes, other than FP7, and supporting programmes of other institutions that are directed toward increasing innovation in the WBC.

Survey among Stakeholders

Two questionnaires were jointly designed by the European Commission JRC-IPTS (Seville) and the Ivo Pilar Institute of Social Sciences (Croatia). The questionnaires addressed market and research stakeholders, including selected firms and entrepreneurial researchers, and aimed to identify current and future research and innovation needs in order to support the design of a joint action plan towards 2030.

The methodology employed consisted of five phases:

  1. Initially, a literature review on innovation was conducted to identify important aspects that would have to be taken into account when designing the questionnaires. The selected aspects were:
  2. i) Importance of different stakeholders in the innovation process.
  3. ii) Specific actions that can improve regional cooperation as well as innovation.

iii)   Factors necessary to stimulate regional cooperation divided in human resources, entrepreneurship infrastructure, expert assistance and cooperation between industry and research, fiscal and financial obstacles, and national and local regulations.

  1. iv) Likely outcomes of enhanced regional cooperation.
  2. The first questionnaire was submitted to selected firms in the WB region.
  3. Building on the results of the first questionnaire with the aim to compare them, a second questionnaire was sent to research stakeholders in the region.
  4. A statistical analysis was conducted for both questionnaires and the results were crosschecked.
  5. The results were circulated within the consortia for final refinements.

It must be emphasised that the findings indicate only  potential needs in the region, which need to be refined by further analysis and discussed with industry, research and regional stakeholders, for instance in a workshop for this purpose.

The response rate of the industry questionnaire was low: only 20 firms replied, which nevertheless allowed the team to perform some analyses. The response rate of the researcher questionnaire was higher.

Interesting Results of the Industry Survey

The respondents were asked to assess the importance of 14 stakeholders for firms’ innovation capacities.

Top Three Stakeholders

As the top three stakeholders, the respondents identified:

  1. Employees in the respondents’ enterprise or enterprise group
  2. Professional and industrial associations
  3. Universities and colleges
Bottom Three Stakeholders

The bottom three stakeholders were:

  1. Cluster networks
  2. Suppliers and customers from the WBC region
  3. Venture capital firms/angel investors
Interesting Results of the Researcher Survey

Figure 1 (below) compares the proportion of researchers that ranked various factors influencing university-industry collaborations as highly important. A majority of the researchers assessed all the factors as more important in the future than today, which suggests that the researchers feel that other barriers need to be overcome in the short-term.

Figure 1. Important factors for university-industry cooperation today and 2030
244_bild1

Industry and Research: Diverging Views on the Needs for Research and Innovation

Based on the results of the surveys in the field of research, the following points can be highlighted:

  • The most important actions to improve cooperation between business and research in the region, both in the present and in the future are (1) more funding for knowledge/technology transfer activities and expert consultations and (2) more funding for collaborative research between universities and businesses.
  • Whilst state and local regulations as well as expert assistance seem critical for innovative performance today, investment in human resources and infrastructure emerge as crucial to enhance cooperation in the future.
  • The analysis of the questionnaire administered to both research and business stakeholders reflects disagreement as to which potential outcomes of enhanced regional innovation collaboration are to be considered more relevant. The only outcome that both equally perceive as important is access to new markets. This suggests the need to build both more awareness of new opportunities and (new) capabilities in the region. To this end, improved communication, including the respective infrastructure (e.g. ICT), and mobility seem to be critical.
  • The answers industry and researchers give when asked about the most important actions to improve regional innovation activities differ substantially. The three actions least important to industry are among those actions that the participating researchers considered most important:
    • common programmes for mobility of personnel in the region between universities and business to establish cooperation between science and industry,
    • a consistent legal framework aimed at facilitating foreign direct investments in the WB region, and
    • the progressive liberalisation and mutual opening of the service market within the WB region.

The only action that business and researchers both perceive as important (ranking third for both of them) is developing regional initiatives for large infrastructural projects. Such an outcome highlights the need for enhanced communication and understanding between these two groups of stakeholders in order to achieve a joint agenda.

  • Finally, of the research topics identified by industry as important to trigger regional innovation through collaboration, the ones that the researchers also appear to be interested in are
    • the environment,
    • information management systems: monitoring through ICTs and the automation of information management systems, artificial intelligence and agent-based software and
    • new approaches and frameworks to enhance foreign direct investment and cross-regional investments in the region.

Diverging Views  between Industry and Research

Hot Policy Topics:
Need for More Technology Transfer

A strong divergence between the views of industry and research in terms of present and future actions as well as areas for collaboration has emerged. This call for policy measures aims at improving communication between the two groups of stakeholders to facilitate the move towards a common agenda.

Presently, a strong need is also felt for policies that provide more funding for knowledge/technology transfer activities and expert consultations as well as collaborative research between universities and businesses.

Action Needed: Improving Innovation Capacities

This exercise is part of a wider project that aims at defining a long-term strategy for scientific collaboration within the Western Balkan countries and between them and Europe.

The critical issues that emerged in the survey call for further analysis and discussion. In particular, it is suggested that industry and the research community gather to discuss the following aspects:

  • Investments in knowledge and technology sharing, expert consultations and collaborative research
  • Decrease in regulation
  • Strengthening of human resources
  • Improvements in infrastructure (including ICT)
  • Building of awareness of innovation benefits
  • Fostering of mobility
  • Enhancement of communication between different stakeholders
Shaping the Future: Critical Factors

This project was part of the larger WBC-INCO.NET project, which ultimately will develop a joint action plan for the WBC. The results will feed directly into the process at three levels:

  1. The development of a common vision for the WBC: This vision should set the longer-term objective(s), which are to be defined by authoritative experts in the field and endorsed politically.
  2. The translation of the vision into a strategic research agenda (SRA), which entails specific, measurable, achievable, realistic and time-based (SMART) objectives. The strategic research agenda should make the vision operational and link the implementation of the vision’s objectives with existing competences in Europe (or in the region) and new ones to be developed.
  3. The implementation of the SRA: All participating public authorities should gear their programs and funding towards the implementation of the SRA in a coherent manner. The full toolbox of public research instruments should be explored and used to implement the individual joint programming initiatives. Regular monitoring and evaluation of progress against the SMART objectives should be ensured and the results reported to the political level.
Authors: Cristiano Cagninc         cagnin@cgee.org.br

Elisabetta Marinelli       Elisabetta.Marinelli@ec.europa.eu

Sponsors: European Commission
Type: Quantitative survey

(The survey was conducted as part of the WBC-INCO.NET project)

Organizer: EC – Joint Research Centre – Institute of Prospective Technological Studies
Duration: 2008-2012
Budget: n.a.
Time Horizon: 2030
Date of Brief: July 2012

Download EFP Brief No. 244_Research and Innovation Needs in the Western Balkan Countries

Sources and References

For sources and references see the WBC-INCO.NET website:

http://wbc-inco.net/

The brief is based on the report by IPTS in collaboration with IVO-PILAR:

http://wbc-inco.net/object/document/7423

EFP Brief No. 238: Research Agenda Dutch Mobility System, Energy System and Built Environment 2040

Friday, December 21st, 2012

Scenario forecasts for the Dutch mobility system, energy system and built environment in 2040 were performed to investigate which knowledge TNO should develop to support and stimulate future innovation in these fields. Three scenario studies were conducted to investigate the Dutch built environment, the Dutch energy system and the Dutch mobility system. The results serve to strengthen the TNO strategy statement.

Identifying Dutch Research Priorities for Future Mobility, Energy and Built Environment

Netherlands Organisation for Applied Scientific Research TNO is an independent research organisation whose expertise and research make an important contribution to the competitiveness of companies and organisations, to the economy and to the quality of society as a whole. It’s activities are split into seven thematic domains; healthy living, industrial innovation, defence, safety and security, energy, transport and mobility, built environment and information society.

 TNO needs to update it’s strategy every four years to announce which societal issues it will address in their next strategy period and how it will apply the funds which are administered by the Dutch government. In order to formulate a strategy that is robust for future developments TNO used scenario planning in order to test its strategy against multiple possible future

Creating a Shared Vision

The objective of the scenario study is threefold:

1) to find what knowledge should be developed to deal with future challenges,

2) to test the TNO strategy against future scenario’s

3) to find the most important factors influencing the development of technologies in mobility, energy and the built environment and

4) to create a shared vision on future development amongst the participants.

Scenario Method

For the future forecast TNO applied a scenario method which is based on the original work of Kees van der Heijden for Shell (Heijden, 1996). For each of the three subjects a separate study was performed, consisting of a series of three workshops. Within these workshops the participants identified the main uncertainties in the future developments in the respective fields. Subsequently, these fields were clustered and scored for importance and level of uncertainty. Based on the two most important/uncertain uncertainties the participants developed four scenarios to describe the possible future outcomes.

In the scenario process an average of 25 TNO specialists per subject participated in the scenario development process. Selection of participants was based on coverage of all relevant expertise within the subject, furthermore participants were selected for their ability to overview developments in the entire field. Specialist were available on: key (emergent) technologies, finance, economy, policy, rules and regulations and international relations.

 

Clusters of Uncertainties

In the first workshop the participants were asked to name the most uncertain factors which would determine the future developments in energy, mobility and the built environment. The results were clustered into 6-15 clusters of uncertainties. Which clusters of uncertainties were most influential and uncertain was determined by popular vote and discussion.

For each subject the project the following major uncertainties were identified:

Mobility

Strong governmental control vs. market driven and an individual society vs. a collective society.

Energy

Governmental control vs. market driven and lack of international cooperation vs. strong international cooperation.

Built environment

An individual risk prone society vs. a collective risk averse society and spread low economic growth vs. concentrated high economic growth.

Within the projects the experts developed two or four scenarios in group discussions. These scenarios are based on the two uncertainties that are considered most uncertain/influential for the subject. In the following sections the results of the scenario studies for the three subjects will be discussed separately. First the scenarios are described, then aspects which are relevant for all different scenarios or vary between scenarios are discussed and finally a draft technological research agenda is compiled.

Mobility: Four Scenarios Discussing the Shades of Governmental Control and Societal Involvement

Scenario I: Driven by individualism, the government limits is effort to a small number of activities that protect the rights of its citizens. The government facilitates market activities by providing a stable environment for economic growth. The scenario shows high economic competition, with a European home-market.

Scenario II: The government is strict, yet righteous. The government uses her influence through laws and setting norms and standards that are based on firm societal support. – after all, these are made in the public interest. Laws and regulations are firmly maintained.

Scenario III: The government has a minor role, market forces are trusted upon to ensure innovation. This way people can vote with their wallets.

Scenario IV: The influence of the government on societal issues is limited. Society is too complex and interests too divers to find a common ground for governmental action. Collective values are shared by joining communities that share our values and warrant your interest.

 

Mobility in the Context of the Four Scenarios

The developments in the mobility system are very uncertain. All scenarios are equally conceivable. Therefore, a strategy should be developed that is able to cope with different future developments.

Future developments in transport are highly dependent on the available infrastructure, vehicle- and fuel developments and the effect transport has on the environment and society.

All scenarios point to mobility that is concentrated on roads. Congestion will be a lasting problem. External effects are tackled with technological solutions.

Biofuels, hydrogen and electricity will play a more important role in mobility.

 

Scenario Specific Findings

  • In some scenarios a European network of high-speed rail connections is developed.
  • Solutions to congestion are scenario specific: optimisation of infrastructure usage, transport services or smart logistics.
  • Also solution to externalities are scenario specific, ranging from efficient driving mechanisms to capture of pollutants.
  • Transport- and travel volume are scenario dependent and depend on price. This price may increase, because of internalisation of external cost and high fuel prices, or drop because of more fuel efficient techniques.
  • The degree to which biofuels, hydrogen and electricity will play a more important role in mobility is dependent on the role of the government.

For TNO’S future Technological Research Agenda these findings imply that further knowledge is needed about:

  • Energy efficient vehicles;
  • Alternative driving mechanisms;
  • ITS systems for:
    • Managing mobility issues
    • Managing traffic
      • Communication between vehicles for increased safety and traffic flow enhancement;
    • Impact assessment of infrastructure;
    • Robust infrastructure;
    • Reliability of infrastructure;

Energy: Two Scenarios Discussing the Shades of Governmental Control and International Cooperation

Scenario I: Countries form a collective to face the global challenges, such as climate change. The national government firmly takes the initiative for bringing (sustainable) change.

Scenario II: : International governments and organizations are suspicious of each other. Countries compete for available energy sources. The national government is reactive and aimed at facilitating change processes initiated by industries and NGO’s.

Energy in the Context of the Two Scenarios

The entire built environment will be transformed to become energy neutral. More energy production will take place locally with solar (pv and warmth), Aquifer Thermal Energy Storage (ATES) and geothermic energy.

Fossil fuels will remain an important source of energy. Whereas, biofuels and hydrogen will only play a small role in the Dutch energy system.

Scenario specific findings

  • The degree to which societal costs are included in the price for fossil fuels is largely dependent on the degree of governmental control.
  • The choice for climate change mitigation or adaptation is largely dependent on the degree of governmental control and international cooperation.
  • The degree to which local energy systems are developed collectively or independently is largely dependent on the degree of governmental control.
  • The emergence of a international smart grid and large scale energy storage capacity is largely dependent on the degree of international cooperation.
  • The large scale deployment of carbon capture and storage is largely dependent on the degree of international cooperation.
  • The substitution of oil by coal of gas is largely dependent on the degree of governmental control

Accordingly, in the energy sector, TNO will need knowledge to boost their Technological Research Agenda. Knowledge is needed about:

  • ways to include new technology in existing products;
  • insulation;
  • separate transport systems for inside and outside cities;
  • preparing the electricity network for larger fluctuations in supply and demand;
  • large scale storage of electricity and warmth;
  • small scale storage of electricity and warmth;
  • how to deal with the interaction between local networks, national networks and international networks of electricity, gas, warmth and CO2;
  • implementation of renewable energy systems;
  • mass-production of renewable energy systems.

Built environment: Four Scenarios Discussing the Shades of Collectiveness and Economic Prosperity

Scenario I: It is a self-service economy. Small government has prevailed. The economy is in a recession, especially in cities, resulting in more regional economic activity.

Scenario II: People strive for individual gain, and are willing to take risks. The Netherlands is a flourishing and innovative country. The economic growth is concentrated around the Randstad and a limited number of other cities.

Scenario III: People are more dependent on each other because of the fragile economic situation.

Scenario IV: Economic prosperity leads to collective appreciation of wellbeing.

Built Environment in the Context of the Four Scenarios

End consumers will get more influence in the building process. Buildings will have to become more adaptable during the different phases of life and individual needs. Elderly people will become a more important target group.

Scenario specific findings

Dense urban environments and intensive land use are themes which are important in the two scenarios with a concentration of economic activity in the Randstad area. In order to tackle the aspects identified in the scenarios, TNO will need knowledge with regard to the Technological Research Agenda on:

  • ways to increase flexibility in the use of buildings;
  • conceptual building methods;
  • re-use of building materials;
  • social-, construction-, traffic- and fire safety;
  • ways to become climate proof;
  • closure of material cycles (urban mining);
  • virtual building;
  • technologies for local energy generation and storage;
  • the effects of climate change;
  • intensive land use.

TNO Strategy Update Every Four Years

In order to formulate a strategy that is robust for future developments TNO used scenario planning in order to test its strategy against multiple possible future. TNO needs to update it’s strategy every four years to announce which societal issues it will address in their next strategy period and how it will apply the funds which are administered by the Dutch government.

 

Authors: Dr. J. van der Vlies      jaap.vandervlies@tno.nl

Drs. G.G.C. Mulder      guus.mulder@tno.nl

Sponsors: Dr. H.M.E. Miedema
Type: National foresight exercise, single issue
Organizer: Netherlands Organisation for Applied Scientific Research TNO
Duration: Feb-Sept 2009 Budget: 35 kEuro Time Horizon: 2040 Date of Brief: March 2011  

 

Download EFP Brief No. 238_Dutch Research Agenda.

Sources and References

Heijden (1996), Scenarios – The art of strategic conversation, second edition, John Wiley & Sons, 2005, West Sussex.

EFP Brief No. 232: STRATCLU

Tuesday, December 4th, 2012

STRATCLU, the ‘entrepreneurial’ strategy process of the German ‘spitzen’-cluster (leading-edge cluster) MicroTEC Südwest meets the needs of multi-actor, multi-governance-level and multi-sector research and innovation (R&I) policies. The forwardand outward-looking process exemplifies how a broad range of regional R&I actors can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic R&I investments and collective actions, and focus their diverse competences in microsystems as a general purpose technology to tackle societal challenges and enter future markets globally.

Research & Innovation Programmes Addressing Challenges of the 21st Century

In line with a more systemic understanding of research and innovation (R&I) policy (OECD 2005), the respective support programmes introduced the perspective of global, societal challenges to be tackled by scientific and technological breakthroughs. The German government, for instance, launched its High-Tech Strategy 2020 (HTS 2020) in 2006 with the aim to make Germany a leader when it comes to solving global challenges (climate/energy, health/nutrition, mobility, security, communication) and providing convincing answers to urgent questions of the 21st century. The German Strategy for Internationalisation of Science and Research stresses that, to realise optimised solutions to these challenges, it is necessary to leverage science and innovation potential worldwide. In the same vein, the Europe 2020 strategy and its flagship initiative “Innovation Union” aim at refocusing R&I policy on the challenges facing society, and the EU Cohesion Policy 2014-2020 asks the member states and regions to develop innovation strategies for smart specialisation. The ‘entrepreneurial process’ of developing regional innovation strategies for smart specialisation (RIS3) (Foray et al. 2009) focuses on unique regional assets with a view to developing competitive products and services in international markets. If the different RIS3 are developed in alignment with the European context, synergies can be leveraged to further develop the European Research Area.

Against this backdrop, clusters as local nodes of global knowledge flows and ‘innovative hot-spots’ in globalised value chains provide the base not only for developing technological answers to the urgent problems of the 21st century but also for producing adequate, strategic knowledge for cutting-edge (and trans-regionally aligned) R&I programming (Sautter/Clar 2008). In 2007, the German government launched the ‘spitzen’-cluster competition as the flagship of the HTS 2020 and cornerstone of the national Strategy for the Internationalisation of Science and Research to support the development and implementation of future-oriented R&I strategies. The overall objective is to tackle key societal challenges and thus position the ‘spitzen’-clusters in the global knowledge economy and make them attractive for talented, creative people as well as innovative companies and forward-looking investors. MicroTEC Südwest in Germany’s south-western state of Baden-Württemberg and one of the winners of the competition started a forward-looking cluster strategy process inspired by the Strategic Research Agenda of the European Technology Platform on Smart Systems Integration (EPoSS), and focused on the priority fields of the German HTS 2020: climate/energy, health, mobility, security, communication.

‘Spitzen’-Cluster Strategy on Smart Microsystems Technology (MST) Solutions to Global Challenges

The MicroTEC Südwest cluster, closely linked withneighbouring parts of France and Switzerland, covers the competences needed along the value chain of the GPT (General Purpose Technology) miniaturised systems: from basic research, for instance in nano-, micro- or bio-technologies, to the design and production of smart microsystems, to the integration of such systems in ‘intelligent’ products (e.g. driver assistance systems in cars or point-of-care diagnostic systems in the healthcare sector). Besides global players like Bosch and Roche Diagnostics, the 350 actors involved in the cluster include top universities and research centres, and many small and medium-sized enterprises.

In order to focus the different competences on synergistic R&I investments, a ‘spitzen’-cluster proposal was developed with two application-oriented priorities to generate breakthrough innovations in global lead markets (health and mobility) and two technology-related priorities to develop and produce next generation microsystems for future fields of application. The funds (50-50 public-private) for implementation amount to nearly 90 million EUR, from national and regional ministries, regional bodies and enterprises.

The MicroTEC Südwest proposal was highly evaluated in the competition not only for the quality of its research projects but also for its additional structural projects on innovation support, qualification and recruitment, internationalisation and the STRATCLU strategy process.

From Ad-hoc Strategy Building to Systematic Learning Cycles

The STRACLU project has been set up to advance the successful ‘spitzen’-cluster project and to broaden and consolidate the participative decision-making process in the cluster. Stakeholder groups (cluster board, strategy panel etc.) have been established and strategic policy intelligence (SPI) tools combined in a learning cycle with three main stages:

· Stock-taking (incl. outward-looking): Review of cluster position in the global context (major SPI tools: audit, evaluation, benchmarking)
· Forward-looking: Longer-term perspectives & priorities (foresight, impact assessment)
· Action-planning: Roadmaps with milestones and specific joint actions (roadmapping, GOPP)

An operational learning cycle has been put in place as well to monitor the implementation of the joint actions. With these learning cycles, STRATCLU both guides individual actors in their strategic decision-making and develops MicroTEC Südwest itself into a learning ‘smart innovation system’, which continuously

· identifies global challenges and promising future markets,
· formulates long-term and ‘open’ RTDI strategies for smart MST-based solutions,
· builds local competences and capacities, looks for strategic partners along global value chains,
· encourages key local and global actors to join forces in common strategies and thus
· ensures long-term success in global competition.

MicroTEC Südwest AGENDA 2020+

Related to the national priorities of the HTS 2020, and based on detailed science and market analyses, the investigation and discussion of global trends and an assessment of their specific impacts along the strategic learning cycle (fig. 1), the MicroTEC Südwest strategy panel prioritised a joint AGENDA 2020+ with the following five major crosscutting priority fields for R&I, and an additional focus on cross-industry innovation and education and training.

These five R&I-related priority fields for smart MSTbased solutions address and leverage synergies across all key application fields (in particular with regard to the national priorities of the HTS 2020).

This topic was assessed as the most relevant. The renaming of the microsystems technology (MST) division of the German Ministry of Education & Research into Demographic Change: Human-Technology Interaction in the context of the German BMBF Foresight Process (Cuhls 2010) underlines the relevance of this issue. The big challenge is to develop smart MSTbased solutions adapted to people’s needs and providing them with real value added.

Here, the focus is on the integration of smart systems in superior systems: from smart systems to smart things like cars to comprehensive systems such as the transportation system (cf. cyber-physical systems or Internet of Things). The big challenge is to handle the increasing complexity that comes with a higher degree of system integration.

Energy converters (e.g. important for energy harvesting) and storage along with self-sustaining systems are preconditions to realise the systems-of-systems approach and to develop mobile and functional intelligent devices.

In the future, the production of smart systems and things has to be closely related to mass-customisation in order to provide the users (consumers) with wellcustomised and cost-efficient solutions.

Resource efficient production and consumption systems, total life cycle assessment (including the recycling stage) etc. are important issues in this priority field.

Roadmaps to Tackle Societal Challenges

Continuing along the strategy cycle, the AGENDA 2020+ provides the strategic framework for roadmapping exercises at multiple levels: Cluster actors develop R&I roadmaps towards market-focussed and MST-based breakthrough innovations to tackle societal challenges in prioritised joint action areas (e.g. in personalised medicine, factories of the future or green cars). These roadmaps will be aligned with other roadmaps, for instance of the European Technology Platforms EPoSS or MINAM, and integrated in the MicroTEC Südwest Cluster Roadmap 2020+, which involves also horizontal support measures like qualification, recruitment etc. and will be communicated to public and private investors (‘agenda setting’). Furthermore, the roadmaps will be transferred to SMEs in the cluster to support them in their own longer-term business development and R&I investment strategy.

Taking a Big Step Towards Smart, Sustainable and Inclusive Growth

The participative forward- and outward-looking strategy process in the German ‘spitzen’-cluster MicroTEC Südwest shows successfully how regional R&I consortia can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic investments and collective actions. By enabling actors to systematically develop future strategies together, to asses them and develop actorspecific, synergistic approaches to successful implementation, the overall risk of longer-term R&I investments can be reduced significantly, for the current participants and for foreign direct investment.

The strategy approach of MicroTEC Südwest meets the needs of (new) future-oriented, multi-actor, multigovernance level and multi-sector R&I policies in manifold ways. First, it focuses local competences in a general purpose technology on tackling grand societal challenges with the aim of entering global markets. Second, it strives to attract complementary competences and foreign direct investment from other regions, and to work together with strategic partners along global value chains. Third, it combines ‘bottom-up’ with ‘topdown’ activities by taking up and assessing external inputs from a regional perspective: for instance, the German High-Tech Strategy or the BMBF Foresights, European and other R&I policies and strategy processes, such as Joint Programming Initiatives or the Japanese NISTEP Delphis, respectively. Against this backdrop, the MicroTEC Südwest approach can be seen as a test bed for an ‘entrepreneurial process’ suggested by the European Commission to develop regional smart specialisation strategies and to capitalise on them to advance the European Research Area.

To fully benefit from the regional assets across Europe, strategic capacity building has to be strengthened, not only in Europe’s world-class clusters. If more clusters such as MicroTEC Südwest develop and align their longer-term strategies in order to raise, structure and optimise overall private and public (EU, national, regional) investments, with one focus on pooling forces and jointly tackling common challenges, a big step could be taken towards smart, sustainable and inclusive growth.

Download: EFP Brief No. 232_STRATCLU.

Sources and References

Cuhls, K. (2010): The German BMBF Foresight Process, in European Foresight Platform, EFP Brief No. 174.

Foray, D., David, P.A. and Hall, B. (2009): “Smart specialisation: the concept”, in Knowledge for Growth: Prospects for science, technology and innovation, Report, EUR 24047, European Union.

OECD (2005): Governance of Innovation Systems: Volume 1: Synthesis Report, OECD Publishing.

Sautter, B., Clar, G. (2008): Strategic Capacity Building in Clusters to Enhance Future-oriented Open Innovation Processes, in The European Foresight Monitoring Network, Foresight Brief No. 150.

Web links for more information:

www.microtec-suedwest.de

www.smart-systems-integration.org

www.minamwebportal.eu

www.era.gv.at/space/11442/directory/11767.html

www.steinbeis-europa.de/rsi.html

www.steinbeis-europa.de/stratclu_en.html

EFP Brief No. 224: Technology Radar: Early Recognition of New Business Fields in Future Markets

Tuesday, October 23rd, 2012

New technologies are changing the market. All the more important it is for a company not to miss any relevant future technology. In the years 2009 and 2010, a global German high technology company used the support of the FutureManagementGroup AG to identify the ten most important emerging technologies in each of its four business units. The technologies should lie outside the current core technologies. The goal of the project was the early recognition of future markets in these technologies. For this purpose, we used a broad toolset in accordance with the Eltville Model of future management.

Future Management

The FutureManagementGroup AG (FMG), founded in 1991, is an international group of experts specialised in future management and the early recognition of opportunities in future markets. Using the “Eltville Model” and various future management methods and tools, we built a methodological bridge from management practice to futures research and back to daily business. Future management comprises the entirety of all systems, processes, methods and tools for early perception and analysis of future developments and their inclusion in strategy.

226.biledaaaaaaa

Figure 1: Future management as a bridge

Future management makes it easier, and in many cases possible at all, to use the results of futures research as a resource for orientation and inspiration in a business context.

The Five Futures Glasses

We use the “Eltville Model”, which offers a set of five distinctive and clear views on the future. We call them “the five futures glasses”. Each of the five futures glasses has its own specific characteristics, principles and modes of thinking:

  • The blue futures glasses look at the probable future → assumption analysis.

The guiding question is: How will our market(s), work and living environments change in the next five to ten years?

  • The red futures glasses look at possible surprises in the future → surprise analysis.

The guiding question is: How should we prepare for possible surprising events and developments in the future?

  • The green futures glasses look at the creatable future → opportunity development.

The guiding question is: Which opportunities for new markets, products, strategies, processes and structures will arise from these changes?

  • The yellow futures glasses look at the desired future → vision development.

The guiding question is: What does our company need to look like in five to ten years time in the sense of a strategic vision?

  • The violet futures glasses look at the planned future → strategy development.

The guiding question is: How do we need to design our strategy to realise the strategic vision?

The five futures glasses form the process model of the Eltville  Model. You cannot wear all five futures glasses at the same time or the future will remain unclear and confusing. You need to put your different futures glasses on one after the other to form a effective working process.

The second essential component of the Eltville Model is the results model, a semantic network of objects of thought that are used (future factors, assumptions, surprises, opportunities etc.)

The Eltville Model has been developed through research and in more than a thousand workshops and projects with leading corporations as well as with non-profit organisations around the world. It is a unique model that consistently resolves the confusion concerning the future, creates clarity and provides a productive way of working with sound insights and results.

Looking for Amazing Technologies

The most important goal of the project was to identify “amazing technologies” outside a client’s current capabilities but with a potentially high impact on the existing business of the client. We were asked to evaluate the exact relevance of these technologies for the client’s business to deduce new market opportunities of these technologies and evaluate their potential.

Our solution to accommodate these needs was a “future business radar”. The focus was on the blue futures glasses (assessment of technologies) and the green futures glasses (development of opportunities). Less focus had been given to the yellow futures glasses (assessment of opportunities and decision, which opportunities should be pursued). Not included were the violet futures glasses: With the completion of the project, the business units have individually taken responsibility for developing the strategy to enter the future markets that were identified as relevant to their business.

Technology Radar: the Project Process

Function Maps

After the definition of the project goals and the project timeline, the first step was the analysis of functions delivered by the four business units. In contrast to a product or a solution, a function describes the effects that a product is actually bought for. Questions to think about to identify the functions of a product are:

  • What is it that your customers actually pay for when they purchase your product?
  • What is the actual use that your customers would like to obtain from your product?

Concentrating on the functions opens up completely new business opportunities even for the combination of products with other products from outside the current portfolio. Functions can be described at three levels:

  1. Super-functions: Functions that are indirectly fulfilled by a product or service, for example through integration into other products (e.g. personal mobility in case of all automotive parts)
  2. Primary functions: Core functions of a product or service for which it was invented. The main reason for its existence (e.g. sealing).
  3. Secondary functions: Additional functions the product or service fulfils beyond its core use. They often are the decision criteria of customers if several products can fulfil the primary functions reasonably well (e.g. convenience, cost saving).

224_bild2

Figure 2: Levels of functions

The relevant functions were developed in a workshop with the project team consisting of representatives of all business units and enhanced through independent analysis by FMG. The functions were then transferred to visual maps, reviewed by the business units and jointly further developed by FMG and the project team.

Long List of Technologies:
Which Ones Are Potentially Relevant?

The long list of technologies was developed from extensive secondary research. All technologies that are described in current literature as emerging and/or as gaining importance in the future where considered for the long list. The single selection criterion for inclusion in the long list was the existence of a conceivable relation to a single function of one of the business units. The connection of a technology to a function is a valid indicator for its potential relevance. It shows that the technology can change the way in which the function is performed in the future. It can provide new solutions and products as well as change business models, thus changing value creation in the market. A total of 180 potentially relevant technologies have been identified.

An important source in the desk research was the FMG-FutureNet, a semantic database of futures knowledge. It is a knowledge network, modelled on the human brain, in which items of future information are saved and linked. We structure the available future knowledge and evaluate, summarise, substantiate and meaningfully link the individual items of futures information. In addition, we add information gained in our projects. As a result, the FMG-FutureNet has become a unique database of future markets.

For the technology radar project, we additionally evaluated websites, studies, books and magazines.

Short Lists of Technologies:
Evaluation of Technologies

The technologies from the long list were evaluated along two criteria: “impact on industry” and “reasonable time horizon”. The initial evaluation was done by representatives from the business units on a 9-point scale. A second evaluation was performed by FMG leading to some technologies with low rankings to be reconsidered. After a structured discussion process, each business unit selected ten technologies for deeper analysis. In total 32 different technologies were analysed and the results summarised in technology briefings.

Identification of Future Market Opportunities

A future market is a solution for important future problems or desires of certain people that develops or will generate significantly more revenue in the future. Examples of future markets include augmented reality glasses for smartphone users, robots that carry luggage and equipment for the military, or affordable space tourism for adventure travellers. The difference between a future market and a future trend or future technology is that one can additionally imagine which concrete solution people would actually be prepared to pay for and how you can make a profit out of it.

Future market opportunities were developed through analytical and creative thinking, including input like future factors and methods like meta-opportunities, which we would like to introduce here briefly.

Future factors are trends, issues and technologies that act as the driving forces of future change and allow us to collect knowledge about the future. They are based on existing knowledge of experts and futurists on possible and probable future developments. Future factors give indications on what, why and how the future is changing. Two types of future factors are important for the early recognition of future markets:

  1. Future factors in nature, society, business and politics that change the needs of end consumers. Examples are climate change, feminisation, entrepreneurisation, flexibilisation or globalisation
  2. Future factors in technology and science that will change processes and methods as well as products, services and solutions. Examples are nanotechnologies, dematerialisation, informatisation, micro-system technology, robotics or neurotechnologies.

Future factors primarily represent the view through the blue futures glasses but can also be used as a technique to support creative thinking. This is especially fruitful when future factors have no direct relation to the client’s industry.

Meta-opportunities are repetitive patterns that are recognisable in many future opportunities. These patterns are recipes and shortcuts for opportunity recognition. They illustrate models of best-practice thinking and stimulate the search for opportunities. Through the use of meta-opportunities, productivity and the value of opportunity development can be increased considerably.

Subsequently, the identified and developed future market opportunities were set in relation to the business units and to the functions fulfilled by the business units in particular. In addition, the technologies were analysed for the interrelations among each other. From 98 raw future market opportunities, ten were selected for each business unit to be described in a short portrait. The criterion of choice was the estimated market potential. The selected future markets were described following four main questions:

  1. Which problem is solved? Which desire is fulfilled?
  2. What is the solution?
  3. Whom is the solution delivered to?
  4. How is the solution special?

Finally, the time horizon of the future markets was evaluated from a technical and a demand perspective; the markets were classified in terms of their distance from current capabilities.

A Strong Case for Function-based Technology Assessment

An important goal of the project was not to miss any relevant technology. This was ensured by an overview scan and the analysis of the results of futures research concerning the emergence and further development of new technologies. Simultaneously, the technology radar served as a future business radar, as it identified the most promising future markets that lie in the most important technologies. Out of 180 technology candidates that were included in the long list, we created 41 differentiated and in-depth future market portraits.

The project has shown how function-based technology assessment can contribute to identify relevant technologies outside current competencies and businesses – an essential requirement to recognise potentially profitable future markets.

The most promising of the recognised future markets needed to be explored in more detail. Future markets can only be considered as realistic if there are enough arguments for their future market potential. Therefore, the next step for each business unit was to do detailed future markets research for selected markets. The future

224_bild3

Figure 3: Map of results

markets research provides a solid analysis of market prospects, key challenges and possible business models. It thus allows sound investment decisions for the development of a future market.

Authors: Enno Däneke             ed@futuremanagementgroup.com

Stefan Schnack          st@futuremanagementgroup.com

Sponsors: A German high technology company
Type: Sectoral forward-looking analysis
Organizer: FutureManagementGroup AG, Eltville, Germany
Enno Däneke, ed@futuremanagementgroup.com
Duration: 2009 – 2010
Budget: n.a.
Time Horizon: 2020
Date of Brief: July 2012

Download: EFP Brief No. 224_Technology Radar Eltville

Sources and References

Mićić, Pero (2010): The Five Futures Glasses: How to See and Understand More of the Future with the Eltville Model. Houndsmill, Basingstoke, Hampshire: Palgrave McMillan.

Mićić, Pero (2007): Phenomenology of Future Management in Top Management Teams. Leeds: Metropolitan University.

Mićić, Pero (2006): Das ZukunftsRadar. Die wichtigsten Trends, Technologien und Themen für die Zukunft, Offenbach: GABAL-Verlag.

For further information on future management, the Eltville Model and the Five Futures Glasses, please visit: http://www.futuremanagementgroup.com/en.html