Posts Tagged ‘health care’

EFP Brief No. 176: Foresighting the Agri-climate Ecology

Tuesday, May 24th, 2011

This exercise was part of an EU FP7 Blue Skies Project aimed at piloting, developing and testing in real situations a foresight methodology designed to bring together key stakeholders to explore the longer term challenges that face their sector (or cut across sectors) and to build a shared vision that could guide the development of the relevant European research agenda. This approach was applied to the first theme selected, namely “Application of Breakthrough Technologies to Adaptation to Climate Change in Agriculture”. This met the criteria for a sectorally driven topic, was research-driven and involved a clear and vital European policy challenge. Moreover, from an early stage, there was strong stakeholder engagement from the Standing Committee on Agricultural Research and the Directorate-General for Research in Agriculture, Forestry, Fisheries, Aquaculture.

Urgency of Agri-climate Challenge

There is a general consensus that agriculture in Europe will confront major challenges related to rising global temperatures, an increasing number of extreme climatic events and a series of consequences which may occa-sionally be positive but the sum total of which threaten food security, health and well-being, particularly but not exclusively in rural regions. The urgency of mitigation measures should not be minimised, not least because of the substantial contribution agriculture itself makes to greenhouse gas emissions. Nonetheless, the reality is that such measures at this stage are only likely to offset what is to come. In consequence, thinking is already focusing on strategies for adaptation. The exercise built on the foresight work of the Standing Committee on Agricultural Research (SCAR) and the Directorate-General for Research and Innovation (DG RTD), Agriculture, Forestry, Fisheries, Aquaculture, which had generated two important reports. A strategic link was also established with the group working on the Joint Programming Initiative developing in this area. Sev-eral meetings were held with DG RTD to improve the mapping of the research and ‘innovation ecology’ or ‘eco-system’ (an underpinning concept of the project which emphasises flows and interdependencies in the innova-tions system) and to discuss the appropriate tactics for interfacing with this community. An initial description of the ecology was prepared as background for the workshop, and the event was held in Brussels on 14 December, 2009 with the participation of 26 senior experts in agriculture and related technologies, policy and foresight.

Purpose

The purpose of the workshop was to bring together these experts from the domain of agricultural research and associated policy and user areas with thinkers and specialists from outside to explore a foresight vision of the contributions that breakthrough technologies could make. Since such technologies could have profound socioeconomic consequences or even demand major socioeconomic change as preconditions, the socio-economic dimension must also be prominent. To open up scope for innovative thinking, the first part of the workshop focused on articulating the challenges of ad-aptation in the form of a “functional specification”, for example the level of salinity tolerance that a major crop would have to achieve or the need to increase cloud precipitation in a cost-effective way. A second session considered the potential of breakthrough technologies for adaptation, whether in isolation or through convergence. Workshop participants were then asked to co-construct a success scenario for the year 2050 in which European agriculture (or its functions) will have made the best use of potential breakthroughs to adapt to climate change scenarios. On the basis of the success scenario, attention then focused on the steps needed now and in the coming years to achieve the desired outcome.
In this case, the tailored structure was based upon identi-fication and prioritisation of challenges in the domains of pests and diseases, water and land, and socio-economic dimensions. With an intervening wild-card exercise, the second main step involved identifying potential solutions to the challenges resulting from breakthrough technolo-gies in bio and non-bio domains. The timescale was 2050 in recognition of the rate of change of drivers and effects.

Linking Success Scenario and Ecosystem Mapping

The aim of the exercise was to pilot and test in real situations a foresight methodology designed to bring together key stakeholders to explore the longer term challenges that face their sector (or cut across sectors) and to build a shared vision that could guide the devel-opment of the relevant European research agenda. This includes identifying the changes in the European research and innovation ecosystem that would be needed to take forward that agenda. The target is not the Eighth Framework Programme in isolation or the specific case of the Joint Programming Initiatives but rather embedding them as core elements of wider cooperation and coordination mechanisms and proc-esses around the challenges facing the sectors exam-ined. The project combines the core approach of the “Success Scenario Workshop” with the mapping of the research and innovation ecosystem to address differ-ent types of research and innovation challenges.

The “Success Scenario Approach” is an action-based approach, which helps to generate a shared vision among senior stakeholders of what success in the area would look like, specified in terms of goals and indicators, which provide the starting point for developing a road-map to get there. The purpose of having such a vision of success is to set a ‘stretch target’ for all the stakeholders. The discussion and debate involved develops mutual understanding and a common platform of knowledge that helps to align the actors for action. In practice, the struc-ture of a workshop begins with a consideration of key drivers or challenges, builds a vision of success, and then focuses on actions to make the vision a reality. The work-shop helps to flag hidden bottlenecks and constraints pre-venting progress as well as windows of opportunity for joint policy coordination and action. Important outcomes of these workshops are the insights they provide in terms of the level of maturity in policy design and development and the viability and robustness of long-term policy scenarios to guide policy-making. The workshops also provide indi-cations on whether there is a need for further discussion to refine thinking and policy design and/or to bring additional stakeholders into the discussion.

The workshop approach is supported by a mapping of the research and innovation ecosystem, a concept that stresses the interdependencies between actors in re-search and innovation – here understood broadly to include policy as well as industrial innovation. The map articulates the identities and roles of key actors, the networks in place and the flows of money and knowl-edge. It also provides an overview of existing initiatives and the level of maturity of the system, how well it is working and whether networks need to be re-aligned or re-configured. Towards the end of the process, road-maps or implementation plans are developed identifying the key steps to be taken to put European research in the area on the appropriate footing.

Challenges in Three Key Areas

The Farhorizon Agri-climate Workshop working group discussions were structured on the challenges arising from climate change impacts on agriculture in three key areas, namely pests and diseases, water and land, and socio-economic aspects (including events outside Europe). Each cluster of challenges is explored in more detail below.

Cluster 1: Pests and Diseases

Early warning systems: Among the key impacts identi-fied in the first cluster were the migration of pests from hot countries and the need to detect and control the spread of invasive species. This requires action on a number of levels, including efforts to improve detection of invasive plant species or crops bringing new pests and diseases into Europe. Accuracy and timeliness of detec-tion systems is key for effective responses, hence the need for robust monitoring and early warning systems for picking up signs in initial phases. Sophisticated ICT-based expert systems together with smart technologies can detect weeds (and hidden pests) in imported plants.

Genetic engineering and genomics: In Europe monocul-tures represent a major problem due to additional risks relating to pests. There is a need to plan a shift to polycul-ture for a more diverse set of animals and plants. Genetic engineering has focused on one particular challenge while it also needs to address other challenges, such as adapt-ing existing crops quickly, genetic traits for animal health and the potential of genomics for enhancing plants’ ca-pacity for survival in stressful environments, requiring a focus on a broader genetic strain.

Territorial diversity and local, traditional knowledge: Re-search challenges range from experimentation with di-versified cropping to research on viroids and the spread of pests and human allergies. Despite territorial diversity in climate impacts, regions do not operate in silos result-ing in cross-impacts on bordering regions. This highlights the need for closer cooperation between disciplines in-cluding ICT, GIS, ‘omics’ (refers to disciplines that have the omics syllable in common, e.g. genomics) and taxon-omy. There are concerns about a shortfall of plant spe-cialists and taxonomists and the loss of traditional knowl-edge due to the growing attraction of genomics.

Cluster 2: Climate change impacts on water and land

The second cluster relating to climate change impacts on water and land can be divided into (i) ‘general impacts’, i.e. changes in temperature, solar radiation, rainfall, changes or increases in toxic air(borne) pollutant levels, water shortages, changes in plant types, changes in carbon dioxide levels and impacts on ecosystem(s). The speed of change in systems and their (and our) ability to respond is a key issue now (i.e. from traditional national systems and cultures to new global set-ups). (ii) ‘Water quality impacts’ – i.e. groundwater being affected by changing quantities of rainfall, potentially allowing the concentration of pollutants etc. to increase; changes in the relative priorities for water use compared to the cur-rent priority of drinking water quality over agriculture water quality. Increased biological activity is proportional to temperature increases, which could reduce water quality. (iii) ‘Water quantity impacts’ – i.e. droughts, floods and the generally shifting availability of water in space and time. Climate change could generally decrease the resis-tance and resilience of species (plant and other). (iv) ‘Impacts on land’ – i.e. mineral transport processes will be affected; soil dynamics will change (change of soil fertil-ity); desertification will alter land use; there will be a modi-fication in soil flora and fauna; where people live (have to live) may change; ‘ecosystem’ goods and services supported by the land will change; there is a changing sus-ceptibility of a variety of these things due to temperature.

Cluster 3: Socio-economic impacts

The foreseen impacts range from the urgency to de-velop new economic and agriculture models to invest-ments in technologies that are cost-effective, reliable and acceptable to society. These impacts can lead to ten-sions, insecurity, instability, especially in developing countries, due to scarce resources to address these con-cerns. This poses a general challenge of how to detect the tipping point in these situations and take action to reduce these tensions. Free trade discussions are ne-glecting climate change due to potential conflicts with the objectives of WTO negotiations. This calls for cli-mate change issues to be given a higher profile on the WTO agenda. Europe needs to develop an integrated response to economic growth, free trade and climate change based on improved communication between institutions and policy sectors, and ultimately new mod-els of economic growth decoupled from fossil carbon.

A potential impact with socio-economic effects is the emergence of local threats to agricultural systems lead-ing to the abandonment of sectors. Sectors of activity are in this scenario threatened by diseases, lack of water and other effects caused by extreme weather events. The challenges involve adapting to novel situations by new breeds and/or new technologies, investing in new tech-nologies, supplying information, educating and training people to adapt to necessary changes in lifestyle, and improving communication on climate change issues. In such situations, an increase in climate change refugees is envisaged, creating a dual challenge of prevention and integration. The means identified were international co-operation, technology transfer and education. Another key challenge is to identify effective means for keeping the environmental impact of intensification to a minimum through a new model of sustainably competitive agricul-ture based on: 1) profitability at farm level, 2) marketabil-ity of food products, 3) environmental sustainability, 4) coping with climate change, 5) energy efficiency and 6) coping with competing land uses. Developing and imple-menting this new model will require a very high level of policy coordination at the national, EU and global level. This model would address land management through transparent, effective processes for mediating conflicting uses, the introduction of new climate and agri-technologies based on public acceptance and the adaptation of educa-tion systems to promote change in lifestyle.

Agri-climate Success Scenario for 2050

Drawing on the insights gained from the analysis of challenges and suggested responses, a success sce-nario was constructed to illustrate an aspirational path by which these could shape the future:
The scene for the success scenario was set with refer-ence to future historical events including a Second Great World Food Crisis in the early 2040s, in which Europeans will have been forced to change their diet but where prescient actions taken to prepare the agricul-tural system from 2015 onwards will have insulated the Continent from the worst effects of climate change. A review written from the perspective of 2040 of the past 40 years illustrated how two generations of researchers were able to engage with a series of challenges and bring with them Europe’s timely actions to provide impor-tant insights on how proactive, forward-looking ap-proaches can be realised through joint transnational re-search initiatives. It referred to how farmers will have become increasingly used to facing the impacts of climate change reflecting the risks identified in the work-shop.

Elements of the foreseen policy approach included:

• European early warning and response strategy and facility
• Capitalising on existing knowledge
• Networked specialisation (a trans-European network of institutions synthesizing a large pool of knowledge).
A research agenda for agriculture included:
• Energy adaptation based on a mix of approaches including reduction of transport in production and dis-tribution, design of greenhouses that capture energy rather than use it, and breakthroughs in bio-energy from trees alleviating stresses on land use.
• Fertilisers that use less material input (potassium and phosphate) and less energy in their production.
• New varieties of plants with a reduced need for fertilisers and new varieties of fertilisers from manure and nitrogen fixing in grasses. Opposition to geneti-cally modified crops was dissipated by creating plants designed to be low risk (for example without the ability to spread pollen).
• Water use and drought resistance are critical factors particularly for Mediterranean regions. A multifaceted strategy includes the selection of plant varieties to con-serve water and breeding of drought resistant varieties.
• Soil fertility and dynamics provide an important re-search theme. The network supported a more robust and sustainable agriculture model and locally adapted systems. Its links to local farming communities and
researchers placed it in a strong position to spearhead change at the European level.

In summary, as a result of an early investment in capacity-building to cope with the climate impacts on agriculture from a range of perspectives (policy design, implementa-tion, knowledge capture and transfer), the success sce-nario describes an agricultural landscape in Europe 2050 that is highly diversified and yet robust to climate change effects. The success scenario also includes a retrospective on policy describing a situation where societal challenges dominate the bulk of effort and resources in the European research and innovation ecosystem. Reference was made to a situation in the early part of the century where the research and innovation constituencies is largely separate and the public viewed researchers as an isolated elite interested mainly in securing a continuous flow of funding. In this scenario, the financial crisis causes researchers to be much more explicit about how their work will contribute to economic recovery and major societal challenges. At the same time political, business and social leaders will have reassured the scientific community that substantial funding will be reserved for investigator-driven research but that much more effort will be made to ensure success-ful translation of the results of that work. Building the con-stituency to address the grand challenge of adaptation to climate change in agriculture will have been aided by or-ganisational innovations, including policy platforms that bring together a range of stakeholders responsible for policies relating to agriculture, climate change, research, and innovation, as well as the players in the field (re-searchers, farmers, business and intermediaries), who will have been sensitised to the challenges at a very early stage. Foresight actions will also have been used to help build a common vision and mobilise the participants.

Foresight Helps Adapt to Climate Change

This approach was intended to provide a practical dem-onstration of ways in which foresight involving key stake-holders can help develop new initiatives at European level. In practice, the Farhorizon workshop was placed in the context of a sequence of foresight activities, and it is fair to say that the net effect of all of these activities helped the agriculture and climate change research com-munities to become one of the first to engage realistically with the Joint Programming Initiative and to position itself for further opportunities within the Innovation Union framework. In terms of content, the workshop reinforced and extended certain conclusions of its predecessors and made a distinctive contribution by demonstrating the po-tential of breakthrough for non-bio-based technologies to contribute to the adaptive response to climate change in European agriculture. Within the bio-based list some more controversial issues were also made explicit.

Download EFP Brief No. 176_Foresighting the AgriClimate Ecology

Sources and References

European Commission [EC] (2009), ‘New challenges for agricultural research: Climate change, food security, rural devel-opment, agricultural knowledge systems’, 2nd SCAR Foresight exercise, DG Research, Brussels: EC.

EFP Brief No. 174: The German BMBF Foresight Process

Tuesday, May 24th, 2011

In September 2007, the Federal German Ministry for Education and Research (BMBF) launched a foresight process in order to sustain Germany’s status as a research and education location. The BMBF Foresight Process aimed at 1) identifying new focuses in research and technology, 2) designating areas for cross-cutting activities, 3) exploring fields for strategic partnerships, and 4) deriving priorities for R&D policy.

The Foresight Process

“The BMBF Foresight Process”, subtitled “Implementation and Further Development of a Foresight Process”, started by assessing present-day science and technology and was broadened to look into the future over the next 10 to 15 years – and even further. It took into account the developments at the national as well as international level.

The process was conducted by a consortium comprising the Fraunhofer Institute for Systems and Innovation Research (Fraunhofer ISI) and the Fraunhofer Institute for Industrial Engineering (Fraunhofer IAO). Other institutions like the Technical University of Berlin, the Institute for Nanotechnology (INT) of the Research Centre Karlsruhe, the RWTH Aachen, the Austrian Research Centres GmbH (ARC), Systems Research Division – Dept. of Technology Policy, the Manufuture Secretariat Germany of the German “Verband deutscher Maschinen- und Anlagenbauer” (VDMA) supported the exercise. The process linked both foresight and monitoring in its integrated approach

Introducing New Methodologies

In order to achieve the targets, a tailor-made combination of methods was applied. Since there is not one single methodology as in a simple input-output model, a combination of methods, as is standard in most foresight processes worldwide, had to be used to meet all four objectives (see Figure 1). These objectives were defined by the BMBF when launching the call for tenders.

Objective 1 is to identify new focuses in research and technology that the BMBF must address. Objective 2 is to define interdisciplinary topics and areas, accordingly, that require broader attention and are to be tackled by various departments and groups of actors. The fields thus determined have to be addressed by different partners in the innovation system (strategic partnerships) over a longer period of time (objective 3), and measures should be devised to promote the fields in question (objective 4).

In order to achieve objectives 1 and 2, the foresight approach applied well-known search strategies as well as other methods from innovation research and international foresight activities alongside new, creative methods. The themes to be investigated at the national and international level were further developed by experts taking into account existing forward-looking road-mapping and strategy processes from the public and private sector.

The first phase stressed the national search for weak and strong signals, while the international search was focussed on the later second phase. As there is no one single methodology for search procedures, the methods involved quantitative methods like bibliometrics as well as qualitative approaches such as workshops, expert interviews, Internet and qualitative literature searches.

A new approach called inventor scouting (identifying young inventors and interviewing them) added to the methodology. For the evaluation of the topics, a set of criteria was drawn up. The criteria provided the basis for an online survey and were also used to guide the selection process.

The foresight search activities were flanked by an assessment process. With the assistance of an international panel, latest developments in various technological-scientific subject areas were analysed in order to attain a reliable description of the international “state-of-the-art”. For the monitoring process, an international panel of well-known and acknowledged experts in their fields was asked about the current state and new developments in research and technology. In a second wave nearly one year later, they were once again interviewed to consolidate their opinions and give feedback on potential topics for the BMBF that met the objectives.

The topics to be identified were supposed to still be in the research or development phase. Topics that can be expected to either enter the implementation phase during the next years or be transferred to innovations in the next ten years were excluded from the lists of topics to be considered. For a first selection, a set of criteria was developed together with the BMBF.

The topics were reformulated, internally assessed and re-assessed several times via an internal database and scientific papers. To provide input to the first workshop in November 2007, a first set of scientific papers describing the developments in the fields was written and distributed as a basis for the discussions.

Topic coordinators (sometimes two persons) were nominated for every field that were responsible for defining and working out the details in the respective fields but also for coordinating with other topic coordinators in areas of overlap. The topic coordinators not only scrutinised the future themes but also the innovation system and identified the actors in the fields in question.

A bibliometric analysis provided further input into this process. The topic coordinators defined key words for a stakeholder analysis. The key words were used for counting literature indexed in the Web of Science and for a qualitative analysis. The (Internet, literature and other) searches and first selection processes were complemented by expert interviews and informal talks to gain an impression of the importance and potential impact of the huge number of topics under consideration.

Golden Topics

Topics in which BMBF or German research institutions were already very active at that point in time were labelled ‘golden’ and in most cases were no longer pursued.

The second phase of the searches ended with a first assessment of the topics found. An online survey among experts from the German innovation landscape was performed in September 2008 for a broader assessment of the topics, their importance and their time frame.

In parallel, the corresponding innovation systems were analysed in order to identify candidates for potential strategic partnerships, which were to be proposed in 2009 at the end of the whole process (objectives 3 and 4). In the last phase of the process, recommendations for R&D policy were also derived. The last phase ended with a conference. It marked the beginning of integrating the topics thus identified into the German innovation system and the BMBF agenda. It was a bridging conference rather than a final act.

The workshop participants differed widely (experts from science, society and the economy), and various channels of surveying were used: “experts” and “laypeople” via the interviews, young persons by inventor scouting, and a wide range of persons with broad or specific knowledge through the online survey (more than 2,659 persons). The international monitoring panel consisted of about 35 persons.

Established and New Future Fields

In the process, 14 established future fields were worked out in detail. They were derived from the German High-tech Strategy. In these fields, future topics were identified, re-clustered and assessed via a set of criteria. Seven new cross-cutting fields were arrived at by clustering the most important issues from the established fields. They are rooted in science and technology but have major impacts on society and the economy as well.

Established Future Fields

  • Life sciences and biotechnology
  • Information and communication technologies
  • Materials and their production processes
  • Nanotechnology
  • Optical technologies
  • Industrial production systems (automation, robotics, mechanical engineering, process engineering, etc.)
  • Health research and medicine
  • Environmental protection and sustainable development
  • Energy supply and consumption (generation, storage, transfer etc.)
  • Mobility: transport and traffic technology, mobility, logistics (land, water, air and space)
  • Neurosciences and research on learning
  • Systems and complexity research (including research on technological and scientific convergence; security research)
  • Services science
  • Water infrastructures

New Future Fields

Human-technology cooperation: This new future field provides an integrated research perspective on the complex interplay between human and technological change. In view of our increasingly dense technological surroundings and the expanding technical structure of human life, novel configurations of humans and technology must be embraced in all their complexity. Technological innovation can only be achieved in connection with a deep understanding of human thought, feeling, communication and behaviour to provide a new quality of seamless human-technology cooperation. A re-orientation of human beings against the background of technological change is therefore just as central as reviewing the concept of the machine in terms of new machine agents. Further research must cover the relationship of these two parties, whether in the form of human-technical teams or in the wider perspective of human-machine culture.

Deciphering ageing: Ageing continues over our entire life span and is a multifactorial process. Some ageing processes cause disorders or disease. The biological processes of ageing and brain development (e.g. changes to neuroplasticity) that occur over the course of a lifetime have so far only been partly explained. Future findings in the areas of cellular and molecular developmental biology will provide new insights into cognitive, emotional and psychomotoric processes.

Sustainable living spaces (the field “infrastructures” was split into “water infrastructures” and “infrastructures for human living spaces”): Living spaces will in future be different in terms of structure and organisation. Driven by the reorganisation of ways of life and technological possibilities, chronological, spatial residential, and living patterns are changing. Together with demands for sustainable spatial development, these changes require innovation and adaption in various research areas.

In order to react to continuing social trends in the long-term, settlement-structural concepts will have to be made more dynamic to better manage basic conditions and, for example, flexible, more environmentally friendly spatial and settlement structures will have to be established. Efforts to meet these demands, which are still in flux, are obstructed by current settlements and infrastructures, which can only be changed at high cost and involving a considerable expenditure of resources in the short to medium-term. All infrastructures, for providing energy, transport, water and even information and communications, must be made more flexible at a technical level, and the possibility of reconstructing or dismantling them in the future must be taken into account at their construction.

ProductionConsumption 2.0: This future field aims at establishing long-term sustainable production and consumption paradigms and involves research into new ways of supplying products and services according to need in the face of changing global conditions. At the same time, it addresses one of the greatest challenges of the future: maintaining the ecosphere, which is also vital to human survival. Research in this area focuses on sustainable industrial and social patterns of materials usage. Researchers in established areas in production research, services research, environmental research, biotechnology and materials sciences are all working with great drive on aspects of sustainable practices. However, they alone cannot adequately accomplish the necessary systemic transformation of the entire structure.

Modelling and simulation: New methods of handling complexity based on modelling and simulation require multidisciplinary approaches. Working out the similarities in different applications may be a first step toward adapting the instruments and tools in other disciplines so that new simulations are possible in the future, even in technical and social science contexts.

Time research: Time is a bottleneck factor in many developments. Research into time is a central aspect and includes issues such as the chronological order of complex processes in making applications faster and more efficient, cost-effective and intelligent, or in paralleling and synchronising processes (e.g. Internet servers, production processes). The issue of dynamic and chronological development on various time scales, especially of non-linear processes, can only be dealt with in the long-term. One very dynamic future topic within time research is chronobiology, an area in which there are already initial findings on precisely-timed medication delivery. A central research aspect of time research is understanding and being able to specifically control the factor of time with the help of time efficiency research, the precise measurement of time (e.g. for GPS applications, such as precision agriculture and the remote maintenance of machines) and time-resolution (e.g. 4D precision).

Energy solutions with a) energy concert: Securing an affordable, safe and climate-compatible energy supply is a central global challenge and an outstanding leading future market with high relevance for the economy and quality of life and a powerful, influential impact on many research fields. Sustainable, coordinated solutions for production, distribution and use are all equally important in this context. But there is still a cacophony. As many actors are involved and many disciplines contribute, energy is a field that needs a symphony.

  1. b) Energy from the environment: Energy harvesting is already known, but its use limited. New ideas are expected that make it possible to harvest energy from different kinds of environments and transfer it to miniaturized machines. This is especially necessary for devices that are out of reach (implants, built-in domestic appliances and others).

Challenges for Science, Technology and Innovation Policy

New future fields can only be realised if there are advocates and if action is taken to that end. As all fields are different, new challenges for science, technology and innovation policy will arise. An international workshop in early October 2008 provided a platform for generating ideas for recommendations concerning policies and research alliances (objectives 3 and 4) to be further elaborated in 2009. The workshop took place in Hamburg and gathered international and German experts with experience in promoting new or cross-cutting issues. The purpose of the workshop was to discuss what kinds of measures are successful in implementing new or cross-cutting topics, along the lines of examples from the past outside of the BMBF Foresight Process. The guiding questions were therefore:

  • How can future issues and topics with a time horizon of 10 to 15 years and longer be rapidly and efficiently absorbed into an existing innovation system?
  • How do organisations or companies in other countries deal with cross-cutting issues and future topics with a time horizon of 10 to 15 years and beyond?

High-ranking Discussions and Impact on Policy

New approaches in innovation policy are necessary to implement and realise new cross-cutting fields of the future. The approaches vary and need to take into account the different stakeholder groups involved. Therefore, in the last phase of the foresight process, the actors of the current innovation system were identified and potential actor groups named who could further foster the different topics or fields.

The results of the BMBF Foresight Process were presented during a conference in Bonn in the presence of the Undersecretary of State, high-ranking persons, decision-makers and interested experts. Two hundred persons participated in this conference held at the former parliament building. Part of the conference was organized into so-called “topic islands” where the new fields were presented and discussed in an interdisciplinary manner. All topic islands had a different programme, and the participants were free to choose where they wanted to go. The discussions were very lively.

Talks in BMBF revealed large interest in the new fields so that follow-up activities were launched. The first such activities were “follow-up workshops” to bring together different BMBF departments and enable them to exchange views. In 2010, the BMBF started strategic dialogues as an opportunity for looking into the new future fields of the BMBF Foresight Process from different perspectives. This is necessary, on the one hand, for the further development of content and, on the other, to ensure that important aspects are included in the integration and translation of results into funding policy at an early stage.

Another policy result is the foundation of a new division (Referat 524 – Department 524) at the BMBF in June 2010, which has been named “Demografischer Wandel; Mensch-Technik-Kooperation” (Demographic Change; Human-Technology Cooperation).

Authors: Kerstin Cuhls                           kerstin.cuhls@isi.fraunhofer.de
Sponsors: Federal Ministry for Education and Research, Germany, Referat 113
Type: National foresight exercise
Organizer: Fraunhofer Institute for Systems and Innovation Research (ISI), Kerstin Cuhls, together with the Fraunhofer Institute for Industrial Engineering (IAO)
Duration: 9/2007–7/2009 Budget: 4.5 m € Time Horizon: > 10 years Date of Brief: June 2010  

 

Downloads EFP Brief No. 174_German BMBF Foresight

Sources and References

The reports are available at www.bmbf-foresight.de

German High-tech Strategy: http://www.hightech-strategie.de/

Cuhls, K.; Beyer-Kutzner, A.; Bode, O.; Ganz, W.; Warnke, P.: The BMBF Foresight Process, in: Technological Forecasting and Social Change, 76 (2009) 1187–1197.

Cuhls, K.; Ganz, W; and Warnke, P. (eds.): Foresight-Prozess im Auftrag des BMBF. Etablierte Zukunftsfelder und ihre Zukunftsthemen, IRB; Karlsruhe, Stuttgart 2009 (Original in German), www.isi.fraunhofer.de/bmbf-foresight.php.

Cuhls, K.; Ganz, W. und Warnke, P. (eds.): Foresight-Prozess im Auftrag des BMBF. Zukunftsfelder neuen Zuschnitts, IRB (Original in German), Karlsruhe/ Stuttgart 2009, www.isi.fraunhofer.de/bmbf-foresight.php.

Cuhls, K.; Ganz, W. and Warnke, P. (eds.): Foresight Process – On behalf of the German Federal Ministry of Education and Research (BMBF), Report, New Future Fields; Karlsruhe, Stuttgart 2009 (English version), www.isi.fraunhofer.de/bmbf-foresight.php.

EFP Brief No. 152: Combining ICT and Cognitive Science: Opportunities and Risks

Tuesday, May 24th, 2011

Many experts think that the technological convergence of previously separated sciences like nanotechnology, biotechnology, information and communication technologies and cognitive sciences will have a deep, long-term impact on society and economy. Key actors in society need to become aware of the challenges linked to converging applications (CA) and take decisions in support of developing them. By analysing CA-related opportunities and risks at a very early stage, we hope to contribute to reducing possible adverse effects in the future.

EFMN Brief No. 152_ICT and Cognitive Science

EFP Brief No. 139: Future Prospects of Care Facilities and Services for the Dependent Elderly in France

Saturday, May 21st, 2011

Following the submission of an initial report in July 2005 on the evolution of illness related to old age and estimations of the number of accommodations available for the dependent elderly, the French minister in charge of elderly affairs asked the Strategic Analysis Centre to further consider how to provide and finance the care of dependent persons until 2025. Relying on a single quantitative scenario, the report proposes a global strategy turning on several key principles: a preference for in-home care and supplying treatment in a welcoming environment, reliance on technological and social innovation, the qualitative improvement of establishments housing the most dependent persons and the use of new regulatory tools in order to promote performance and a better territorial distribution.

Creating a Free Choice Scenario

For economic and social reasons, the French government is willing to give the elderly a freedom of choice regarding
healthcare and accommodations. Such a policy requires the simultaneous and complementary development of services
designed to care for the elderly in their own homes as well as access to retirement homes. A policy to that end has been launched in the framework of the first “Ageing and Solidarity” plan, which includes a significant attempt to increase availability of all the types of care for the dependent elderly. Efficient investment implies an extensive
study of a balanced scenario including the development of a global offer covering all types of home and institutional
care. In this respect, the minister in charge of elderly affairs asked the Strategic Analysis Centre to

  • establish the number of additional rooms in homes for dependant elderly (EHPAD1) needed from 2010-2015 and an estimation for the year 2025,
  • anticipate the number of home care assistants required in these two time horizons,
  • analyse the geographical distribution and propose guidelines for better EHPAD accommodations,
  • examine issues related to financing and ensuring an even geographical distribution.

A first report was elaborated in 2005 with quantitative forecasts including various scenarios of home and institutional care capacities. The second report, published in June 2006, proposes a single scenario, including an estimation of the requested workforce, taking societal and financial aspects into account.

Developing the Scenarios and Political Options

Studying the ageing society implies taking different variables into account such as demography, healthcare improvement, the development of people’s behaviour and also various political options.

In addition to the Strategic Analysis Centre’s staff, the National Institute of Economic Statistics (INSEE), the National Solidarity Fund for Autonomy (CNSA), the health ministry’s department of statistics (DREES) and other central administration resources were solicited for this exercise.

First Report: an Extensive Quantitative Analysis

The first report aimed at exploring possible scenarios for the development of the number of accommodations available for the dependent elderly (EHPAD) for the years 2010, 2015 and 2025. This exercise required the following sequence of calculations:

  • elderly population growth,
  • the development of the prevalence of dependency within this population,
  • the consequences in terms of demand for home and institutional care,
  • achievable supply of accommodations and workforce in this sector.

As a result, five scenarios were adopted to reflect different balances between home and institutional care. In addition, each of these scenarios was developed based on two different dependency rates and for three time-horizons.

In order to calculate the respective workforces that would be required for home and institutional care in each case, the team also had to envisage different levels of assistance.

Second Report: Further Exploration of a Single  Scenario and Elaboration of Recommendations

The second report was elaborated by a group of 60 experts from various local and national institutions, universities, hospitals and associations. Their work also relied on the results of an ethnological study carried out in three different homes for dependent elderly.

First, the group conducted an in-depth analysis of a single scenario by distinguishing different levels of dependency and types of skills required for health care and assistance. The results were used to predict the development of the labour market in this sector until 2025.

Workshops were then organised in order to arrive at recommendations on how to conceive future homes for dependent elderly and optimise the financing of national and local schemes addressing the ageing population.

More Intensive Institutional
Care for the Most Dependent

Demographic development is reasonably predictable. The following chart gives a projection of the number of dependent elderly aged 75 and older:

x 1000

2005 2010 2015 2025 2030
High projection 682 741 808 920 1 017
Low projection 657 691 732 805    855

Source: Insee Destinie, projections Drees-Insee

The first report established five possible scenarios in order to capture the broadest possible range of impacts of population ageing on the caring system:

  • Scenario 1 assumed that the current distribution between home care and institutional care would remain constant, thus predicting an increased need for places in rest homes and other care institutions.
  • Scenario 2 and 3 planned for an increased recourse to home care: for all elderly, irrespective of the level of dependency prevalence (sc. 2), and for all elderly with the exception of the most dependent (sc. 3). These two scenarios led to a reduced need for specialised accommodations.
  • Scenarios 4 and 5 envisaged an increasing recourse to institutional care: for all elderly in scenario 4; for the most dependent only in scenario 5. Scenarios 2 and 4 were abandoned as too extreme, whereas scenario 3 was chosen as the most efficient and socially satisfactory framework for the future development of the French elderly care scheme.

Forecasts on Needs for Accom- modations and Human Resources

In this scenario, the rate of the most dependent elderly benefiting from institutional care is expected to reach 67% by 2010 and then be stabilised. Simultaneously, the rate of less dependent elderly who benefit from home care is expected to rise progressively.

This scenario thus assumes two consequences in terms of accommodations and human resources:

  • intensified care in specialised institutions and
  • more dense and diversified types of home care.
Needs for Specialised Facilities

Consequently, with the projected institutional care rates, the report recommends increasing the number of places in specialised facilities up to 680 000 in 2010 – among them 610 000 for the elderly aged 75 and older – and to stabilise this number after 2010.

The following targets for the distribution of places for the 75+ population show that, even within the institutional care solution, priority is given to temporary, flexible care solutions.

  2010 2015 2025
Little medicalised accommodations 90 000 90 000 90 000
EHPAD 420 000 402 000 392 000
Long-stay hospital accommodations 60 000 60 000 60 000
Temporary accommoda-

tions

40 000 58 000 68 000
Total 610 000 610 000 610 000

Reaching these targets implies various actions: a sustained effort to create new places by 2010, but also withdrawing licences from obsolete structures and converting some nonspecialised accommodations into EHPAD.

Increased Need for Institutional and Home Care Personnel

The population in specialised institutions can thus be expected to increase by 2010 and be comparatively more dependent than it currently is. These two trends justify the need for a drastic increase in personnel in these institutions. The report team has chosen to rely on two projections in terms of supervision rates (number of staff per 100 residents):

  • a low projection: from 57.4 in 2003 to 75.7 in 2025,
  • a high projection: from 57.4 in 2003 to 81.4 in 2025.

As regards home care, the growing share of elderly people who would benefit from this solution implies that the need for staff in the medical, paramedical and social home care sector will also clearly increase.

In the current situation, each dependent person benefits from an average assistance volume of 150 hours per month (the calculation is based on the French dependence allocation distribution). The report team suggests increasing this average volume by 55% by 2025. It must be noted that these projections are based on the assumption that the help currently received by the elderly from their relatives will remain constant, which is all but certain.

Need for institutional and home care staff 2005-2025:

2005 2010 2015 2025
Low institutional care projection
Institut.-care staff 233 400 279 900 296 700 315 500
Home-care staff 375 600 415 500 501 400 739 500
Total 608 900 695 400 798 100 1 055 000
High institutional care projection
Institut.-care staff 233 400 290 000 313 800 333 000
Home-care staff 375 600 415 500 501 400 739 500
Total 608 900 705 500 815 200 1 072 500

In terms of job creation, in total, 342 000 to 360 000 positions will be available in this sector over the next ten years, which represents 4,6% of all available positions in the French economy (this includes net creations and replacements after retirement). Net job creation in the elderly care sector alone can be expected to account for 11% of new jobs in France over the same period.

Guidelines for Better EHPAD Accommodations:
Diversification and Territorial Distribution

The Social Background to the Free Choice Scenario

The target population (aged 85+, 2015-2020) forms a very different social group from today’s elderly. The current babyboomers are more individualistic; they have developed an identity of active (and exigent) consumers, are geographically and professionally mobile and are used to actively deciding upon matters affecting the course of their lives. These features will have to be taken into account in drawing up tomorrow’s care system and the care accommodations it is to provide. This system and the related accommodations will have to – answer a broad diversity of needs and thus provide an equally broad diversity of adapted services and – take into account a diversity of life territories, values and cultures, and thus be equitably distributed geographically to allow the elderly to maintain their life habits.

An EHPAD should ultimately provide its residents with all needed services and assistance, while being a true living place in the full sense of the word. This includes several objectives, which have some technical impacts.

Supporting a Project for Life and Maintaining Social Life
  • Project for life: EHPAD should be conceived so as to allow the residents to further develop and not to simply “end their lives”. This includes preserving their freedom in terms of time and space organisation, favouring creativity and encouraging autonomy.
  • Social life: Residents should be encouraged and supported in the perpetuation of their social life through the preservation of family links. This means that exchanges between the residents and the exterior should be encouraged

(vicinity, city, village etc.)

EHPAD’s Projected Features to Answer these Needs

Localisation elements

  • The geographical distribution of EHPADs should allow residents to remain in the vicinity of their former place of residence in order to facilitate preserving their family and social links.
  • EHPAD’s localisation should ensure a social openness: opportunities for the residents to leave the facility and have access to a city or village.

Technical features

  • Space organization in EHPAD should provide the residents with private, intimate spaces as well as with community spaces.
  • Specific features of the accommodations should allow a customisation of individual living quarters (mobile walls, Internet connections etc.)

Organisational features

  • Security and health norms should be intelligently adapted in order to provide the residents with all necessary services and care while infringing as little as possible upon their liberty.
  • A provision of diversified services should allow the residents to be provided with any needed service (medical and non-medical).

 

Dual Policy Challenge:
Services Synergy & Balanced  Geographical Distribution

The overall financing need over the 2006-2025 period is estimated at a total between 14-29 billion €. This would represent around 1.1% of GDP in 2010, 1.2% in 2015 and 1.5% in 2025.  This financial effort is considered not to be insurmountable, on two conditions: that savings are made in other domains in order to alleviate the burden on the social security resources and that an efficient redistribution is conducted between the hospital sector and the dedicated elderly care system.

Ensuring Sufficient Care Personnel

Professional Staff

A specific effort will have to be made to make medical, paramedical and social professions in the elderly care sector more attractive than they are today and to ensure an efficient balance between childcare, hospital care and elderly care staff.

Support to Involved Relatives

Several European states provide financial and fiscal incentives to relatives who reduce their working hours or even suspend their own careers to take care of a parent. In particular, France could follow the example of the German system where the social security system comes up for the social security contributions of people who have stopped working to take care of an elderly person.

Rethinking Programming and Efficiency

Proposing diversified care services while maintaining a fair geographical and cost distribution implies two levels of action:

  • Evaluating and programming at the national level in order to take inventory of the global needs and appreciate the relative financial burdens that have to be assumed locally. The team suggests that all involved actors adopt a unified evaluation methodology, which means rethinking the whole current social aid system. The state would have to shoulder a share of necessary start-up investments to ensure that the restructuring is initiated not only in the wealthier regions but rather equitably throughout the whole territory
  • Transferring a larger share of responsibilities (if not all of them) for elderly care to the French départements (sub-regional administrative level). As local administrations, they would be in a better position to adapt the services offered to local needs and specificities. In this respect, the report team suggests that a better synergy between all types of services be organized, for instance, by allowing EHPADs to manage, through new regulatory rules, the coordination between private and public, medical, paramedical and social services.

The Follow-up

The report was made public in late June 2006 at the same time as the government’s ‘Solidarité Grand Age’ plan, which it heavily draws upon. The plan concerns the 2007-2012 period and is projected to cost the French social security system 2.7 billion €. While most of sector’s representatives have overall welcomed this plan, the related financial allocation was viewed as underestimated.

Authors: Hugo Thenint – Louis Lengrand et Associés (LL&A)                hugo@ll-a.fr
Sponsors: French minister of social security, elderly, disability and family affairs
Type: National – but includes case studies on other countries
Organizer: The Strategic Analysis Centre (former Commissariat au plan)
Duration: 2005-2006
Budget: n.a.
Time Horizon: 2025
Date of Brief: April 2008

Download: EFMN Brief No. 139_ Elderly Care in France

Sources and References

Strategic analysis centre: http://www.strategie.gouv.fr/article.php3?id_article=277
La documentation française (first report): http://www.ladocumentationfrancaise.fr/rapports-publics/054000490/index.shtml

EFP Brief No. 129: Rural Areas: One of the Most Important Challenges for Europe

Saturday, May 21st, 2011

This brief presents an overview of major trends and policy options for rural areas. A number of social, technological, economic, environmental and political trends as well as strengths, weaknesses, opportunities and threats will be highlighted, followed by ten major policy options in view of two traditional and conflicting objectives: rural socio-economic development and countryside protection.

EFMN Brief No. 129_Rural_Areas

EFP Brief No. 115: SMART Perspectives of European Materials Research

Friday, May 20th, 2011

Modern materials sciences take as their objective to develop and tailor materials with a desired set of properties suitable for a given application. Next to conventional approaches, predictive modelling and simulation is more and more used. This results into a rapidly increasing knowledge base, allowing for more precise experimental set-ups, more precise simulations and tailoring of goal-oriented materials. They play a key role in the value chain and in product innovation. Although limited profits are made from materials, materials are technology enablers for new high added value products and therefore a key in innovation acceleration. More success and increased opportunities for applications is the outcome. The SMART project aimed at providing support for future strategic decisions in this sector to foster the strengthening of the European Research Area.

EFMN Brief No. 115 – SMART materials

EFP Brief No. 113: FAZIT – The Future of ICT in Baden-Württemberg

Friday, May 20th, 2011

In FAZIT (research project for current and future-oriented information and media technology and its use in Baden-Württemberg), present and future demand and applications for innovative information, communication and media technologies are being explored. The objective is to identify key drivers for new markets and innovations in the ICT sector in Baden-Württemberg, Germany, which are important for further regional development. The different activities are intended to bring together actors in a regional innovation sys-tem, both from the ICT sector and traditional industries. A final roadmap for “new markets in the ICT sector in Baden-Württemberg” is intended to integrate the milestones, which can be strategically used by State decision-makers.

EFMN Brief No. 113 – FAZIT Baden Wuerttemberg

EFP Brief No. 111: Horizons 2020 – Mapping the Future of Society, Economy & Government

Friday, May 20th, 2011

The report “Horizon 2020 – A thought-provoking look at the future” is a dialogue invitation rather than an attempt to provide another “traditional” strategic scenario very often aiming to lay out a roadmap for a predetermined outcome. The report in question differs from this approach in three respects. First, it aims at creating a basis for dialogue with the public at large. Second, it addresses a broad range of topics covering political, social, economical, environmental and technological issues. Third, the report offers two scenarios on the basis of an expert survey.

EFMN Brief No. 111 – Horizons 2020

EFP Brief No. 102: Creative System Disruption: Towards a Research Strategy Beyond Lisbon

Friday, May 20th, 2011

Europe is currently facing the challenge of a highly dynamic and fluid policy context. It is confronted with a seemingly accelerating pace of change, both internally and externally. Internally, a culturally diverse, ageing and risk-averse population, a mix of high tech and declining industries and growing environmental and security concerns require governments to design new frameworks for re-search and innovation. Externally, this policy context is influenced by and influences the emergence of key technologies. The speed and the magnitude of their disruptive impact on the economy and society in turn depend on and are embedded in a wide range of socio-cultural factors.

This challenge calls for a substantial leap forward in thinking and mindsets, by moving from incrementally improving on business-as-usual approaches to exploring new paradigms and alternative futures. A redefinition of the “European model” is called for, capturing the minds and spirits, and bringing together the inherent collective strengths of the EU and its 27 member states. It should comprise a combination of strategic responses addressing short to medium and long-term research policy agendas. For this purpose, a Key Tech-nologies High Level Group composed of experts in 15 key technology areas, and led by a chairperson and a rapporteur, was set up by the K2 Unit of Directorate-General Research, to “assess the potential and the emerging scientific and technological research topics in fifteen specific areas, their impact on EU competitiveness and societal fabric, and the potential response of EU and its Member States”.[1]

EFMN Brief No. 102 – Creative System Disruption

EFP Brief No. 99: Luxembourg First National Technology Foresight

Friday, May 20th, 2011

In the context of the Lisbon strategy and the Barcelona targets, the Luxembourg government intends to increase the level of public spending n R&D from about 50M€ in 2005 to 220 M€ by 2009 and to concentrate the budget increase on a limited number of promising re-search areas on the basis of clearly stated strategic and operational objectives. The purpose of the first national foresight in Luxembourg, conducted in 2006-2007, was to inform policy-makers and provide direction for the definition of these national research priorities.

EFMN Brief No. 99 – Luxemburg