Posts Tagged ‘gas’

EFP Brief No. 149: EU-Africa Energy Partnership: Implications for Biofuel Use

Sunday, May 22nd, 2011

This brief intends to provide an overview of the rationale underlying the EU-Africa Energy Partnership, in addition to an analysis of the potential implications of this policy on the development of sub-Saharan African nations. It is posited that the partnership could have potentially negative repercussions if critical uncertainties are not sufficiently taken into account, and that it is in the EU’s best interest to ensure that outcomes are genuinely equitable. The research also has implications for other developing nations around the world seeking to further their economies and raise living standards by means of engaging in the global biofuels industry.

Europe, Energy Security and Biofuels

It is widely acknowledged that the energy security of the EU, as a whole, is deficient with respect to meeting future energy requirements. At the same time, the EU has resolved to de-crease its carbon footprint and wean itself off from environ-mentally damaging fossil fuels. A further concern is that even if the developed world manages to arrest the proliferation of greenhouse gas (GHG) emissions the developing world will still continue to pollute.
To address these important issues, the EU has developed the EU-Africa Energy Partnership. The rationale, broadly speak-ing, is twofold:

  • Secure the EU’s energy supply and allow its member states to meet challenging emissions reduction targets.
  • Provide sub-Saharan African economies with a further export market, in addition to allowing these nations to leapfrog to lower-emissions technologies.

Although the partnership deals with renewable energy in its broadest sense, there appears to be great emphasis on the cul-tivation of biomass used in the production of renewable fuels such as ethanol and biodiesel, for which there is increasing demand within the EU. Despite the ostensibly sound intentions of the policy, it remains to be seen whether the energy partner-ship will truly be mutually beneficial.
The aim of this brief is to examine the critical uncertainties that could potentially damage the workability and equitability of the energy partnership. A key consideration, here, is that the partnership has seemingly been formulated under ceteris pari-bus conditions. Thus, the partnership’s success is predicated on the continuation of existing trends, such as growth in bio-fuel demand and the ability to cultivate biomass at market-friendly prices in the future. Yet, the increasing complexity of technological systems, the advent and potential adoption of new technologies, in addition to climate change, means that it cannot be assumed that all things will indeed remain equal.

EU Biofuel Policy

The EU has set targets for biofuel usage within the member states. Policy measures designed to stimulate biofuel use were introduced in 1992. The overall aim has been to reduce the cost of biofuels in comparison with conventional petroleum products, which otherwise would be higher given the produc-tion costs and economic risk associated with fluctuations in oil price and the value of biomass-derived by-products (Cadenas and Cabezudo, 1998).
The EU Commission set a political target of substituting 20 percent of conventional biofuels by 2020 (European Commis-sion, 2001, p. 45). The even more ambitious COM(2006)845 proposed that biofuel targets for transport fuel should be 20 percent for the same year. The EU Biofuels Directive (2003/30/EEC) requires member states to ensure that a mini-mum proportion of fuels sold are biofuels (see Faaij, 2006). The aim is to ensure that 5.75% of conventional fuels are re-placed by biofuels, although the Biomass Action Plan (BAP) has concluded that these targets will not be reached (Commis-sion of the European Communities, 2006, p. 6).
There is thus a growing requirement for biofuel production within the EU and indeed a growing demand for biofuels (es-pecially biodiesel). Since the EU member states do not have the capacity to increase biomass cultivation without causing an increase in food prices (a politically unpalatable outcome), it has been deemed necessary to look for alternative ways to satisfy this demand.

Energy Partnership

In this context, the EU-Africa Energy Partnership emerges as an important component of the EU’s aim to increase the use of bio-fuels for transport within the member states, thereby allowing the EU to meet challenging biofuel targets, contribute to global GHG mitigation strategies (such as Kyoto), and address concerns regarding energy security. The partnership is argued to be mutually beneficial, since it will also promote economic and social improvement in sub-Saharan African countries and allow such nations to switch to more environmentally friendly patterns of energy use.
The partnership is intended to promote greater interconnectiv-ity between energy systems and ensure a diversity of energy options (Commission of the European Communities, 2006, p. 15). Although there is reference to alternative energy sources, such as hydropower (ibid.), there is clearly an emphasis on greater biomass cultivation and biofuel production, perhaps to the detriment of other energy solutions.
Energy security is obviously an important component of the partnership. Sub-Saharan Africa thus has the ability to sup-plement volatile supplies (and pricing) of OPEC oil with bio-mass cultivated in the region. Although the sub-Saharan re-gion is also clearly not especially stable, it at least has the ca-pacity to offset some of the risk associated with dealing with OPEC countries.

Production Processes

Given the current high cost of second-generation biofuel pro-duction processes (which use the whole organic matter as a feedstock), it can be assumed that the bulk of the biofuel feed-stocks grown in sub-Saharan Africa would be used in arguably inefficient first-generation production processes. Here, only the sugars and starches (rather than the whole plant) are used for ethanol production, while only the extracted vegetable oil is used in biodiesel production (Charles et al., 2007).

Critical Uncertainties

It is necessary to look at the critical uncertainties that could impact on the success of the EU-Africa Energy Partnership.

Climate Change

The energy partnership, in as much as it relates to promoting sub-Saharan Africa as a source of biofuel feedstock, assumes that current climatic conditions will prevail. Yet climate change could mean that climatic conditions in areas currently suitable for agricultural endeavour might militate against prof-itable biomass cultivation.
There are a number of critical factors associated with climate change that need to be taken into account:

  • Increased uncertainty with regard to rainfall patterns: This will problematize when to plant and place pressure on water use, with potential social repercussions.
  • Increased and more severe meteorological phenomena: Floods could wipe out entire fields; storms could damage or destroy harvests, while uncontrolled fires (resulting from co-factors of drought, thunderstorm activity or hu-man action) could do likewise.
  • Increased incidence and severity of pestilence: Changed climatic conditions could make crops more susceptible to pests, thereby increasing the need to employ pesticides (with cost penalties and potential impact on the local envi-ronment and human health).

These factors, when taken together, suggest that it will be more difficult to plan for weather-related phenomena into the future. Thus, claims of increased energy security within the EU resulting from the partnership need to be tempered with the realization that traditional agricultural techniques do not guarantee constant and predictable harvests, while climate change may exacerbate uncertainty.

Environmental Impacts

Agriculture has brought about widespread environmental deg-radation around the world. Thus, it is important to bear in mind the potentially negative impacts that intensified farming practices will have on ecosystems in sub-Saharan nations, in addition to the region as a whole.
The possible factors that could lead to negative environmental impacts are as follows:

  • Increased use of fertilizers: Run-off from fertilizers in-creases the incidence of algal bloom in aquatic environ-ments; fertilizers lead to an increased level of atmospheric N2O harmful to the ozone layer; and fertilizer production and distribution is energy inefficient and contributes to greenhouse gas proliferation.
  • Increased use of pesticides: Pesticide run-off pollutes local watercourses, results in a loss of biodiversity when food supplies for higher organisms are reduced, can flow throughout food-chains, thereby leading to chemical build-up in higher organisms, especially avian fauna; pro-duction processes and distribution incur GHG penalties, can be harmful to human life and can contaminate water supplies (of particular importance in developing nations).
  • Increased threat of deforestation: Expanding biofuel mar-kets may prompt changes in land-use, potentially leading to deforestation, entailing significant biodiversity and CO2 penalties.

These factors could be aggravated if a greater demand for bio-fuels in the EU member states is occasioned and if changing weather patterns result in a need to ‘make hay while the sun shines’. Such a demand could effectively see the EU exporting local environmental degradation from its member states to sub-Saharan Africa. Environmental degradation could also lead to opportunity costs resulting from a loss of potential eco-tourism income.

Technological Change

Biofuels, at best, will be an important component in a future energy mix. There are no indications that biofuels will ever replace petroleum-derived products on a one-for-one basis (Di Lucia and Nilsson, 2007). Biofuels enjoy a clear advantage over other potential energy solutions, especially since they take advantage of existing infrastructural systems (Foresight Vehicle, 2004). This ensures that switching costs are reduced.
On the other hand, there is the threat that biofuels will be ren-dered redundant by other technologies. There is much evi-dence throughout history to suggest that over-reliance on a single natural resource for a nation’s prosperity is not sustain-able over the long-term. For example, Chile, which prospered on the basis of its export of sodium nitrate (saltpetre), lost this advantage when scientists developed a synthetic alternative.
Some threats to the increasing importance of biofuels are as follows:

  • Increase in use of nuclear energy (and thus ‘clean’ elec-tricity).
  • Switch to cleaner second- (and third-) generation biofuel production processes.
  • Development of a hydrogen economy (predicated on the availability of clean, renewable energy, such as from the sources listed below).
  • Other energy paradigms, for instance, geothermal, hy-droelectric, photovoltaic, wind etc.

Thus, over-capitalization in biomass cultivation for first-generation production processes (in particular) may lead to un-sustainable increases in foreign debt, in addition to severe job losses and resultant social upheaval. In a worst case scenario, more efficient technologies, if they become widely adopted around the globe, could lead to the biofuel industry’s collapse.

Opportunity Costs

Even if the biofuel industry remains important, over-emphasis on biomass cultivation could result in a failure to develop in-dustries that have the potential to contribute greater value added to sub-Saharan African economies. This would espe-cially be the case if insufficient attention were paid to process-ing the feedstock in sub-Saharan Africa, as could occur in na-tions traditionally focussed on exporting natural resources.
Biomass cultivation, in the event of an ever-increasing de-mand for biofuels, would not merely translate into sub-Saharan African countries gaining an OPEC-like significance on the world stage. This is especially the case given a) the potentially wide dispersal of biomass cultivation and b) the high likelihood that biofuels would remain one of several al-ternative energy solutions. African biomass would also have to compete with that cultivated in North and South America, and also in South-East Asia and the Indian subcontinent. Given that these regions are already more highly industrialized than most sub-Saharan African nations, it is plausible that greater value added would occur in these regions.
There is also a danger that biomass cultivation in sub-Saharan Africa could engender an increased dependency on multi-national corporations involved in agribusiness. There are al-ready substantial links to agriculture in developing nations and the research-intensive products, including seeds, support sys-tems and expertise, being offered by multinational agribusi-ness entities.

Export Commodity Dependency

Sub-Saharan Africa has a long history of supplying European nations with raw materials to be used in value-adding produc-tion processes. There is thus the potential for this situation to continue if Europe resolves to view the region merely as source of inexpensive feedstock for biofuel production, rather than as a knowledge-intensive producer in its own right.
Many of the economic and social problems faced today in sub-Saharan Africa are deeply rooted in history. When the Euro-pean colonial powers partitioned Africa, they viewed the colo-nies as suppliers of raw materials for their factories. Farmland traditionally used for food cultivation, even after the inde-pendence of the former colonies, was turned over to cash crops such as cocoa, cotton, coffee and rubber. The result was that Africa exported what it did not need, and imported what it did, thereby leading to substantial trade deficits and continued indebtedness (Carmody, 1998). This is because the low price obtained for cash crops rarely if ever matches the relatively high price paid for imported food, in addition to luxury goods and hardware desired by affluent members of society.
It is important to be awake to the potential for ongoing com-modity dependence to occur, especially if the EU pays insuffi-cient attention to developing sub-Saharan Africa as an energy producer rather than merely an agricultural supplier.

Investing in Sub-Saharan Future

It is possible to formulate a number of potential policy impli-cations that would add rigour to the energy partnership.

  • Moving away from first-generation biofuels: A continued emphasis on first-generation biofuel production processes reinforces sub-Saharan Africa as a supplier of cash crops.There are inherent problems with first-generation biofuel production processes. A failure to address these and move demand towards more efficient second-generation proc-esses could lead to a global undermining of confidence in biofuels as a source of renewable energy.
  • Ensuring environmental sustainability: This is tied closely to the previous consideration, but also with the necessity of preventing local and regional environmental degrada-tion as a result of poor farming practices or indeed wide-spread change in land-use. There is a need to develop mechanisms to ensure that increasing demand for biofuels within the EU does not lead to catastrophic environmental impacts in sub-Saharan Africa.
  • Investing in sub-Saharan Africa’s future: The energy partnership should be used as a component in an overall strategy to enhance economic development in the region. A failure to do so will result in greater amounts of envi-ronmental degradation (including greenhouse gas emis-sions) over the long-term.

In short, the nations of the region need to acquire their own energy security and processing infrastructure. The EU-Africa Energy Partnership must serve as a vehicle to promote these ends. To achieve this end, sufficient political will over the long-term to propagate cleaner biofuel production processes is required. If not, the biofuels market could be irreparably com-promised and the partnership with it, with grave implications for not only the EU and sub-Saharan Africa, but also the planet as a whole.

 

Authors: Michael Charles michael.charles@scu.edu.au
Sponsors: Southern Cross University, Australia
Type: Single issue, energy policy
Organizer: n.a.
Duration: n.a.
Budget: n.a.
Time Horizon: 2018
Date of Brief: July 2008

Download: EFMN Brief No. 149_EU-Africa Energy Partnership

Sources and References

  •  Cadenas, A., and Cabezudo, S., 1998. Biofuels as sustain-able technologies: perspectives for less developed coun-tries. Technological Forecasting and Social Change 58(1–2), 83–103.
  • Carmody, P., 1998. Constructing alternatives to structural adjustment in Africa. Review of African Political Econ-omy 25(75), 25–46.
  • Charles, M.B., Ryan, R., Ryan, N., and Oloruntoba, R., 2007. Public policy and biofuels: the way forward? En-ergy Policy 35(11), 5737–5746.
  • Di Lucia, L., and Nilsson, L.J., 2007. Transport biofuels in the European Union: the state of play. Transport Policy 14(6), 533–543.
  • European Commision, 2001. Green Paper: Towards a European Strategy for Security of Supply. Directorate-General for Transport and Energy.
    http://ec.europa.eu/energy/green-paper-energy-supply/doc/green_paper_energy_supply_en.pdf
  • European Commission, 2006. Communication from the Commission: An EU strategy for Biofuels—Impact As-sessment. Commission Staff Working Document COOM (2006) 34 final.
    http://ec.europa.eu/agriculture/biomass/biofuel/sec2006_142_en.pdf
  • Faaij, A.P.C., 2006. Bio-energy in Europe: changing technology choices. Energy Policy 34(3), 322–342.
  • Foresight Vehicle, 2004. Foresight Vehicle Technology Roadmap: Technology and Research Directions for Fu-ture Road Vehicles, Version 2.0.
    http://www.foresightvehicle.org.uk/public/info_/FV/TRMV2.pdf

EFP Brief No. 140: Security of Energy Supply: A Quantitative Scenario Study on Future Energy Systems for the EU25 for 2030

Saturday, May 21st, 2011

The quantitative scenario study on the EU energy system focuses on the security of energy supply and different alternatives for the EU energy system. Five different scenarios for the EU25 energy system by 2030 were developed. The scenarios were then grouped into two main families called “advanced conventional” and “domestic action” and their respective pros and cons analysed with regard to all relevant EU-policy fields for providing policy recommendations.

The Dual Challenge of Climate Protection
and Security of Energy Supply

The EU currently faces two different challenges with regard to the future development of the EU energy system and the question of the ‘security of energy supply’. Firstly, the era of cheap and abundant conventional energy resources appears to be coming to an end. This means that maintaining reliable supply levels implies significant and timely investment in new and more expensive oil and gas production, which will put upward pressure on world market prices for oil, gas and, to a lesser extent, coal – with potential impacts for economic development and growth. Furthermore, the geographical concentration of oil and gas export potential, combined with newly emerging
large energy importing economies (i.e. China, India) can be expected to intensify international competition for market access to the declining resources and, ultimately, may also generate international conflicts.
Distinct from these issues, a second challenge has emerged. Climate change requires substantial reductions in global
greenhouse gas emissions, which essentially means using less energy and switching to carbon neutral energy carriers.
Both challenges require determined and timely action from the EU and its member states, as well as from the international community at large. A conventional, albeit advanced, “business as usual” (BAU) strategy is likely to face increasing problems when trying to adequately cope with these simultaneous challenges. In order to analyse important strategies and/or technology decisions (higher/lower nuclear share in electricity generation, increased energy efficiency and use of combined heating and power [CHP], increased use of renewable energies) and highlight
a range of possible future energy solutions for the EU25, five different scenarios have been developed according to the strategies and targets requested by the European Parliament’s Committee on Industry, Research and Energy (ITRE).

Five Options to Go Ahead

In order to draw different possible futures of the EU energy system, five scenarios based on two main sources were designed. The basic data, economic assumptions and the main results for the BAU scenario were derived from the latest available EU energy and transport projections (Decker 2006, Mantzos 2006, Mantzos & Capros 2006). Demand-side projections and analyses of higher penetrations of energy efficiency and renewable energies were derived from a recent scenario analysis by the Wuppertal Institute (Lechtenböhmer et al. 2005a/b). The quantification and combination of potentials, costs, strategies, policies and measures, and the calculation of scenarios were carried out using the Wuppertal Scenario Technique.

In the business as usual (BAU) scenario, the continuation of energy policy trends would already lead to a strong primary energy efficiency increase within the EU25. However, this increase would not be sufficient to compensate for growing GDP. As a consequence, primary energy demand would increase by almost 15% and import dependency by more than a third. Due to an increased share of renewable energy sources (RES) and a switch to natural gas, CO2 emissions would increase by only 3% to 6.6%, depending on the nuclear energy policy. With regard to climate policy, it is assumed in the BAU scenario that the EU25 will accept international emission reduction targets for the commitment periods after 2012 of 15% by 2020 and 30% by 2030.

The N+ scenario – as defined in accordance with the request by the ITRE committee – is a variant of the BAU scenario based on the expansion of nuclear energy (thus N+). While in the BAU scenario nuclear capacity declines by 28% from 141 GW (2000) to 101 GW in 2030, in the N+ scenario the construction of about ten more new nuclear power plants of 1300 MW each is assumed, which would result in a nuclear capacity of about 126 GW in 2030 – or 25% more than in the BAU scenario. CO2 emissions in power and steam generation decrease by about 6.6% vs. BAU by 2030, whereas total emissions from the EU25 decrease by 1.9%. Furthermore, this scenario also includes the use of carbon capture and storage (CCS), which can further reduce CO2 emissions, albeit fairly modestly in the case of the EU (another 6%~7% of the power sector emissions compared to BAU).

The N– scenario marks the other end of a range of possible nuclear energy BAU scenarios. Power plants are assumed to perform less well in this scenario and this, together with waste issues and a stronger perception of the risks of nuclear energy, combines to increase the pressure on plant operators. Consequently, no new nuclear power plants are commissioned and a in 2030. In total, CO2 emissions in this scenario would be at a level of 72 million tonnes, or 1.9%, more than in the BAU scenario by 2030.

Table 1: Comparison of the scenarios – results for 2030
 

 

Scenario  

CO2 emissions (% ∆

1990)

Primary energy

demand

(% ∆

1990)

Import dependency Nuclear share in electricity

generation

RES

share in

PE demand

Energy effi-

ciency

growth rate

(2000 – 2030)

BAU +4.7% +14.6% 64.8% 18.7% 12.2% 1.5%/ year
N+

(+CCS)

+3.0%

(+1.3%)

+16.4% 62.7% 23.6% 12.0%
N +6.6% +12.2% 66.5% 13.8% 12.4%
EE –18.8% – 8.2% 59.8% 15.7% 15.0% 2.2%/ year
RE – 45.1% – 20.1% 49.1% 16.4% 31.4% 2.7%/ year

Source: own calculations, Wuppertal Institute, 2006

 

The energy efficiency (EE) scenario assumes strong policy at EU level, as well as within the member states, targeted at accelerating the rate of increase of energy efficiency in order to reach a level of energy efficiency 50% higher than in the BAU scenario by 2030. This means that energy efficiency (GDP per ktoe primary energy use) would increase by 2.2% per year and reach 10.5 MEur/ktoe in 2030 (BAU: 8.5).

The renewable energy expansion (RE) scenario describes a restructuring towards a renewable energy system with a target of approaching a renewable energy supply as high as possible by 2030. To achieve such a high share of renewable energy, the scenario combines an even stronger drive towards energy efficiency (11.9 MEur/ktoe by 2030) with an accelerated expansion strategy of renewable energies, which reach a share of 31% of total primary energy supply in 2030. This strategy depends on the feasibility of the projected 34% share of fluctuating energies (wind, hydro, solar, tidal and wave) in the electricity system and on the feasibility of accelerating energy efficiency improvement to 2.7% per year.

Policy Choices

The five scenarios developed for the study have been analysed with regard to the core energy policy fields. Brief discussions on recent trends, followed by implications for policy needs with regard to the different scenarios, have been discussed for each scenario.

The energy issues considered in this report interact directly and indirectly with many European policies, in particular the climate policy, the Lisbon strategy and the external (energy markets) policy, which do not focus exclusively on energy but function as framework policies. These policy areas with wider scope can significantly influence the feasibility of potential pathways for the development of the energy system. In addition to these crosscutting policies, the following key energy policies are touched upon in the study: single European energy market, energy efficiency, renewable energies and energy technology policy.

Policies on EU External Energy Markets

The comparison of scenarios with regard to policies on EU external energy markets shows that quite different challenges lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – particular emphasis would be needed on external energy supply through the establishment of stable political relations with oil and gas producing countries and (for gas) transit countries and the mobilisation of huge investments– most of all for natural gas. In BAU/N+ the extended efforts to promote clean energy technology transfer in conjunction
with a widening use of emission trading (notably the EU’s emission trading system and clean development mechanism)
are, to some extent, favourable to global stability but, on the other hand, also need global political stability.
The energy efficiency scenario and a fortiori the renewable energy expansion scenario would significantly relieve the
pressure on external supplies to the EU due to decreased imports, while offering additional options to mitigate the worldwide depletion of fossil resources.

Single European Energy Market

In spite of the general current policy lines for the creation of the legal and technical provisions for a single European energy market, which are important in all scenarios and have still to be developed, quite different challenges would lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – current
policy trends would have to be pursued and even accelerated. Large investment would be needed for improvements of gas
and electricity networks – about € 45 bn to € 50 bn for electricity grid investment including cross-border transmission, about € 11 bn to € 14 bn for long distance gas transmission, gas storage and liquefied natural gas terminals (CESI et al. 2005) and about € 800 bn over the 25-year scenario period for huge replacements in the existing stock of condensing power plants. The energy efficiency scenario and, to an even greater extent,
the renewable energy expansion scenario would present significant new challenges regarding accelerating progress in
energy efficiency and the restructuring of the energy system towards higher shares of renewable energy sources and of
CHP in district heating and industry. Grid investments for electricity would be expected to be near the upper limit of the above-mentioned numbers, while those for natural gas would approach the lower end. Investments for new power generation would be 20% lower in the EE scenario than in the BAU scenario and 10% lower in the RE scenario. In the RE scenario the effect of much lower capacity is partly offset by higher cost per kilowatt installed. Furthermore, investment would be completely different. While even in the BAU scenario investments in new CHP and renewable capacities are projected to overtake investments in fossil and nuclear generation, the latter will stand in the EE scenario for only 20% of total investment and in the RE scenario for less than 10%.

Policy for Energy Efficiency

The comparison of the current EU policy towards energy efficiency with the three scenarios – BAU, EE and RE – shows
some crucial results. The current EU demand side energy efficiency policy would (by definition) be sufficient in many fields to realise the BAU scenario as well as the two nuclear scenarios N+/N–. However, particularly in the transport sector, in electrical appliances and in industry, further action would be needed. Further action would be necessary as well to protract these policies until 2030. On the other hand, the current political targets with
respect to energy efficiency, as set out by the Green Paper “Doing more with less” and the Energy End-Use Efficiency
Directive, would not be achieved in the BAU scenario. A much stronger policy for energy efficiency in the EU would
be needed in order to meet the energy efficiency and the renewable energy expansion scenarios. This policy would have to instigate strong and rapid action in order to implement ambitious efficiency targets close to the technical optimum, introduce further stepwise improvements in the energy efficiency of cars, appliances, buildings and businesses, strengthen technology development and provide substantial financial support and appropriate institutions. The evolution in energy market design would also affect the progress in energy efficiency and renewable
energy use by affecting end use prices, investment in new and efficient (CHP) generation capacity and the prospects for the introduction of demand side management policies.

Policy for Renewable Energies

It is assumed that the EU will pursue a very active policy to promote renewable energies in all scenarios. As the analysis of the existing policy shows, broad additional activities are indispensable even in the BAU scenario. However, in this scenario – as in all the others apart from the RE scenario – set targets will be missed and the EU would have to solve the problem of further fostering a supportive framework for renewable energies
against a background of possible disappointment. In the renewable energy expansion scenario on the other hand,
both current targets and ambitious targets for the future (20% in 2020, 35% in 2030) are achievable. However, the scenario also illustrates that these targets require a substantial restructuring of the whole energy system and economy by using the opening window of opportunity presented by the ageing energy system and its subsequent high reinvestment need. It appears that current policy for renewable energy – in spite of its impressive success – is not yet in a position to implement the changes needed for the realisation of this scenario.

Conclusion and Policy Implications

Two Ways to Go

The scenarios discussed in this report can be grouped into two main strategies.

The first type of strategy could be called “advanced conventional”. This route is described by the BAU scenario combined with the N+ scenario and specific greenhouse gas mitigation options of carbon capture and storage and, particularly, the use of clean technology transfer and other flexible mechanisms to achieve emission reductions outside the EU.

The other type of strategy, “domestic action”, relies much more on the domestic potential of renewable energy sources and energy efficiency and seems to have the capability to adequately cope with both major challenges so that the risks emanating from these are significantly lower.

Both strategies have crucial preconditions that may pose severe challenges to their feasibility. The advanced conventional strategy crucially relies on the successful implementation of an active foreign energy and technology transfer policy. Strong international competition for energy resources may become an increasing threat for this crucial foreign policy link. However, this scenario would carry less risk with respect to the management of change inside the domestic European society, since changes tend to be less radical than in alternative scenarios. The domestic action strategy, on the other hand, would swap, to some extent, the external threats from climate change and geopolitical turmoil for bigger challenges with respect to the management of the more radical changes inside the domestic European society (i.e. within the EU and its member states). More specifically, this strategy would stand or fall on the successful restructuring of the EU energy system and the bulk of all investment decisions.

Robust Strategies

In spite of the diverging, and at least partly mutually exclusive, directions in which energy policy could steer (energy) policy choices, there are a number of policy actions that would be required in any strategy and which differ only in terms of intensity. Consequently, these policy areas should be given high priority for securing energy supply regardless of the strategy prioritised.

  • The first strategy is enhancing demand side energy efficiency including cogeneration.
  • The next robust option concerns renewable energies. All the scenarios assume high increases in this area as well, particularly in wind power generation and biomass use. What is more, some policies are already partly in place and the current targets on the EU level already correspond to a very ambitious RE scenario, but need to be supported by stronger policies and expanded by 2020 and 2030.
  • In the energy market overall, and taking into account the efforts being made to enhance energy efficiency, it is also important that retail pricing of electricity appropriately reflect its scarcity and emission impacts on the wholesale market.
  • Robust steps towards a future EU external energy and climate policy include the fostering of clean development and clean technology transfer, as this will strengthen international relations, partly relieve demand pressure on energy markets, create additional or strategically needed emission credits and expand markets for renewable and efficiency technologies, which would, in turn, support the domestic development of these technologies.

 

Authors: Stefan Lechtenböhmer        stefan.lechtenboehmer@wupperinst.org

Maike Bunse           maike.bunse@wupperinst.org

Adriaan Perrels       adriaan.perrels@vatt.fi

Karin Arnold, Stephan Ramesohl, Anja Scholten, Nikolaus Supersberger

Sponsors: European Parliament, Committee on Industry, Research and Energy (ITRE), IP/A/ITRE/ST/2005-70
Type: Single issue
Organizer: Wuppertal Institute for Climate, Energy, Environment, Doeppersberg 19, 42103 Wuppertal, Germany, info@wupperinst.org; Government Institute for Economic Reasearch VATT, Arkadiankatu 7, 00101 Helsinki, Finland, webmaster@vatt.fi
Duration: 01/2006-08/2006
Budget: n.a.
Time Horizon: 2030
Date of Brief: April 2008

Download: EFMN Brief No. 140_ Security of Energy Supply

Sources and References

Cesi et al. (2005): Centro Elettrotecnico Sperimentale Italiano, Instituto de

Investigacion Tecnologica, Mercados Energeticos, Ramboll TENEnergy Invest.

Decker, M. (2006): New (2005) Energy Baseline, Presentation to National Emission Ceilings and Policy Instruments Working Group, Meeting on 1. 2. 2006.

Lechtenböhmer, et al. (2005a): Target 2020, Policies and Measures to reduce Greenhouse gas emissions in the EU, Scenario analysis on behalf of WWF-European Policy Office, Wuppertal, Brussels.

Lechtenböhmer et al. (2005b): Energy efficiency as a key element of the EU’s post-Kyoto strategy: results of an integrated scenario analysis. In: Energy savings: what works & who delivers, ECEEE 2005 Summer Study Proceedings; volume 1. Stockholm: Europ. Council for an EnergyEfficient Economy, 2005, p. 203-212.

Lechtenböhmer et al. (2006): Security of Energy Supply – The Potential and Reserves of Various Energy Sources, Technologies Furthering Self Reliance and the Impact of Policy Decisions. Study on behalf of the European Parliament. IP/ITRE/ST/2005-70.

Lechtenböhmer et al. (2007): The Blessings of Energy Efficiency in an Enhanced EU Sustainability Scenario. In: eceee 2007 Summer Study Proceedings: Saving energy – just do it! 4-9 June 2007. La Colle sur Loup, France. ISBN 978-91-633-0899-4.

Mantzos, L. (2006): PRIMES model of scenario results for the EU25, NEC-PI Meeting, July 2006, Brussels.

Mantzos, L., Capros P. (2006): European energy and Transport. Scenarios on energy efficiency and renewables, Ed.: DG TREN, Brussels.

EFP Brief No. 138: Results of Lab on ‘Old and New Energy’

Saturday, May 21st, 2011

The Club of Amsterdam set up an ‘Old and New Energy Lab’ designed to generate novel and potentially viable plans of action for dealing with energy issues by leveraging brainstorming methods to produce innovative thinking and bypass preconceived ideas and assumptions. The process tapped into the expertise of ‘thought leaders’ chosen for their diversity so as to maximise the fertility of discussions.

Lab Challenges to Think Outside the Box

Diminishing reserves of fossil fuels, climate change, geopo-litical factors and a wave of technological advances are bring-ing complex pressures to bear on the landscape of energy gen-eration and consumption. Change seems inevitable, but react-ing appropriately is a challenge. This is especially so when limited modes of supply and consumption have been en-trenched for extensive periods, as is the case with the energy landscape. This can make it very hard for people to think ‘out-side the box’ – arguably much needed at the moment.Thus the challenge addressed at ‘The Lab’ was to bypass pre-conceptions and traditional ways of thinking. Participants were called upon to brainstorm possibilities and then validate the resulting ideas with some tangible, realistic scenarios.

Conceiving Future Scenarios – the Methodology

Principal approaches employed were Socratic discourse and a future scenario method. Participants were asked to identify a set of driving ‘values’ deemed desirable (e.g. equal access to resources, freedom, quality of life, stability etc.). Socratic dis-course and other techniques were applied to open up discus-sion to the broadest possible level. The outcome was the ob-servation of numerous facts, trends, constraints etc.
The resulting ‘facts’ were then fed into an analysis based on the future scenario method. The values identified earlier were used to drive the scenarios, which were to envision a positive future ten years hence (the goal being to identify possible so-lutions).
Four scenarios were created by choosing two drivers of change: governance and economy. Note that there is nothing absolute about the choice of drivers or even the number of drivers con-sidered, but these were the ones considered most important.
These drivers define the axes of a graph depicting four different environments (symbolized by the numbered circles in the diagram)derived from the possible combinations of extreme cases of both drivers. These environments provided the basis for the scenarios.

138_bild1

Keep in mind that these scenarios are not predictions but simply tools to guide discussion from exploration to identification of potential solutions and analysis of important trends and factors (political, cultural, technological, etc.) and their interactions.

Participants

Four ‘thought leaders’ brought expertise to help keep discussion realistic, whether on technological, economic, political or social levels. Their backgrounds included

  • analysis of new technologies and their commercial and social impact;
  • understanding corruption and conflict resulting from exploitation of natural resources and international trade systems;
  • energy resource analysis and prediction in the context of the International Energy Agency;
  • nuclear policy and law.

Energy Futures – the Four Scenarios

Observations on trends and forces will be split into socioeconomic and cultural, and technological and sectoral. The four scenarios based on these trends and forces will then be outlined before looking at identified opportunities and challenges, which are in turn fed by the scenarios.

Scarcity of Supply, Potential for Conflict, and Environmental Concern – Socio-economic and Cultural Trends/Trend Breaks
  • Rising energy production costs.
  • Concern about climate change (global warming).
  • Increasing sensitivity to energy supply disruption.
  • Concerns over energy dependence and vulnerability.
  • Impending scarcity of fossil fuels with increasing demand from rapidly advancing nations such as China and India.
  • Increasing global tension relating to energy supplies and the possibility of resulting conflict.
  • Environmental concerns about nuclear energy.
  • Increasing interest in alternative energy sources.
  • Increasing interest and efforts in energy conservation.
  • Development of carbon trading schemes.
More Choices and Technological Advances –  Technological and Sectoral Trends/Trend Breaks
  • Capability (in some markets) for energy purchasers to also sell to the grid.
  • Choice (in some markets) over source of energy bought.
  • The nanotechnology ‘revolution’ impacting multiple, interacting energy-related technologies.
  • Multiple parallel and rapid advances in solar technologies promising greater efficiency and/or lower cost.
  • Advances in fuel cells (in many sectors).
  • Advances in batteries and ultracapacitors.
  • Developments in thermoelectrics offering promise for waste heat reclamation and geothermal energy.
  • Availability of smart energy-saving materials (electrochromic or anti-IR window coatings etc.).
  • Lighter/ stronger metals, ceramics and composites.
  • Efficient lighting (especially nanostructured LEDs).
  • Improvements in coal/gas/biomass-to-liquid processes, often driven by improved technology (e.g. nanocatalysis).
  • Advances in hydrogen production and storage.
  • Potential developments in artificial photosynthesis.
  • Potential for low-loss electrical transmission.
  • New CO2 separation technologies.
  • Improved nuclear fission technologies.
The Four Scenarios

Four scenarios were framed assuming environments as described in the methodology section. Remember that they are designed to be optimistic views of a situation ten years hence. Their creation allowed disparate ideas to be brought together in a framework where interactions and socio-economic and political realities could be considered.

Not all the scenarios were recorded in the same degree of detail. Different groups of participants chose different styles of presentation.

 Scenario 1 – ‘Harvesting Energy’ (emerging economy, minimal governance)

The environment envisaged was a poor, sub-Saharan country with village communities as the dominant settlement pattern, poor access to resources and minimal infrastructure. The village in this scenario was assumed to be remote but not overly far from a principal city.

The one plentiful resource is sunshine. New cheap photovoltaics and microloans allow the village to produce electricity. This gives rise to increased productivity and enables more flexibility in trading of staples such as vegetable and meat produce through refrigeration.

The small economic boost and decreasing costs of photovoltaics allow expansion of generating capacity. Direct energy sales become attractive in a future where fossil fuel is expensive and supplies unreliable and the village becomes a supplier of power from solar energy. Improved battery technologies and high fuel prices lead to more electric or hybrid vehicles. Households in and outside the village increasingly use batteries and pay for recharging.

The village has effectively shifted from subsistence agriculture to ‘farming’ sunlight, with batteries as the means of distribution.  The availability of power for transport attracts more vehicles and infrastructure improves. Then cables are laid to directly supply electricity to the nearby city. After all, the village now has the generating capacity, the expertise, and plentiful lowvalue land for expansion. Infrastructure experiences another boost, including communications. The village buys computers and the community now has Internet access. Educational opportunities increase dramatically. Over time the community becomes generally well-educated and thus capable of engaging in even more diverse and complex commercial activities.

Some time in the future (although maybe not in the ten-year frame), solar energy could be captured in a fuel created by artificial photosynthesis, allowing wider export of energy and opening up the solar farming model to more remote communities. This would require importing water (limiting displacement of battery use), but importing water is certainly preferable to importing oil in this (future) day and age.

Scenario 2 – ‘Central Energy Planning’ (emerging economy, strong central governance)

This scenario assumed a top-down, centrally-organised society with an emerging economy. China was offered as an example, on the assumption that much of the traditional communist philosophy still permeates the government, which regulates the allocation of resources. Short-term (business) thinking is constrained for the benefit of the collective when it comes to something as fundamental as national energy supply.

The immediate need for more energy to support growth is urgent. Coal is abundant and coal-fired power stations proliferate, with little thought given to environmental concerns. But this is only the first, quick fix, part of the plan, which is also influenced by oil imports for vehicles, the need to transport energy over great distances and the fact that even coal resources have limits.

Coal-to-liquid processes are used to produce clean diesel to help ease the dependence on oil imports, while a massive research effort creates low-loss electrical transmission based on high-temperature superconductors (doubly important because of the chosen alternative to coal – photovoltaics).

Huge solar ‘plains’ grow in the country’s remote, arid and impoverished west, bringing employment and commerce. Ultimately, the technology becomes simple plastic sheets that can be rolled out and clipped together. They contain nano-engineered structures that exploit the highly-efficient initial step of photosynthesis but feed the liberated electrons into the superconducting transmission lines and on to the energy-hungry coast. China soon becomes a major exporter of these technologies.

In the cities of the East, electric and hybrid cars are encouraged and manufactured. Coal is increasingly used only to produce diesel and dependence on foreign oil now rapidly disappears.

 Scenario 3 – ‘Energy Caps and Taxes’ (strong economy, strong central governance)

Sweden, which aims to become oil-free by 2021, might be an example.

A progressively increasing carbon tax is introduced for individuals and corporations. A flexible power supply network allows individuals to avoid a carbon tax by purchasing energy from sustainable sources. This encourages development of such sources – from the logging and papermaking industries using waste to produce electricity, heat and biofuels, down to individual households generating energy and selling any surplus to the grid.

Central support and legislation for energy-saving technologies in housing and transport increases their uptake through various means. The carbon tax imposes a cost on manufacturers for the lifetime emissions of their products.  The tax alone triggers substantial change, but more comes through governmentdriven, large-scale geothermal, hydroelectric and combined heat and power schemes.

 Scenario 4 – ‘Communicating Energy’ (strong economy, minimal governance, individual action)

This scenario is one of change through popular movements. Analogies might be seen in the growth in the popularity of ‘organic’ produce or that of ‘fair trade’ products, both of which evolved out of grass roots concern. For instance, we can help the environment by buying local produce rather than that shipped great distances, or eating less meat (such unlikely action probably highlights limits to this approach). Other individual contributions are switching lights off, car-pooling, capturing rainwater to water one’s garden or carbon offsetting schemes.

The key is understanding what can be done and creating a culture of willingness and responsibility. Communication is key and the Internet makes this possible as never before.

To some extent this scenario is happening now, but there are clearly limits to how much it can achieve without some topdown initiatives (or economic imperatives) added to the mix.

Top-down Action and Technological Advances are Critical for Seizing Opportunities

The fact that all but one of the scenarios could conceivably address all the main energy issues points to much opportunity. Exploiting this rapidly enough is a major challenge. Another obvious challenge is highlighted by Scenario 4, which suggests that, at least in the developed world, ‘people power’ is not enough and top-down governmental action may well be necessary. Economic and practical pressures would achieve the necessary changes eventually, but it is probably not advisable to wait for the hurricane to prove that you should not have made your house of straw. As for opportunities, the scenarios explored highlight those best. Scenario 1, ‘Harvesting Energy’,
perhaps best illustrates the dramatic achievement that might be had given only certain technological advances. Many other scenarios are possible, of course, and those developed were deliberately positive. But the consensus at The Lab was that all the scenarios were credible, so they probably do represent real opportunities.

Diverse Solutions, Proactive  Government and Advances  in Technology Are Key

In view of policy implications, the full two days of discussion and debate might be briefly summarized in the following manner.1

Oil dependence is a danger that needs addressing

Despite much disagreement about how close ‘peak oil’ is, all seemed to agree that action is needed now to reduce the developed world’s dependence on oil.

Solutions to the problems being faced will be diverse

Different environments are likely to beg different solutions and the diversity of technological developments that bear on the issues prevent simple answers and argue for multiple alternatives to be investigated.

The variation across the scenarios developed suggests that multiple approaches will be needed in parallel, covering conservation, alternative forms of generation, and storage and transmission technologies. The best solution or combination of solutions for a given region will vary with external factors (climate, population density, access to water, etc.) and with developments in numerous interacting technologies. The appropriate focus can vary dramatically depending on the existing situation. For example, a focus on coal in the short-term is sensible for China, if the aim is energy independence, while France might see nuclear in a similar light. In lower latitudes, solar energy will be more quickly economically viable than in higher latitudes, where geothermal may be a better choice. In all cases, conservation makes sense as a priority and gives the most rapid return on investment.

Given this diversity and uncertainty, it seems sensible to recommend broad investment in energy-related R&D and a systematic, inclusive, and iterative analysis of the energy situation at regional scales.

It is worth noting that only two currently achievable sources of energy are sufficient for global needs in the long-term and truly sustainable. They are solar and geothermal energy.

Areas of technological focus to be considered are just as diverse – see section 2 on technological and sectoral trends.

In the developed world government action is probably essential

The ramifications of energy supply disruption and the time needed to change our infrastructure suggest that appropriate change cannot be expected to arise from market and social forces. Accordingly, governments need to be a key player in developed countries. Proactive action from government is almost certainly necessary to avoid the risk of severe economic disruption.

Much of the rest is down to technological developments and their impacts on the economic competitiveness of certain technologies. Though solar emerged from the Lab as the winner in terms of chief long-term global energy sources, the means of capturing it, transporting it and using it produced no clear favourites. The range of possibilities from domestic to industrial to automotive applications in a diverse range of environments suggests that all avenues of research should be actively explored. Since solutions will likely be more complex than the current rather monolithic systems, flexibility, interoperability and rapid adaptability are critical success factors.

In the under-developed world, small changes or actions may have a large and lasting positive effect

When tackling the issue of poverty on a global scale, there may be a possibility of achieving much with little (Scenario 1), given certain technological shifts.

 

Authors: Paul Holister                  paul9@holisters.net
Sponsors: Club of Amsterdam
Type: Field/sector specific
Organizer: Humberto Schwab, humberto@clubofamsterdam.com, Felix Bopp, felix@clubofamsterdam.com
Duration: April 2007
Budget: n.a.
Time Horizon: 2017
Date of Brief: April 2008

Download: EFMN Brief No. 138_ Energy Lab

Sources and References

Club of Amsterdam, Lab on Old and New Energy, April 17 and 18, 2007, in Girona, Spain.

http://www.clubofamsterdam.com/content_list.asp?contentid= 655&contenttypeid=9 

The participating thought leaders were:

  • Nathalie Horbach – Centre for Energy, Petroleum and Mineral Law and Policy, University of Dundee;
  • Simon Taylor – director and co-founder, Global Witness;
  • Christof van Agt – independent participant, formerly at the International Energy Agency;
  • Paul Holister – technology impact consultant.

Humberto Schwab, director of the Club of Amsterdam and innovation philosopher, led the process.

EFP Brief No. 132: Target 2020: a Quantitative Scenario on Greenhouse Gas Emission Reductions for the EU 25

Saturday, May 21st, 2011

An integrated quantitative scenario analysis was conducted to elaborate, describe and evaluate strategies and paths for the European Union to achieve significant reductions in domestic greenhouse gas emissions by 2020. The objective of the foresight exercise was to support EU wide consensus formation, to assist in priority-setting, and to help raise awareness with regard to policy, industry or society as a whole.

How to Reach EU Targets on Green House Gas Emissions?

The EU has committed itself to limiting global warming to a maximum of 2°C average temperature increase above preindustrial temperatures (Council 2005). According to most recent research, keeping within this threshold requires that global green house gas (GHG) emissions be cut approximately in half by 2050 (Hare & Meinshausen 2004). In fact, global emissions will have to peak and decline in the next one to two decades for temperatures to stay below the 2°C threshold. This consequently indicates that industrialized countries will have to reduce their GHG emissions by approximately 60-80% by 2050 in order to leave room for legitimate economic growth and ensuing higher emissions in developing countries (European Commission 2004). In addition, some developing countries will also need to commit to taking steps toward a less carbon intensive development strategy. To achieve this challenging goal, rapid action is needed. Future commitment periods under the Kyoto Protocol with a likely time horizon of 2013 to 2017 and 2018 to 2022 will thus need to see substantial reduction targets by developed countries. This will be a precursor of further action and commitments on part of developing countries. In January 2005, the European Parliament emphasized “the necessity of significantly enhanced reduction efforts by all developed countries in the medium term to be able to meet the long-term emission reduction challenge”, which it quantified for industrial countries “of the order of 30% by 2020” and “of 60-80% by 2050”. It also called on the EU “to adopt reduction targets at the 2005 Spring European Council which are in line” with these objectives (European Parliament 2005). The European Commission in its communication ”Winning the Battle Against Global Climate Change” supported the necessity to limit temperature increases to a maximum of 2°C worldwide compared with pre-industrial levels and confirmed its will to take international leadership towards combating climate change (European Commission 2005). It also documented the relatively low economic costs to do so without even calculating the expected benefits from emissions reductions. Against this background, WWF commissioned the Wuppertal Institute to conduct an integrated scenario analysis of GHG emission reduction potentials of the EU 25 for the year 2020. For this purpose, the Wuppertal Institute developed a strategy scenario called the “policies and measures (P&M) scenario”.

This scenario relies on a baseline derived from the energy and transport projections for Europe (Mantzos et al. 2003). Its strategies and assumptions are based on evaluation and extrapolation of detailed analyses in all sectors, for many countries, and for important energy-using goods and appliances. The most relevant studies were selected for this purpose.

Integrated Scenario Analysis: Business as Usual vs. Active Energy Policy

An integrated scenario analysis of the EU 25 was carried out in order to determine whether and how a reduction of GHG emissions in the order of about 30% below 1990 levels by 2020 could be achieved. The analysis consisted of two scenarios:

The Business-as-usual (BAU) scenario assumed policies with no special emphasis on climate protection and energy issues, neither with regard to additional policies since 2003 specifically designed to meet the Kyoto Protocol targets nor to rising energy prices and increasing concern about limited resources. The BAU scenario is mainly based on the data and assumptions made in the most recent energy projections for Europe (Mantzos et al. 2003).

In the P&M scenario, existing cost-effective potential for increasing energy efficiency is exploited and ambitious targets for market penetration of renewable energies are actively pursued. In addition, a switch to less carbon-intensive fossil fuels, such as natural gas, and effective policies and measures to mitigate the exploding demand in the transport sector are assumed under the P&M scenario. The P&M scenario includes a moratorium on new nuclear power plants and compliance with the nuclear phase-out schemes in the respective countries concerned.

Quantification and combination of potential, strategies, policies and measures, and the calculation of scenarios were conducted using the Wuppertal scenario modelling approach.

  • The modelling technique uses a technology-oriented, sectoral bottom-up approach. Reflecting its relevance for GHG emissions, the energy sector is modelled in greatest detail, using appliance or end-use specific sub-models for each demand sector (households, tertiary, industry, transport) and a purpose-oriented model of the transformation sector (cp. Fischedick, Hanke and Lechtenböhmer 2002). GHG emissions in the energy sector are calculated based on the final and primary energy balance. CH4 and N2O emissions in the energy sector are calculated by subsector, using a simplified approach based on current sector-specific emission factors.
  • Other sectors and greenhouse gases are covered by specific sub-models, which are adapted to the currently limited information available for these sectors.
  • The modelling technique applies a heuristic (i.e. expertbased) approach in order to identify potential, to formulate strategies, and to estimate market penetration rates of new technologies, market shares of fuels, etc.

The Business as Usual Scenario

Although the BAU includes considerable energy-efficiency improvements in all energy-consuming sectors, increasing renewable energy shares and a decoupling of gross energy consumption growth (+0.7% p.a.) from GDP growth (+2.4% p.a.), no reduction of GHG emissions from energy use can be achieved by 2020 under BAU conditions. On the contrary, CO2 emissions from fuel combustion are expected to increase by 10% compared to 2000 levels.

These results highlight the fact that with the existing EU climate policies the Kyoto targets for the first commitment period (ranging from 2008 to 2012), which aim at a reducing emissions of six gases by 8 % compared to 1990 for the EU 15 and slightly lower reductions for the new member states, will not be met even if further greenhouse gas emission reductions in other sectors and gases are taken into account. Tougher long-term targets for the following periods up to 2020, which are crucial for mitigating climate change, seem to be even more out of reach with BAU policies.

The Policies & Measures Scenario

To explore how the BAU development could be redirected toward a more sustainable course, a sectorally disaggregated high efficiency scenario was developed for the EU 25. The P&M scenario includes policies and measures specifically geared toward enhancing emissions reductions. Supplementary to the high efficiency strategy, a renewable strategy is outlined which is based on the medium-term potential for renewable energy within the EC (European Commission 2004) and can be expected to produce substantial additional emissions reductions.

The P&M scenario describes an ambitious energy efficiency strategy, which covers all demand sectors and is projected to lead to final energy savings of about 22% versus BAU by 2020. This would mean stabilising final energy demand at about current levels.

132_bild1

 

Combined with a similar strategy to boost the use of renewable energies, their share could be increased to 21 % of total primary energy supply and about 37 % of electricity production in the EU 25 until 2020 (BAU: 7.15 % / 7.32 %).

These two effects – stabilising energy consumption through energy efficiency at all levels and maintaining domestic production by increased production of renewable energies – will not only allow to reduce domestic GHG emissions by more than 30% but at the same time will enable to bring the trend toward increasing import dependency to a halt. Domestic energy production would be able to deliver about half of European energy consumption.

132_bild2

This means that economic and ecological risk minimization can be achieved. As compared to BAU, the P&M scenario will reduce risks and potential costs of climate change as far as possible as well as other environmental damages incurred as external costs of energy supply.

Towards a Comprehensive Policy Package

In order to change the course from BAU trends, which lead to increased energy demand, greater dependency on foreign resources, and accumulating risks, towards a sustainable energy strategy, a comprehensive policy package is needed.

Combining the EU emission trading system with a comprehensive set of sector- and technology-specific policies and measures for energy end-use and supply efficiency, such as combined heat and power (CHP), and electricity generation from renewable energies has to play a leading role, as the emission trading scheme covers sectors that are expected to account for about 60 % of total emission reductions in our P&M scenario. Consequently, national caps have to be set to ensure an overall 2.8 % per year decrease in emissions. Strong policies and measures for transport, for energy efficiency, in support of thermal uses of renewable energies, CHP heating and housing renovation.

Making Active Climate  Protection Feasible

The study concludes that an integrated and active climate protection strategy for the EU is not only necessary in order to mitigate impending global climate change but is also feasible, as such a strategy would spur the EU economy to accelerate improvement of energy efficiency and to adapt power systems to renewable energy supply. Furthermore, it represents an approach suited for minimizing risks, not only of global warming but also of disruptions in energy supply and of increasing energy prices.

  • Our analyses show that there is huge and cost-effective potential for improved energy efficiency in all sectors to stabilise EU energy consumption at or below current levels (about 22 % below BAU) and that a share of more than 20 % of renewable energy supply can be achieved under an active strategy. Overall these results show that a 30 % target for 2020, as envisaged by the European Parliament on the on the 13th of January 2005 (European Parliament
    2005), is achievable when actively employing the available strategies.
  • This makes clear that the necessary reductions of greenhouse gas emissions can be achieved by exploiting the potential for cost-efficient energy savings and expanded use of renewable energy sources.
  • Another important result is that an active climate protection strategy yields further benefits in form of massively reduced risks of energy shortages and energy price peaks. It relieves the European economy from the burden of high energy costs and also reduces other environmental strains. The results show that the strategy described by the P&M scenario is superior to a “muddling through”, business as usual development with regard to quite a number of important economic and ecological variables. EU policy makers are well advised to further intensify and accelerate their efforts to speed up energy efficiency improvements in all sectors, to support further expansion of CHP, and to prioritise renewable energy sources in the necessary replacement of a large proportion of the European power plant stock.

Translating Results into Policy

The study, published in summer 2005, was probably the first to draw a complete, though rough, scenario for the EU 25 in line with the target indicated by the European Parliament: a domestic reduction of GHG emissions by more than 30 % by 2020. In the P&M scenario, the study briefly sketched the general feasibility, the sectoral distribution, as well as the technology and the policy requirements for achieving more than 20% final energy savings versus BAU and expanding renewable energies to deliver more than 20% of EU primary energy supply.

In so doing, the study already anticipated the key targets of the “triple 20” climate policy package adopted by the EU Spring Council in 2007. Moreover, it also gives evidence for the fact that energy savings of 20% compared to BAU and a share of 20% renewable energies have the potential to reduce EU 25 GHG emissions by about 30%, which is substantially more than the 20% the EU has so far decided upon.

Authors: Stefan Lechtenböhmer stefan.lechtenboehmer@wupperinst.org
Sponsors: WWF European Policy Offices, Brussels WWF Germany, Berlin
Type: Single issue
Organizer: Wuppertal Institute for Climate Energy Environment, Doeppersberg 19, D-42103 Wuppertal, Germany; info@www.wupperinst.org
Duration: 2004-2005
Budget: n.a.
Time Horizon: 2020
Date of Brief: February 2008

Sources and References

Council of the European Union (2005): European Council Brussels, 22 and 23 March 2005, Presidency Conclusions, 7619/05. Brussels: European Union.

http://ue.eu.int/ueDocs/cms_Data/docs/pressData/en/ec/84 335.pdf.

European Commission (2004): Action on Climate Change Post 2012: A Stakeholder Consultation on the EU’s Contribution to Shaping the Future Global Climate Change Regime, available at:

http://europa.eu.int/comm/environment/climat/future_acti on.htm.

European Commission (2005): Winning the Battle Against Global Climate Change. Communication from the Commission to the Council, the European Parliament etc. Brussels.

European Parliament (2005): European Parliament resolution on the outcome of the Buenos Aires Conference on Climate Change, P6_TA-PROV(2005)005.

Fischedick, M., Hanke, T. & Lechtenböhmer, S. (2002): Wuppertal Modellinstrumentarium, in: Forum für Energiemodelle und Energiewirtschaftliche Systemanalysen in Deutschland (Hrsg.): Energiemodelle zum Kernenergieausstieg in Deutschland, Heidelberg, p. 348 – 377.

Hare, B. & Meinshausen, M. (2004): How much warming are we committed to and how much can be avoided?, submitted to EU’s stakeholder consultation on Action on Climate Change Post 2012.

Lechtenböhmer, S., Grimm, V., Mitze, D., Wissner, M. (2005a), Energy efficiency as a key element of the EU’s post-Kyoto strategy: results of an integrated scenario analysis. In: Energy savings: what works & who delivers, ECEEE 2005 Summer Study Proceedings; volume 1. Stockholm: Europ. Council for an Energy-Efficient Economy, 2005, p. 203-212.

Lechtenböhmer, S., Grimm, V., Mitze, D., Thomas, S., Wissner, M. (2005b) Target 2020, Policies and Measures to reduce Greenhouse gas emissions in the EU, Scenario analysis on behalf of WWF-European Policy Office, Wuppertal, Brussels, 90p.

Mantzos, L. et al. (2003): European energy and transport trends to 2030, published by DG TREN, Brussels.

Download: EFMN Brief No. 132_Target_2020

EFP Brief No. 116: Regional Infrastructure Foresight

Friday, May 20th, 2011

“Regional Infrastructure Foresight” enables municipalities, engineers and decision makers in regional sanitation systems to develop a middle- to long-term strategy for a sustainable sanitation infrastructure. Identification of uncertainties and future challenges of the regional infrastructure’s context is carried out in a participatory scenario process. A broad range of possible integrated solutions for the sanitation system is evaluated from different stakeholders’ views. This approach allows handling of uncertainties of frameworks and of complexity of the system to find more adaptive system configurations for a sustainable sanitation system.

EFMN Brief No. 116 – RIF

EFP Brief No. 115: SMART Perspectives of European Materials Research

Friday, May 20th, 2011

Modern materials sciences take as their objective to develop and tailor materials with a desired set of properties suitable for a given application. Next to conventional approaches, predictive modelling and simulation is more and more used. This results into a rapidly increasing knowledge base, allowing for more precise experimental set-ups, more precise simulations and tailoring of goal-oriented materials. They play a key role in the value chain and in product innovation. Although limited profits are made from materials, materials are technology enablers for new high added value products and therefore a key in innovation acceleration. More success and increased opportunities for applications is the outcome. The SMART project aimed at providing support for future strategic decisions in this sector to foster the strengthening of the European Research Area.

EFMN Brief No. 115 – SMART materials

EFP Brief No. 112: Démarche Prospective Transport 2050 – For a Better French Transport Policy

Friday, May 20th, 2011

This foresight initiative intends to initiate the elaboration of a long-term strategic plan for French Transport policy. The exercise uses a French methodological approach to carry out retrospective analysis of historical trends and build quantitative scenarios. It provides general insights on transportation flows and opens public debate on public policies designed to prepare for the “post-oil” era and cre-ate impulses for a serious effort to reduce greenhouse emissions.

EFMN Brief No. 112 – Transport France 2050

EFP Brief No. 109: Norway’s OG21 – Oil and Gas in the 21st Century

Friday, May 20th, 2011

The objective of the Norwegian foresight process “Oil and Gas in the 21st Century” was to assess the possibilities for a sustainable petroleum industry for the next 100 years through joint efforts concentrating on knowledge and technology.

EFMN Brief No. 109 – Norway OG21

EFP Brief No. 108: The Future of the Dutch Natural and Built Environment

Friday, May 20th, 2011

The purpose of this scenario exercise is to support the Dutch national government in the development of policies on spatial planning, natural resources, and quality of the physical environment. By exploring how various aspects of the living environment and land use in the Netherlands may develop in the long run (2040), the study aims to show when and where current policy objectives may come under pressure and which new issues may emerge.

EFMN Brief No. 108 – Dutch Environment

EFP Brief No. 105: Future Fuel Technology for APEC Regions

Friday, May 20th, 2011

The main aspiration was to gain strategic intelligence on future fuel technologies going beyond the current status and trends of present day energy technology and to draw roadmaps of selected future fuel technologies leading to robust plans for the future of technologies in the APEC region up to 2030. Moreover, the co-organizers of the project also anticipated continuous activities referred to as “post foresight” within APEC economies and among fuel technologies experts both during and after the project.

EFMN Brief No. 105 – APEC