Posts Tagged ‘follow-up brief’

EFP Brief No. 247: Delphi-based Foresight for a Strategic Research Agenda on the Future of European Manufacturing

Tuesday, January 29th, 2013

This follow-up brief recapitulates the foresight exercise of the “Manufacturing Visions – Integrating Diverse Perspectives into Pan-European Foresight (ManVis)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned. We ask what the mid-term and long-term implications of this foresight exercise are, specifically how effectively the Delphi method was deployed to examine a wide spectrum of aspects underpinning the future trajectory of European manufacturing with a particular emphasis on the elaboration of scenarios that provide a broad basis for public discussion on the future of European manufacturing. This follow-up brief draws particularly on the lessons learnt from the organisers’ perspective.

Creating a Vision of the Future of European Manufacturing

The central purpose of the ManVis project was to inform a continuous process of policy development to enhance the competitiveness of the European manufacturing industries through a structured foresight exercise. In particular, the ManVis project was expected to contribute to completing the picture of the socio-economic dimensions that shape the technology dynamics in European manufacturing industries.

The policy relevance of the ManVis project was essentially linked to its role as one of the central strategic foresight studies in which the preparation of a more detailed Strategic Research Agenda (SRA), aimed at paving the way for the definition of research priorities to be implemented via the EU’s future RTD Framework Programmes, was anchored. The ManVis foresight was launched in response and complementary to the results obtained from previous foresight exercises and empirical surveys indicating that manufacturing in Europe needed to strengthen its innovation capacity in an environment where manufacturing is increasingly being relocated to locations outside Europe. Together with the FuTMaN (“Future of Manufacturing in Europe 2015-2020 – The Challenge for Sustainable Development”) project, the ManVis project was a central pillar of the Manufuture European Technology Platform, composed of high-ranking representatives of European industry and the scientific community, that was initiated in December 2004 with the explicit purpose of elaborating specific technology roadmaps, both horizontal and sectoral, to define the priorities for the first calls for proposals of EU’s Sixth Framework Programme (FP6).

In sum, the ManVis project addressed the following questions:

(a) Which technologies will be relevant to European manufacturing?

(b) What role will European manufacturing play in a more competitive world?

(c) Is European manufacturing prepared to meet the challenges of knowledge-based manufacturing?

(d) Which visions and challenges emerge for European manufacturing?

The ManVis Foresight Approach:
Delphi and Demand-side Scenarios

Delphi is a long-established methodology to create consensus among a wide range of opinions as a basis for developing an informed view on visions and alternatives in the setting of priorities in controversial or complex fields of science and technology policy. The ManVis Delphi survey collected the views of more than 3,000 manufacturing experts in 22 European countries as well as those of stakeholders and overseas experts that were collected during workshops and through interviews.

The Delphi survey covered developments of all relevant aspects of manufacturing from technological dynamics to organisational concerns and issues related to sector-specific developments. In parallel to the survey, scenarios on the future development of the demand side of manufacturing were elaborated.

Flexible Automation Instead of Unmanned Factory

The following key messages on technological dynamics in European manufacturing were derived from the ManVis Delphi survey:

(a) Micro-electromechanical devices, smart materials and products using nano-coatings represent long-term developments of new types of products with the potential to disrupt markets.

(b) New manufacturing technology principles, such as bottom-up manufacturing technologies are only expected in the long run. Manufacturing technologies using biotechnologies to create and manipulate inorganic material and products, such as nano-manufacturing, should be on the long-term “radar” of RTD policy.

(c) Micro-electromechanical systems (MEMS) as well as flexible organisation and automation strategies combined in reconfigurable manufacturing systems supporting flexible business strategies are important topics on the short-term research agenda. However, as a particular aspect, the experts surveyed viewed the unmanned factory with skepticism. Instead, they forecast that humans working with flexible automation solutions will play an important role in creating flexibility.

(d) Only long-term automation visions comprise human-machine interfaces such as man-machine speech recognition, self-learning systems and co-bots.

From these key messages the following implications were derived for the role of manufacturing research in combining the long-term horizon in technology trajectories with the short-term needs of firms to innovate successfully: Basic manufacturing research needs to prepare for new challenges, whereas applied manufacturing research should focus on the adaptation and transformation of existing technologies and organisational processes. Considering the functions of manufacturing research, it has been suggested that these key messages on future technology dynamics be discussed using the concept of the combined science-technology cycle of innovation (see Figure 1).
bild1

Figure 1: Manufacturing-related technologies on the sci-ence-technology cycle for macro innovations (Source: ManVis Report No. 3, Delphi interpretation report)

Integrating Non-technological Aspects

The ManVis Delphi survey covered many aspects of knowledge-based manufacturing related to the working environment. In particular, organisational concerns as they are linked to new challenges of product development were examined. In one of the interviews conducted for this follow-up, however, one of the organisers of the foresight process highlighted that – although the ManVis project was considered a “creative pool” for the construction of the Manufuture platform – contributors to the platform were skeptical concerning several of the organisational challenges. This was explained by a lack of interest in issues of work organisation at the company level, in particular on part of the predominantly larger industrial firms represented on the platform (SMEs were not represented). In addition, the organisers stated that the ManVis foresight contributed greatly to the integration of non-technological aspects in the debate on the future drivers shaping technological dynamics and on the demand for skills and competencies.

Furthermore, the interviewee argued that the Delphi results had the intended wide-ranging impact because the survey did not focus on sector issues alone. Although this impact was important in consolidating the field of manufacturing research, the foresight results were not followed up by more in-depth indicator-based (e.g. patents) research with a greater focus on sectoral issues. This was, however, not considered a methodological constraint but rather a weakness in following up on the Delphi results.

In addition, the organisers mentioned two methodological aspects as particularly important in shaping the results of the Delphi survey:

(a) The organisers’ interventions during several workshops at the national level, held to prepare the Delphi survey, played a central role in condensing the themes and elaborating the Delphi statements. As in any Delphi survey, the heterogeneity of the participants assured the validity of the results. In particular, the responses to the survey highlighted the facilitator’s role in coordinating the pool of heterogeneous expertise coming from a great diversity of technological and non-technological fields during the initial workshop, at which a list of 100 statements on a wide range of manufacturing topics was generated, as very important for the final outcome of the Delphi process.

(b) With regard to the stability of the responses to obtain a consensus among the participating experts, the summary feedback of aggregated responses of the second round did not generate any significant new changes. Under efficiency considerations, it could therefore be argued that the survey administration could have used statistical methods to analyse the data from the first round to assess whether any subsequent rounds were needed and, if not, terminate data collection after the first round.

Direct and Indirect Achievements of the ManVis Foresight

The ManVis Delphi survey results provided a broad basis for public discussion on the future of manufacturing in Europe. In particular, by complementing previous foresight studies intended to improve the self-understanding of the European manufacturing industry, it constituted an important pillar in the development of a strategic manufacturing research agenda at the European level. Several of the issues that were highlighted by ManVis, such as the need to explore the implications of user-driven innovation for manufacturing systems, were taken up in FP6.

Beyond its intended effects, the ManVis foresight also had some important unintended effects such as making a central contribution to the definition of research needs of the new member states that joined the European Union during the 2004 enlargement. Another central achievement of the ManVis foresight process was also an unintended side effect, namely to involve these new member states in the development of a Strategic Research Agenda on manufacturing in Europe.

Effective Dissemination of the Results under Budget Constraints

Since the financial budget for dissemination activities was cut significantly during the negotiation phase with the European Commission, the ManVis dissemination approach was under strain from the beginning of the project. Nevertheless, the project reported the results of the foresight to a wide audience of industry and governmental stakeholders at the Bled Conference in October 2005. This conference, which would not have been realised without the national resources of the Slovenian ManVis partner, provided a strong signal of interest in and relevance of identifying the manufacturing research needs in the new eastern member states.

Reaching the Policy Level

The ManVis key messages have been disseminated at the policy level to a wide set of stakeholders and actors of the European Commission, the member states, and industry. During the interviews for this follow-up brief, the communication with European policymakers was described as very good and the interaction with the EC as very supportive, in particular with regard to the central goal of feeding the results of the foresight exercise into key European initiatives such as the Manufuture European Technology Platform.

In sum, the outcomes of the Manvis project served to bring manufacturing experts with different national and professional backgrounds together to discuss the visions and the possible paths for securing the future of manufacturing in Europe. The results of the ManVis project have been fed into the EU’s Seventh Framework Programme.

Learning about the Manufacturing Research Needs of the New Member States

It was reported during one interview with the organisers of the foresight that a central achievement of the ManVis project was to involve the new member states in the development of a Strategic Manufacturing Research Agenda at this particular time. While the EC only had partial knowledge about key institutions and actors shaping policy development processes in areas related to manufacturing, it was an important indirect achievement of the ManVis foresight initiative to involve many experts and policy stakeholders from the new member states in defining and assessing the manufacturing research needs at the European level. In this sense, the networking effect, particularly during the Delphi preparation workshops, was highly appreciated by European policy stakeholders because they provided a unique opportunity to get acquainted and build strong relationships with key experts from these countries and to use the foresight initiative to define priorities for the first calls for proposals for the upcoming Seventh Framework Programme.

In this sense, the direct involvement of the new member states in the definition of research topics to be supported was stated as one of the most important, yet unplanned and indirect, contributions of the ManVis foresight process. The research topics thus identified are considered to have real industrial relevance and the potential to produce measurable impacts in terms of marketable products and services or more efficient manufacturing methods in the context of the catch-up process that these countries are undergoing.

Contributions to EU Enlargement

The ManVis foresight process made an important contribution to completing the picture of technology dynamics in manufacturing. At the particular time of realisation, i.e. in the aftermath of the 2004 EU enlargement, the Delphi survey not only set out several possible trajectories for developments of future manufacturing processes and policy scenarios, but it also helped to define the R&D position of 22 EU countries. In the context of the shifting comparative advantages due to the salary increases to be expected particularly in the new member states, the ManVis foresight provided an important platform to learn about manufacturing research priority topics and the adaptations needed at the level of companies and innovation systems. Beyond the identification of research needs, a concrete achievement of the ManVis foresight lies in the strong integration of key stakeholders from both public policy and industry of the new member states in the long-term planning of European research funding for manufacturing.

Authors: Dirk Johann             dirk.johann.fl@ait.ac.at

Elisabetta Marinelli   elisabetta.marinelli@ec.europa.eu

Sponsors: European Commission (Directorate General Research)
Type: International foresight activity (Specific Support Action) covering the enlarged European Union, focusing on the thematic area of manufacturing
Geographic coverage: Europe
Organizer: Fraunhofer ISI Karlsruhe, OPTI,  JRC-IPTS, Cambridge University, IVF Sweden and national correspondents in 22 European countries
Duration: 2003 – 2006
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: July 2012

Download EPF Brief No. 247_ManVis_Follow-up

Sources and References

Dreher, C. et al. (2005), ManVis Report No. 3 – Delphi Interpretation Report, Deliverable D15, Contract No. NMP2-CT-2003-507139-MANVIS

Dreher, C. et al. (2005), ManVis Report No. 6 – Manufacturing Visions – Policy Summary and Recommendations, Deliverable D17, Contract No NMP2-CT-2003-507139-MANVIS

European Commission (2006), Manufuture Strategic Research Agenda – Assuring the Future of Manufacturing in Europe – Report of the High-level Group, European Commission, Directorate-General for Research: Brussels

Jung-Erceg, P. K. Pandza, H. Armbruster, C. Dreher (2007), “Absorptive Capacity in European Manufacturing: A Delphi Study”, Industrial Management & Data Systems, Vol. 107, 1, 37-51

Link to the original Foresight Brief No. 53 “European Manufacturing Visions – ManVis 2020”: http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-53-European-Manufacturing-Visions-ManVis-2020.pdf

EFP Brief No. 240: BMBF Foresight

Friday, December 21st, 2012

The aim of the BMBF Foresight process that ran from 2007-2009 was to identify long-term priorities for German research and innovation policy with an emphasis on crosscutting systemic perspectives. The foresight process was meant to complement the German High-Tech Strategy, which had defined mission-oriented priority fields with a medium-term horizon. After the finalisation of the foresight process in 2009, an implementation phase with several interacting activities was launched in order to feed the results into other strategic processes. As a next step, BMBF set up an embedded, continuously learning foresight system with dedicated phases that will be repeated by all subsequent processes. Within this framework, the second foresight cycle was launched in early 2012.

Complementing the High-Tech Strategy

Before the first cycle of BMBF Foresight started in 2007, the German High-Tech Strategy (BMBF 2012a) had established a number of priority fields for research and innovation policy with a time horizon of 5-10 years. The foresight process was launched by the BMBF strategy department with the following main objectives:

· complement the High-Tech Strategy with a longer-term perspective on emerging technologies and potential priorities,

· identify emerging issues across established research and innovation fields,

· explore in which areas strategic partnerships might be required.

At this point in time, BMBF had not carried out any overarching foresight process since the FUTUR process (Giesecke 2005), which had been finalised in 2005. As some actors within BMBF had a rather critical view of FUTUR, an important additional objective of the new foresight process was to (re-)establish trust and confidence in foresight within the ministry. Accordingly, high emphasis was placed on communication within the ministry and early-on involvement of all BMBF departments that were potentially affected by the foresight outcomes. The foresight process was accompanied by a process and impact evaluation carried out by the Institut für Technologie und Arbeit (ITA).

Adopting a Technology Push Approach

As described in detail by Kerstin Cuhls in the preceding brief No.174 and in recent publications (Cuhls et al. 2009a), the methodology of the foresight process combined several elements. The most prominent approaches were

· environmental scanning including a literature survey and bibliometric analysis and

· expert interaction through interviews, workshops and a national online survey.

In parallel, a monitoring panel composed of international top experts was interviewed twice in the course of the process.

As requested by the ministry, the foresight process adopted a ‘technology push’ approach. In the first phase in particular, the process concentrated on identifying emerging technologies with long-term relevance to the German economy and society within the established realms of research and innovation. The criteria to assess ‘relevance’ were established in interaction with the ministry.

In the second phase, the emphasis of the foresight process was placed on a second set of objectives: the identification of key issues emerging across these established technology fields. For this purpose, the results emerging from the technology push analysis were systematically reviewed and mirrored against major societal challenges such as sustainability and health. In this way, the seven ‘new future fields’ were developed as described in the previous brief. These fields are characterised by a highly dynamic development at the interface of emerging solutions and societal demand.

Sharpening the Research Dimensions

Participants

In line with the science and technology push orientation of the foresight process, the participants were mainly research and technology experts, however, from diverse organisational and professional backgrounds. Along with the numerous national experts, ca. 20 highly renowned international experts from the key science and technology fields under investigation were involved through the international monitoring panel. In one of the conferences that focused on innovation policy instruments, practitioners and researchers in the realm of innovation policy were gathered. In the final phase, when developing the ‘new future fields’, more and more social scientists were involved. So, for instance, in the case of ‘humantechnology interaction’, a workshop with philosophers and sociologists, on the one hand, and engineers and programmers, on the other, was carried out to sharpen the research dimensions (Beckert et al. 2011). Finally, there was intense interaction with actors from various BMBF
departments particularly in the later phases of the process in order to validate and enrich the foresight findings.

Intended Users

The first cycle of the BMBF Foresight process addressed two main user groups. First of all, the process sought to maximise its usefulness to the various departments within BMBF that are responsible for steering the BMBF support to research and innovation in their respective domains. The main benefits envisaged for the departments were the possibility to mirror their own perceptions against the foresight findings, gain an overview of each other’s activities, develop overarching perspectives, and identify potential linkages and possible blind spots. Secondly, the foresight was meant to serve the wider innovation system by providing long-term anticipatory intelligence for orienting strategy building within and among diverse organisations.

Crosscutting New Future Fields

The tangible output of the foresight process consisted of two core reports (Cuhls et al. 2009b and c). One report listed the selected themes with high long-term relevance in fourteen established research and innovation fields. The other report spelled out the seven crosscutting ‘new future fields’ and provided an analysis of key actors in the German innovation system as well as recommendations for policy action within these fields.

Dissemination

The reports were first disseminated within the BMBF and later widely throughout the innovation system starting with a large public conference. Within the ministry, the uptake of the findings was actively supported through dedicated workshops where the project team members presented the findings and discussed the implications with the departments.

Implementing Strategic Dialogues

In order to further facilitate the uptake, two follow-up projects were launched: The first was the ‘strategic dialogues’ where innovation system actors who had been identified in the foresight report jointly discussed options for implementing the findings. In one case (Production-Consumption 2.0), several other ministries, such as the ones dealing with the environment or food and agriculture, were involved in this debate. In a one-day workshop with more than 30 participants, diverse stakeholders debated the transdisciplinary research around the transition towards sustainable production and consumption that had been proposed by the foresight process. Secondly, the ‘monitoring system’ was set up in order to keep track of the evolution of the new future fields and inform the ministry in case further action was needed.

Direct Impact

Within the ministry, the uptake of the foresight results differed according to the type of outcome. In case of the future topics in the established fields, there was initial reluctance within the ministry’s departments as these findings seemed to trespass on their own domains of activity. In several cases, however, the departments perceived the availability of findings from an independent process as a mirror for their own strategic thinking as useful. Several of the topics proposed by the foresight
process were taken up by subsequent BMBF funding initiatives.

In the case of the ‘new future fields’, there was a general appreciation of the ‘bird’s eye view’ across established domains of ministerial activity that the process provided. Several attempts were made to take up the proposed perspectives. As the new fields did not match the existing organisational structures of BMBF, the implementation was not straightforward. This, however, was seen as an asset rather than a problem by the strategic department as the crosscutting perspectives were viewed as long-term guidance for strategic thinking within the ministry rather than an agenda for immediate implementation.

In case of the future field ‘human-machine cooperation’, a new department was created in order to pursue the transdisciplinary perspective proposed by the foresight process. For ‘ProductionConsumption 2.0’, a few smaller seed projects were launched to explore some of the core issues. In both cases, several aspects inspired the BMBF programmes in domains such as production,
environment, security and ICT. Finally, several of the core findings of the foresight process were fed into the strategic debate around the renewal of the High-Tech Strategy, which was taking place in parallel.

In addition, several of the foresight’s suggestions entered the strategic debates in the wider German innovation system. The project team received numerous requests from the governments of the Länder (German states), research institutes and companies to discuss the implications of the ‘new future fields’ on their own strategies.

At the European level, the ‘new future fields’ were recognised with interest as well. At the time, the European Union was seeking to orient its research and innovation activities towards the grand challenges of our time in a systemic manner. In a special event that was organised by the Social Sciences and Humanities (SSH) foresight group, findings from several foresight processes that sought to connect key technologies and grand challenges in a systemic manner were reviewed, among them the German case (EC 2011). In the context of an EU expert group on the future of Europe 2030/2050, suggestions for such systemic priorities from several countries were compared (Warnke 2012). The review revealed that the German ‘new future fields’ were among the most far-reaching suggestions for integrating technological and societal dynamics into systemic ‘transformative priorities’. At the same time, it was noted that exercises in other countries, such as the ‘Netherlands Horizon
Scan’, had defined some areas that were well in line with some of the ‘new future fields’, such as sustainable living spaces and human-technology cooperation. Nevertheless, the analysis suggested that there are no ‘onesize-fits-all’ systemic priorities as each cultural contextrequires its own specific framing of the issues at stake.

Furthermore, the foresight process attracted considerable international attention, partly due to the fact that there had been substantial involvement of international experts through the monitoring panel and two conferences with international participation. After the process was finished, several countries around the world expressed their interest in both content and methodology.

Finally, within the academic community concerned with the governance of research and innovation and forward-looking activities, the German foresight experience was widely published and presented. In particular, the challenge of generating truly systemic sociotechnical perspectives and feeding such perspectives into governance structures, which are organised according
to their own rationale, created wide interest and debate (cf. e.g. Warnke 2010).

Indirect Impact

As outlined above, paving the ground for embedding foresight into BMBF strategy building was an important objective of the process. The evaluation report confirmed the substantial progress made in this respect. Several actors in the ministry felt that they had benefitted from the foresight process and expressed their renewed openness and positive attitude towards foresight approaches.

Follow-up: Embedding Foresight

As a consequence of the perceived success of the first foresight process and in following up on the recommendations of the evaluation team, the ministry decided to establish foresight within the ministry as a continuous anticipatory learning process.
For this purpose, a ‘foresight system’ was designed and implemented (BMBF 2012 c). This system cyclically evolves through the following phases: scanning, analysis, implementation and preparation of the next cycle. The previous foresight process was considered a pilot for the first cycle.

Furthermore, it was decided that the second cycle should focus on the demand side of research and innovation and therefore primarily explore relevant societal changes that could then be linked to the technological trajectories suggested by the first cycle.

Based on this framework, a call for proposals for the second foresight cycle was launched. A consortium of the VDI Technologiezentrum and Fraunhofer ISI was selected to carry out the project, which started in May 2012 with a new ‘search phase’. Again, the project is being accompanied by an evaluation process conducted by ITA to keep track of lessons learned and to optimise the communication processes. This time, a board comprised of actors from key organisations of the German
innovation system has been set up to accompany the foresight process. From the beginning, the approach and findings are discussed with the BMBF departments on a regular basis. A separate EFP brief will be issued in order to describe this new process in detail.

Download EFP Brief No. 240_BMBF Foresight.

Sources and References

Beckert, Bernd; Gransche, Bruno; Warnke, Philine and Blümel, Clemens (2011): Mensch-Technik-Grenzverschiebung Perspektiven für ein neues Forschungsfeld. Ergebnisse des Workshops am 27. Mai 2009 in Karlsruhe im Rahmen des BMBF-Foresight Prozesses ISI-Schriftenreihe Innovationspotenziale. Karlsruhe

BMBF (2012a) http://www.hightech-strategie.de/en/350.php (accessed 15 November 2012)

BMBF (2012b) http://www.bmbf.de/en/18384.php (Foresight Cycle 1) (accessed 15 November 2012)

BMBF (2012c) http://www.bmbf.de/en/18378.php (Foresight System) (accessed 15 November 2012)

BMBF (2012d) http://www.bmbf.de/en/18380.php (Foresight Cycle 2) (accessed 15 November 2012)

Cuhls, Kerstin; Beyer-Kutzner, Amina; Bode, Otto; Ganz, Walter and Warnke, Philine (2009a): The BMBF Foresight Process, in Technological Forecasting and Social Change, 76, p. 1187–1197

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009b): Foresight-Prozess im Auftrag des BMBF. Zukunftsfelder neuen Zuschnitts, IRB Verlag, Karlsruhe/ Stuttgart. http://www.bmbf.de/en/18384.php

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009c): Foresight-Prozess im Auftrag des BMBF. Etablierte Zukunftsfelder und ihre Zukunftsthemen, IRB Verlag, Karlsruhe/ Stuttgart.

European Commission (2011): EUR 24796–European forward-looking activities: Building the future of ‘Innovation Union’ and ERA. Luxembourg: Publications Office of the European Union http://ec.europa.eu/research/socialsciences/books50_en.html

Giesecke, Susanne (2005) Futur – The German Research Dialogue. EFMN Foresight Brief No. 1.

Warnke, Philine (2012): EFP Brief No. 211: Towards Transformative Innovation Priorities, http://www.foresightplatform.eu/wp-content/uploads/2012/04/EFP-Brief-No.-211_Towards-Transformative-Innovation-Priorities.pdf (accessed 15 November 2012)

Warnke, Philine (2010): Foresight as tentative governance instrument-evidence from Germany. In: International Conference ‘Tentative Governance in Emerging Science and Technology – Actor Constellations, Institutional Arrangements & Strategies’, 28/29 October 2010, Conference Booklet, p. 113.

EFP Brief No. 236: Assessing Dutch Defence Needs Follow-up

Friday, December 21st, 2012

Under the influence of (inter)national technological, political and economic developments, the Dutch defence industry is increasingly intertwined with and developing towards a civilian industry. Consequently, the political responsibilities, atti-tudes and criteria are changing for both the Ministry of Defence and the Ministry of Economic Affairs. An analysis of the Dutch defence industry helped to determine the main opportunities for innovation in the industry and to identify the com-plementary technological competences needed to make the most of them. A strategic vision, including options for innova-tion policy, was developed as well. In this follow-up brief, we reiterate the background, approach and results of the initial foresight study and describe its impact in the years to follow.

Transition of Defence

Historically, “defence” supports national strategy, in which nations have built their own forces, defence industry and knowledge infrastructure. Consequently, within nations there arose a demand driven chain with a solid and confidential relationship between the parties in a closed chain, also discerning the industry from ‘civil’ industries. However, technological, political and economic developments in the last twenty years are changing defence radically. Issues such as the end of the Cold War, decreasing budgets, international cooperation, international organization of forces, industries and knowledge infrastructure, growing use of civil technologies, civil industries and civil markets, ‘the war on terrorism’, and homeland defence have entered the stage. Consequently, the political responsibilities, attitudes and measurements are changing for both the Ministry of Defence and the Ministry of Economic Affairs, while the defence industry and knowledge infrastructure is increasingly intertwined and developing towards a civil industry and knowledge infrastructure. This critical transition of the defence chain demands timely strategic information and a vision to anticipate effectively. For ministries this means a clear view on responsibilities, effective investment strategies for a capable future force and an effective industry and innovation policy. The defence industry increasingly has to deter-mine their most favourable innovative possibilities.

Developing a New Strategic Vision

As a result, the ministries wanted to assess four is-sues/developments and formed working groups to prepare the strategy. Four groups were formed to

– Inventory the relevant international developments,

– determine success factors of international cooperation in procurement,

– determine priority technological areas for the defence industry which are for interest for the domestic market, and

– policy instruments to strengthen the strategic vision.

The third question concerning the identification of priority technological areas was the core issue in this project and divided into four sub questions:

  1. What are the current strengths of the Dutch defence industry?
  2. What are international opportunities for innovation in the defence market?

Structural Approach Based on Clusters

The challenge of the exercise was to systematically translate the four sub questions into perspectives on technological clusters or innovation opportunities. This makes the outcomes comparable. Every perspective was analysed and then translated into a codified taxonomy of technologies developed by the Western European Armaments Group (WEAG); this WEAG-classification on defence technologies is generally accepted within the defence sector. This taxonomy includes technology, products and intelligence or as they are called ‘underpinning technologies’, ‘systems-related technologies’ and ‘military assessments, equipment and functions’.

Additionally, the WEAG-classes were checked for interrelation such that priority clusters are formed and interpreted, which seem to combine specific technologies with products and intelligence. Finally, these priority clusters are compared such that a final reflection is made from the four different perspectives (see figure 1).

For determining the strengths of the defence industry, companies were analysed and a computer aided workshop including the industry was organized (Group Decision Room). The innovative opportunities were inventoried based on desk re-search and interviews with leading parties. Future needs of the military forces were inventoried and weighted based on al-ready planned investments by the Ministry of Defence. Finally, the civil market was assessed by experts based on most relevant societal challenges.

Below the analysis on current strengths is elaborated. For foresight purposes, the results on innovative opportunities are also included.

Outcomes: New Paradigm of Effectiveness

Military operations are increasingly operations other than war, such as peace operations, foreign humanitarian assistance and other military support to civil authorities. Consequently, governments turned their focus on the ultimate goal of ‘effect-based [security] operations’. In practice, effect-based operations imply a joint and combined cooperation between different armies and forces resulting in a transformation of a plat-form-centric force into a network-centric force. The term “network-centric warfare” or “network enabled operations” broadly describes the combination of emerging tactics, techniques, and procedures that a fully or even partially networked force can employ to create a decisive advantage. On the whole, the defence sector still innovates on platforms, weaponry and increasingly on intelligence. Figure 3 below shows all innovation themes which are on the agenda of the defence sector.

Innovation themes are divided into underlying innovative opportunities, translated in the WEAG-classification and finally clusters are identified. The main clusters are C4I, sensor systems and integrated system design and development.

Information Based Services

The clusters arising from the four perspectives are compared with each other to identify the main clusters. Table 3 below shows the synthesis.

Type 1 clusters can be regarded as broad, strong clusters, with a good industry base and market potential in domestic, inter-national and civil markets. This first type of cluster represents information based services for the Dutch industry. Type 2 clusters cover a couple of interesting niche markets. Finally, type 3 clusters are fragmented but might have some niches.

Original Brief Impact Discussion

In the 2007 brief, some of the impact of the foresight study was already visible and described:

The project was on a highly political trajectory, where the interests of industry and the ministries of Defence and Economic Affairs were intertwined. Also being a part of a broader process and the project delivering the content for just one of four working groups led to intensive discussions within the interdepartmental group before the results could be used as input to the national strategy for the defence industry. This, together with the change of government, considerably prolonged the finalization of the strategy.

About one year after the finalization of the project, the ministries determined their Defence industry strategy. The results of the project were largely integrated into the strategy and therefore had a high impact. The technological priorities stated were fully accepted and provided the backbone to the suggested defence innovation policy. The strategy was discussed in Parliament and will be part of the national policy on the defence industry.

A Follow-up Foresight Study

As noted, the results from the 2006 foresight exercise were integrated in the Dutch Defense Industry Strategy of 2007. However, since 2007 the strategic context in which this industry sector operates has changed significantly. New forms of conflict arise, that demand new kinds of response (e.g. cyberdefense), closer cooperation with coalition partners requires further integration of systems, the financial crisis has had an impact on defense budgets, and finally there is a clear movement to an open and transparent European defense market.

These strategic changes has prompted the Dutch Defense Ministry to evaluate the Defense Industry Strategy that was formulated in 2007. A key part of this evaluation is a follow-up foresight exercise to the foresight exercise of 2006 described earlier in this brief. In the original foresight exercise, research was done on three questions with regards to the Dutch Defense Industry: (1) what is the Dutch Defense Industry good in? (2) What does the market need? (3) What does Dutch Defense need? Questions 1 and 2 were sufficiently answered, but changes in the strategic context require an update to these answers. The answer to 3 was less detailed, and still required a more extensive study.

This follow-up foresight exercise is planned for 2012, and will be performed by the Hague Centre for Strategic Studies and TNO. It aims to examine whether the identified technology clusters are still relevant, whether they need to be adjusted to extended, considering the developments in the last 5 years. The approach is mostly similar to the one of the previous foresight exercise.

Several other forward looking activities in the past 5 years provide key input for the follow-up foresight study, including an exploration to the Dutch Defense force of the future (Dutch Ministry of Defense, 2010), and a NATO study into the future of joint operations (NATO, 2011).

The follow-up foresight study will be shaped along three main topics:

Needs: the future needs of the Dutch defense are investigated, including innovation characteristics of (new) required capacities, attention to the speeding-up of the lifecycle of innovations and capacities, and the role of defense in this lifecycle of capacities and innovations.

Strengths: the strengths of the Dutch defense industry are analyzed using datasets gathered yearly by other organizations using interviews and surveys with industry organizations.

Opportunities: in interviews and focus group sessions the estimates that the Dutch defense industry make about their own future opportunities are analyzed. This analysis is accompanied by an international comparison and a separate analysis by the organizations performing the follow-up foresight exercise.

In a synthesis phase, representatives from ministries, industry and knowledge institutions will be brought together in a workshop session, in which the final conclusions and recommendations of the study will be formulated.

Conclusions

The foresight exercise described in the original brief had a high level of impact in a specific area: the Dutch Defense Industry Strategy. The study results have proven to be useful in formulating a defense industry strategy by the relevant ministries. This usefulness is further illustrated by the fact that a follow-up study was requested and has been initiated, which is expected to provide input for an update to the defense industry strategy.

Authors: Bas van Schoonhoven                                   bas.vanschoonhoven@tno.nl

Annelieke van der Giessen                 annelieke.vandergiessen@tno.nl

 
Sponsors: Dutch Ministry of Economic Affairs and Dutch Ministry of Defence  
Type: Single foresight exercise  
Geographic coverage: National (Netherlands)
Organizer: TNO – The Netherlands Organization for Applied Scientific Research (www.tno.nl)
Duration: Jan/Jul 2006 Budget: € 150,000 Time Horizon: 2015    
Date of original brief: Oct. 2007     Date of follow-up brief: Oct. 2012    

 

Download EFP Brief No. 236_Assessing Dutch Defence Needs_Follow-up.

Sources and References

Butter, M, J.H.A. Hoogendoorn, A. Rensma and A. van der Giessen (2006), “The Dutch Defence Outlook”, TNO.

Hoogendoorn J.H.A., Rensma A., Butter M., van der Giessen A., (2007), “Opportunities in Innovation for the Dutch Defence Industry”, EFMN Foresight Brief No. 120, available online at
http://www.foresight-platform.eu/briefs-resources/

(Dutch) Dutch Ministry of Defense, 2010, Eindrapport – Verkenningen: Houvast voor de krijgsmacht van de toekomst
http://www.defensie.nl/actueel/nieuws/2010/03/29/46153012/strategische_verkenningen_bij_defensie_afgerond

NATO, 2011, Joint Operations 2030 – Final Report
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA545152

EFP Brief No. 234: Learning Effects of a Foresight Exercise: An Accompanying Social Research Study

Friday, December 21st, 2012

The purpose of the accompanying social research study to the Freightvision exercise (Brief No. 226) was twofold: First, we wanted to introduce a concept for accompanying social research of a large participatory foresight process in order to grasp immediate learning effects. Secondly, we analysed immediate learning effects in the course of a large participatory foresight process. The research questions guiding the empirical analysis were: How can we operationalise and measure learning in the context of a large foresight process? Learning thereby involves different levels of learning: individual learning, group learning, organisational learning, system-level learning etc. And how can we operationalise and measure networking, i.e. the establishment of personal ties that enable the exchange of information and hence learning in a large foresight process?

The Foresight Case Freightvision in Focus

The foresight case in focus intended to integrate new knowledge, perspectives and stakeholder groups into an established field. Creating channels for communication between participants from business, policy, civil society and R&D to overcome sectoral boundaries was an explicit goal from the beginning. Stakeholder participation in this case was defined as inviting representatives of research, business, policy and civil society explicitly as “experts” who take part in a strategic dialogue on long-term issues. The expertise of participants was sought as deliberative input and shaped the content and tangible results of the foresight process, leading to robust scenarios, recommended action plans, visions and background reports.
 
Given the large scale of the foresight exercise (up to 90 participants in four fora, budget >3 m EUR, duration > 3 years), deliberative participation was guaranteed through four large and highly interactive fora using large group intervention techniques derived from organisational development theory (world café, open chair discussion rounds, interactive poster sessions etc.). Methodologically, the Freightvision foresight assessed here relied on an overall architecture and methods of organisational development (OD) that focus particularly on changing the thinking and actions of stakeholders. The application of OD concepts and instruments throughout all phases of the foresight exercise was assumed to maximise interaction, collaboration and learning among stakeholders in this foresight system.

Methodologies of the Accompanying Social Research

Learning effects of foresight processes can occur in various dimensions, which we tried to capture in our accompanying social research study: i) the acquisition of social capital (e.g., establishing new contacts, building networks), ii) the acquisition of factual knowledge and understanding (new insights derived from discussions and multiple perspectives), and iii) the development of strategic alternatives (Amantidou & Guy, 2008). Following Lewin (1953), Schein (1995) and Grossman et. al. (2007), we distinguished and applied three different approaches of accompanying social research to analyse and assess the immediate learning effects of foresight. The three approaches were the practitioner model of field research, qualitative interviewing and content analysis.

Practitioner Model of Field Research

The accompanying research to evaluate the effects of the foresight process on participants and stakeholders was conducted by AIT – Foresight and Policy Development Department. The process involved 165 individual participants coming from private enterprises, interest groups representing the various transport modes, infrastructure providers, trade unions, environmental NGOs, research organisations and administration. Participation in Forum 1 to 4 was between 96 and 75 individuals.
 
In moderated workshops, we conducted a survey and several discussions as part of the foresight process. Within this foresight project group, organisational development (OD) researchers acted as counsellors trying to intervene in social systems in order to provoke change (Schein, 1995; Grossman, et al., 2007). In the context of these moderated workshops, the foresight counsellors and the foresight project group evaluated their roles during the stakeholder fora as well as other impacts by (1) reflecting on and adapting their own observations and patterns of intervention, (2) by evaluating the process as a whole and (3) by carrying out a qualitative survey of the project group in the moderated workshops after each stakeholder forum. The questions addressed mutual learning processes, short-term effects and the evaluation of the overall design and process of the stakeholder fora.
 

Participatory Ethnographic Research

According to Schein (1995) and Grossman et al. (2007), researchers participate in the day-to-day life of social systems yet try to minimise influence or set interventions. To capture various kinds of immediate impacts from the foresight case, telephone interviews were carried out after each of forum. Around 20% of the participants were interviewed by the research team, resulting in 71 interviews all in all (the interviews took 15-20 minutes each). Qualitative content analysis was applied to extract information from the interviews. The post-forum telephone interviews showed that participants were positive about the methodology. They were particularly positive about the high levels of interaction during the fora (working intensively in a productive atmosphere, using creative methods including wild cards and visualisation of the freight transport system in 2050), which helped the different stakeholder groups to better understand the motivations and backgrounds of various other stakeholder groups. The interviewees also mentioned that the project led to a systemic picture of the whole longdistance freight transport system across modes.
 

Experimental Social Research

In experimental social research, the observer implements a lab-like environment trying to minimise influence on the observed object. The research setting is designed to generate quantitative data that claims to describe “the reality of the observed object” apart from the observing researcher. In our case, a social network analysis (SNA) approach was applied, reducing the observed part of the complex communication and learning process to different categories of ties established between participants of the foresight fora. Assuming that actors are embedded in a web of social interrelations, SNA provides a set of methodologies and tools to understand internal communication, organisation and aspects of their formation (Heimeriks, Hörlesberger, & Besselaar, 2003; Coromina, Guia, Coenders, & Ferligoj, 2008). A questionnaire was designed and distributed both at the beginning and end of every forum, listing names of participants and asking each participant to quantify the level of acquaintance with all remaining ones. The difference in levels of acquaintance before and after every forum served as a proxy for the number and quality of ties established during the fora (qualitative and quantitative statistical network analysis was applied in order to extract information from the questionnaires).
 
The team of researchers conducting the accompanying social research were external observers. The network analysis based on pre- and post-forum questionnaires showed that the network of participants had already reached a high density after Forum II and that there were no signs of emerging closed clusters of unconnected sub-groups. New participants were integrated quickly (approximately one quarter were new in every forum), and the network density remained stable until Forum 4. Figure 1 shows a network of personal ties (or relationships) between participants based on personalised questionnaires returned a) before Forum I (March 2009, n = 41/96 questionnaires) and b) after Forum III (October 2009, n = 35/79 questionnaires). Stakeholders are coloured in black, all other project partners in grey. Geometric positions and distances are determined by the combined strength of a participant’s ties (participants are positioned closer if ties are stronger). The shape of a node is determined by the number of inward vs. outward ties and its volume by the total number of ties. Network “connectors” have more outgoing vs. incoming ties (ellipses pointed upward) and “authorities” vice versa (ellipses pointed sideward). All computations were performed using the software PAJEK (Chen, 2003).
 
 

Learning Effects

The immediate learning effect of a large-scale foresight project was analysed based on three methods of accompanying social research. First, the practitioner model was applied in an analysis of the foresight process in moderated workshops. Learning in this context mainly referred to the creation of cultural islands and increased the participants’ identification with the foresight process. Secondly, a qualitative analysis was conducted in an ex-postfacto analysis where individual learning resulting from the
foresight process in focus was captured in different questions.
 
The main result here is that the major achievement of a large participative foresight process with respect to learning is probably that details out of the social contexts and rationalities of various stakeholders add up to a multidimensional picture at the system level. This results in perceiving oneself as being part of a system and gives a clearer view of one’s own role in the system. Interdependencies between the various actors become more apparent, which on the whole results in a more comprehensive big picture at the system level. Thirdly, we tried to empirically grasp the increase of personal ties between participants of a large foresight process by means of a social network analysis. We assumed that these ties reflect some extent of exchange of information and hence can be expected to enable learning processes. Overall, the number of newly formed acquaintances more than tripled during the fora; the network diameter settled at a low size of three ties. A higher density, an average degree of centrality and a lower diameter reflect a higher flow of information. It becomes clearer how participants perceive their position within the network of stakeholders and their influence and future agendas (Schartinger et al., 2011).

Effects at European and National Level

A clearly discernible effect is the continued collaboration of the project team in the following FP7 calls, which can be attributed to the well-designed collaboration in the project team as active participants in the fora. In addition, the project team held briefing and debriefing sessions before and after the fora to discuss and optimise the networking process. Less can be said about the direct effect of the foresight in terms of relevance to policy documents, as the accompanying research ended shortly after the Freightvision project.

In Austria, the results were presented up to the highest ranks of the ministry of transport, which led to the ministry funding a follow-up project (Freightvision Austria, see EFP Brief No. 231) at the national level through the Transport Research Program IV2plus. Media coverage both at the sectoral level (some was very offensive even criticising the scientific evidence) the national level gives some indication of the relevance of the Freightvision process. After the final dissemination conference, DG TREN (MOVE) ordered extra copies of the last management summary for distribution throughout the directorate, which can be seen as a sign of the project’s relevance to internal discussion. In 2012, we conducted some additional interviews to find out whether Freightvision had any direct influence on the White Paper on Transport published in 2011.

Although some affirmative statements were made, it is not possible to verify such an influence. The Commission Staff Working Document on the White Paper shows no reference to Freightvision or other parallel FP7 Support Actions. However, several of the 36 measures from the project are mentioned in this document (e.g., CO2 labelling and integration into standards, e-freight, ecodriving training, liberalisation of cabotage, IST, ERTMCS/ETCS etc.).

Further Need for Follow-up Research

A further step in research on the effects of foresight would be to analyse in depth how participants of a foresight process deal with what they have learnt during the foresight process once they return to their usual surroundings and home environments. In principle, large participatory foresight processes induce participants to carry new impulses to their home organisations. Strategic dialogues and mutual learning processes during the foresight exercise can provide guidance in situations with high degrees of unpredictability and become effective in the organisations the participants originate from.

However, it is a great challenge to methodologically grasp the different kinds of effects over time and to isolate the contribution of foresight processes to complex and continuous processes like strategy finding and policy formulation. Determining the contribution of foresight exercises will always be achieved only in part.

Highly Controversial Stakeholder Responses

Although the process was built on a well-founded evidence base, including several models that are also cited in the recent White Paper, it was foreseeable that controversial positions would emerge in the normative phase of the foresight. For reasons of transparency, an effort was made to make dissent explicit and to document minority positions in working groups. Although it was clear that the project, financed through a FP7 support action, was no formal stakeholder consultation process in preparation of the White Paper, lobbying occurred to the extent that some participants at the final conference were on the verge of boycotting the event because of unfavourable conclusions for a specific interest group. Due to the explicit backing by many of the forum participants who attended the dissemination conference, it became clear that the overall results were valid and that the foresight process had been transparent and sound.
 
 

Sources and References

Amanatidou, E. and Guy, K. (2008), “Interpreting foresight process impacts: Steps towards the development of a framework conceptualising the dynamics of ‘foresight systems’”, Technological Forecasting and Social Change, Vol. 75, No. 4, pp. 539-557.
 
Chen, C. (2003), Mapping Scientific Frontiers. The Quest for Knowledge Visualization, Berlin: Springer.
 
Coromina, L., Guia, J., Coenders, G. and Ferligoj, A. (2008), “Doucentered networks”, Social Networks, Vol. 30, No. 1, pp. 45-59.
 
European Commission (2011), “Commission Staff Working Document – Accompanying the White Paper – Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system”, SEC(2011) 391 final.
 
Grossmann, R., Lobnig, H. and Scala, K (2007), Kooperationen im Public Management. Theorie und Praxis erfolgreicher Organisationsentwicklung in Leistungsverbünden, Netzwerken und Fusionen, Munich: Juventa Verlag.
 
Heimeriks, G., H., Hörlesberger, M. and Besselaar, P. van den (2003), “Mapping communication and collaboration in heterogeneous research networks“, Scientometrics, Vol. 58, No. 2, pp. 391-413.
 
Lewin, K. (1953), Die Lösung sozialer Konflikte. Ausgewählte Abhandlungen über Gruppendynamik, Bad Nauheim: Christian-Verlag.
 
Schartinger, D., D. Wilhelmer, D. Holste, K. Kubeczko (2011), Assessing immediate learning impacts of large foresight processes. Submitted to Foresight Journal.
 
Schein, E.H. (1995), “Kurt Lewin’s Change Theory in the Field and in the Classroom. Notes toward a Model of Managed Learning”, available at: http://www2.tech.purdue.edu/Ols/courses/ols582/SWP-3821-32871445.pdf (accessed 2 December 2012).

EFP Brief No. 221: Priority Setting for Research on Information Society Technologies

Friday, August 3rd, 2012

This follow-up brief recapitulates the foresight exercise of the “Foresight on Information Society Technologies in the European Research Area (FISTERA)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned and ask what the mid-term to long-term implications of this foresight exercise are, in particular how effective the FISTERA project was in feeding the findings derived from the foresight exercise into a process of strategic priority-setting in information society technologies at the European level.

Creating a Common Vision for Our Information Society

The central purpose of the FISTERA project was to contribute to creating a common vision and approach by 2010 for developing an enlarged Europe towards an information society. As a thematic network, FISTERA’s aim was to provide a European platform involving a wide range of national and European policymakers that, through a structured foresight process, could inform the setting of priorities by providing support for targeted R&D funding in specific areas of information society technologies (IST) and thus contributing to future IST policy and research in Europe.

FISTERA was based on a combination of top-down and bottom-up approaches. “As part of the bottom-up approach, FISTERA focused on the analytical dimensions, making use of its findings to set functional, S&T and socio-economically driven priorities. The top-down approach concentrated on the normative, process-oriented dimension to identify and prioritise policy options, building on what FISTERA calls the ‘success scenario’ for the European information society.” (Compaño, R. et al., 2006: 7).

The findings of the FISTERA foresight exercise intended to contribute to the evolution of policy thinking regarding the prospects of IST as part of the Lisbon objective. In sum, its overall aim was

(a) to compare the results of national foresight exercises and exchange visions for the future;

(b) to provide a new forum for consensus building on future visions for IST;

(c) to contribute to constructing the European Research Area through benchmarking, community building and providing a dynamic European platform on foresight;

(d) to provide inputs to the ongoing process of identifying key areas for research on which to concentrate public as well as private funding.

 

Delphi Highlighted Education and Learning

The FISTERA foresight process was based on three components: (a) a technology mapping (i.e. a study of the main technological trajectories in IST), (b) a Delphi study and (c) the development of scenarios. Through the implementation of a Delphi study, FISTERA gathered inputs from a wide variety of stakeholders concerning which areas of IST applications they thought most likely to yield benefits in terms of the goals defined by the Lisbon agenda.

The most outstanding result of the Delphi study was the strong focus on one particular application area, namely education and learning. Based on the findings of the Delphi study, FISTERA elaborated multiple scenarios in order to explore the plausibility of a set of diverse futures. For this purpose, various trends and countertrends and the ways they will likely interact in the future were studied. Four scenarios were proposed that brought together the S&T developments and fields of social application as a basis for dissemination activities. FISTERA was based on a ‘success scenario’ approach to examine the policy priorities required to produce the conditions for a desirable future in which the EU’s Lisbon objectives would be met as far as possible. The scenario-building exercise was aimed at providing options for a long-term development of IST for the economy and society.

On the other side, FISTERA tried to match the socio-economic needs with future technological trends and the consequences of potential IST applications. Therefore, a technology mapping was carried out that provided a perspective on the technological trajectories of IST. Due to the systemic nature of information and communication technologies (ICT), however, it was not possible to monitor the whole range of IST trends and provide prospective assumptions concerning the application and use of single technologies in the future. Instead, the focus was placed on clusters of technologies with similar functions while, at the same time, these clusters included competing and complementary technologies. The forward looking assessment of the evolution of these clusters was used to identify ‘technology trajectories’.

Identification of ‘Technology Trajectories’ in IST

The identification of a ‘technology trajectory’ followed a number of steps. First, a trajectory had to be defined. Then, information about individual ICT contributing to this particular technology trajectory needed to be collected, and this information had to be linked to the expected evolution of the trajectories. In a third step, the individual technologies were linked to possible applications and services.

The overall aim of this procedure was to identify particular technologies with the potential to influence the future development path of other technologies. In order to identify emerging patterns of relationships between technologies, a specific algorithm was used that analysed the strength and pattern of the link of a particular technology with other technologies as a function of time. Through this method, FISTERA was able to identify patterns of ‘technology attractors’ as well as trends of ‘technology disruptions’ and relate them to time horizons.

Some of the ‘technology attractors’ identified through this method were the following: (a) Batteries that are expected to have a profound influence on the evolutionary progress in many fields of IST. (b) Progress in bandwidth, understood as the transmission capacity at access level (rather than the network capacity on backbones), which will likely stimulate the advance in both optical, optoelectronics and electronics. (c) The growth of storage that will likely drive the creation and development of completely new industries. (d) Embedded systems that have been identified as the most crucial field for the future evolution of the overall market. (e) Information semantics that will act as an attractor technology with a profound influence on changes in the field of information value since it results from the merging of storage, computation and communication. (f) Developments in radio propagation that are expected to work as another attractor through the stimulation of new businesses and new applications. (g) Micro kernels and ad hoc protocols that are expected to have a stimulating effect on the evolution of communications infrastructures and the creation of new business opportunities at the edge of network structures.

With the help of the ‘technology trajectories’ concept, some of the technologies have been identified as being ‘disruptive’, meaning that their impact would be conducive to profound changes in technological systems as we know them today. The ‘disruptive’ potential of technologies may for example result from (a) the convergence between a number of diverse technological trajectories, (b) the shift from products to services, (c) the disappearance of the personal computer, (d) ubiquitous seamless communication, (e) changing traffic patterns, (f) unlimited bandwidth, (g) disposable products and (h) the shift from content to packaging.

 

FISTERA Inspired National Foresights on IST

By and large, the FISTERA foresight contributed important inputs to the debate about priority-setting in IST research in Europe and thus provided important impulses to the Seventh Framework Programme (FP7). Three levels of contributions have been identified (Compaño et al., 2005: 38):

(a) FISTERA generated valuable input that helped to identify and make transparent why some fields in IST research are more appropriate as priorities for the European Research Area than others.

(b) FISTERA helped to identify functional requirements that need to be met to translate these priorities into reality in the context of the European Research Area.

(c) FISTERA helped to identify the building blocks for consistent priority-setting. In this sense, the foresight process fulfilled an important function in legitimising public policy intervention in the field of IST research in Europe.

Although FISTERA did not embark on a comprehensive analysis of specific policy interventions to stimulate research in particular priority areas, the identification of promising technological trajectories in the field of IST was an important step towards investigating the future European positioning within these trajectories. FISTERA also prompted complementary action at the level of the member states by giving impulse to several follow-up foresight initiatives at the national level. For example, Austria (Foresight on Information Society in Austria – FISTA), and Hungary (Information Society Technology Perspectives – IT3) used the FISTERA approach to develop national IST foresights. We can therefore conclude that FISTERA not only contributed to establishing foresight for forward looking IST priority-setting at the European level but that it also inspired foresight practitioners at the national level.

However, with regard to the translation of the findings from the FISTERA foresight into priority-setting at the European level, there are also some lessons to be learned that might improve the efficiency of future foresights aimed at inspiring priority-setting processes at different levels.

The Methodological Framework

Regarding the methodological framework of the FISTERA foresight process, the following points were indicated during the follow-up interviews, which were carried out with individuals directly involved in the design and implementation of the FISTERA foresight:

(a) The implementation of the FISTERA foresight process was based on inter-disciplinary teamwork. The sub-optimal integration of the different skills and perspectives towards the broad area of IST was due to a lack of a coherent joint framework able to accommodate these interdisciplinary differences. Future projects should have a stronger focus on embedding inter-disciplinary foresight teams in a more coherent framework for collaboration.

(b) The insufficient integration of the technology-centred and the socio-economically-centred contributions were a methodological weak point of the FISTERA foresight. This might have created a bias towards promoting certain emerging technological paradigms and may have operated at the expense of devoting more attention to certain societal challenges that should not be neglected in priority-setting in practice.

(c) The interviewees indicated that since scenario development was very much on the macro level, priority-setting (in particular with a view to individual technological fields) was very difficult. Therefore, a better linking of the components of the foresight process to each other (in particular the technology mapping and scenario development) might improve future foresight initiatives in this field and help formulate more targeted priorities.

(d) It was further mentioned that the identification of thematic priorities was very difficult to translate into priority-setting in practice because technologies were clustered and no specific areas were focused upon.

Dissemination through Road Shows

The dissemination of the results of the FISTERA project was facilitated through various communication channels. The organisation of national road shows and communication papers contributed greatly to the broad dissemination of the project results to a variety of audiences. Although a book (Compaño et al., 2005) was published, according to a member of the FISTERA consortium, the transfer of the findings to high-level academic audiences remained behind its actual potential.

Reaching the Policy Level

Although FISTERA did not embark on a comprehensive analysis of particular policy interventions to support research in specific areas of priority in the field of IST, the interviews emphasised that the results of the foresight process provided important impulses to sharpen the perception of EU policymakers. According to one interviewee directly involved in FISTERA, an important accomplishment of the foresight was that it opened a debate on ICT in Europe towards a more multidisciplinary view and thus contributed to improving the framework conditions for a European dialogue about the future of ICT and ICT policy formulation (Pascu et al., 2006). Another interviewee who had knowledge of the internal decision-making processes within the EU Directorate General Information Society and Media (DG INFSO) stated that the results of the FISTERA foresight informed several initiatives that figured prominently in the work programme (for example Assisted Ambient Living).

Furthermore, it appears that FISTERA reached the policy level through direct interaction with the European Commission and its core advisory groups in the field of IST. There is no doubt that FISTERA had an impact on institutions that were directly or indirectly involved in European ICT policy formulation (Pascu et al., 2006). According to one interviewee, FISTERA’s impact was tangible on the policy level as reflected in the work of the IST Advisory Group (ISTAG), which is the most influential industry-oriented expert group advising DG INFSO on the IST programme. Furthermore, the same interviewee indicated that all decision-makers on IST issues in Brussels were exposed to the FISTERA results. In some sense, the FISTERA results also “paved the way” for subsequent projects, such as the PREDICT (Prospective Insights on R&D in ICT), which are still running today and provide inputs for policymaking at DG INFSO.

FISTERA results also proved to be relevant to several European think tanks.

However, foresight exercises are most successful whenever decision-makers go beyond the mere role of receivers of end products, such as reports on future scenarios, and become an integral part of the foresight process. In this sense, one interviewee stated that FISTERA failed to develop into an operational network for the interaction among different communities that hold stakes in the formulation of European IST policy development.

Priority Setting for IST Research through Foresight Practice

The FISTERA foresight marked an important milestone in counteracting forward looking perceptions based on technological determinism in the field of IST, which fail to provide an adequate perspective of technological futures. The timing for the establishment of a pan-European platform was favourable as foresight tools for priority-setting are proliferating, although it was stated during the interviews that FISTERA stayed far behind its set goal to establish a pan-European community concerned with IST futures. Nevertheless, FISTERA’s contribution to creating a European vision for IST has been an important first step towards establishing a discussion platform for IST foresight from a European perspective. Nonetheless, continued efforts to communicate the evolving European vision with ongoing priority-setting efforts in IST at the national level will be necessary. In this sense, it remains to be seen how the technology trajectories that have been identified by using the concept of “technology trajectories” will relate to forward-looking priority-setting exercises both at the national and at non-European levels. In light of the ERA’s increasing multilateral cooperation initiatives in particular, European priorities need to be related to the priorities of other regions of the world.

Inspiring Future Directions of Forward Looking Priority-setting

Based on the findings of the FISTERA foresight process, possible priorities for European IST research were identified. Foresight, however, can do no more than inspire the priority-setting process. It can help legitimise policy interventions in emerging fields, but it cannot anticipate concrete technologies that should be the recipients of targeted funding activities, and it should not generate expectations among policymakers that it can do so.

Authors: Dirk Johann                                   dirk.johann.fl@ait.ac.at
Sponsors: European Commission DG Information Society
Type: International foresight activity covering the enlarged European Union, focusing on the thematic area of Information Society Technologies
Organizer: The Institute for Prospective Technological Studies (JRC-IPTS), Telecom Italia Lab, The University of Manchester, The Institute for Technology Assessment and Systems Analysis (ITAS – Research Centre), Austrian Institute of Technology (AIT), Gopa Cartermill
Geographic coverage: Europe
Duration: 2002 – 2005
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: June 2012

Download: EFP Brief No. 221_FISTERA_Follow-up

Sources and References

Compaño, R., C. Pascu, M. Weber (eds.) (2005), Challenges and Opportunities for IST Research in Europe, Bucharest: The Publishing House of the Romanian Academy.

Compaño, R., C. Pascu, J. C. Burgelman, M. Rader, R. Saracco, G. Spinelli, B. Dachs, M. Weber, S. Mahroum, R. Popper, L. Green, I. Miles (2006), Foresight on Information Society Technologies in the European Research Area (FISTERA) – Key Findings, Luxembourg: Office for Official Publications of the European Communities.

 

Pascu, C., J. C. Burgelman, L. Nyiri, R. Compaño (2006), Foresight on Information Society Technologies: Lessons Learnt for Policy Intelligence Building in Europe, Second International Seville Seminar on Future-Oriented Technology Analysis: Impact of FTA Approaches on Policy and Decision-Making, Seville, 28-29 September 2006.

Weber, Matthias (2006), “FISTERA – Foresight on Information Society Technologies in the European Research Area 2020”. EFMN Foresight Brief No. 9. Online at http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-9-FISTERA.pdf.

 

EFP Brief No. 218: Embedding Foresight in the Colombian Innovation System

Thursday, June 21st, 2012

This follow-up brief recapitulates the evaluation of the Colombian Technology Foresight Programme (CTFP). The foresight brief no. 119 (“Evaluating Foresight – The Colombian Case”) summarised the methodological aspects and principal focus of the framework on which the evaluation of the second cycle (2005 – 2008) of the CTFP was based. The objective of the present follow-up brief is to look back and summarise the implications of the evaluation of the CTFP by drawing on the key findings of the evaluation summary report. Concretely, it focuses on (1) the appropriateness and adaptation of the evaluation framework, as well as the effects for the spread of a foresight culture in Colombia that have been induced or stimulated by the evaluation of the CTFP and (2) the institutional mechanisms in support of the social appropriation of the CTFP’s output and results as well as the dissemination of the foresight knowledge generated by the CTFP to policy, industry and society as a whole.

Evaluation to Improve the Capacity for Learning

The development of Colombia’s Technology Foresight Programme (CTFP) has long been a reference point in the Latin American region. The CTFP is the first national foresight programme in Latin America that has been evaluated so far. The principal idea of the CTFP has been building a platform to create, distribute and utilise foresight knowledge in Colombia. It was intended to introduce new foci and new types of foresight practices and interventions in support of the strategic re-orientation of programmes and (sub-)sectors.

The focal point of the evaluation carried out in 2008 under the leadership of the University of Manchester was to reshape the objectives and activities of the second cycle of the CTFP (2005 – 2008). The conceptual framework of the evaluation was geared towards analysing foresight as a process.

This follow-up brief describes the methodological framework of the evaluation and discusses the learning process involved as well as the question whether the evaluation improved the aptitude for learning.

Evaluation of the CTFP

In Colombia, the evolution of long-term thinking in foresight has been largely driven by the role of COLCIENCIAS (Colombian Office of Science and Technology) as a node institution capable of facilitating inter-institutional alliances between various centres of excellence, on the one hand, and mobilising resources and engaging key stakeholders into a dynamic and self-reinforcing foresight learning process, on the other. Part and parcel of this learning process has been the comprehensive evaluation of the second cycle of the CTFP, which was geared towards identifying and supporting strategic sectors during the period between 2005 and 2008. Commissioned by COLCIENCIAS, the overall aim of the evaluation was to increase the CTFP’s capacity to shape and inform policy processes and actors.

Methodological Approach and Phases of the Evaluation Process

The evaluation of the CTFP was based on a methodological framework composed of a mix of seven diverse methods and activities that have been listed and described in some detail in the original foresight brief: (1) documentary analysis, (2) logic chart and indicators, (3) surveys, (4) interviews, (5) case studies, (6) benchmarking and (7) evaluation forum.

The evaluation process was divided in four phases:

Phase 1: Scoping – This phase had the principal objective to understand the main rationale of the evaluation process in order to design a coherent research process. The evaluation report states, “In addition to the traditional objectives of a Foresight programme evaluation (i.e. assessment of the impacts of the programme and the projects; assessment of the cost-effectiveness of the programme, and evaluation of the way in which Foresight is run in Colombia), COLCIENCIAS and SECAB [Secretaria Ejecutiva del Convenio Andres Bello] were particularly interested in identifying lessons and recommendations for the improvement of Foresight and horizon-scanning activities in the country.”

Phase 2: Understanding – This phase of the evaluation process was based on the collection of tacit and codified knowledge about the CTFP. “Tacit knowledge was collected through individual and group interviews with key stakeholders in COLCIENCIAS, other sponsors (e.g. ministries) and main stakeholders […]. Codified knowledge involved the compilation of major codified products (e.g. interim and final reports, books, journal publications and other important documents, such as individual project budgets and description of the programme’s expenses).”

Phase 3: Evaluating – This phase was based on a benchmarking of the CTFP against practices in other countries. The main objective here was to learn from other international best practices in establishing a national foresight initiative. The lessons shared from other countries included the UK, Malta, Russia, Spain and Hungary.

Phase 4: Learning – This phase involved conducting further analysis and preparing the final evaluation report.

Lessons Learned

The focus of the evaluation was on assessing what effects the second cycle had on policy and programme development. In particular, the impact of the CTFP on the design and of research policies was to be assessed as well as the effects of the CTFP on the promotion of national skills and the establishment of a national foresight culture in Colombia. In this sense, the evaluation was an important step towards synthesising the lessons derived from the national foresight exercise in terms of impact on skills, enhancement of capacities for strategic decision-making processes and policy design.

Key Findings of the CTFP Evaluation

The final report summarised the key findings of the report as follows:

(1) Regarding the overall objectives, the evaluation report states that the “CTFP objectives have been appropriate and successfully achieved. The programme has contributed to the creation of development visions and strategies for moving towards a knowledge-based society” through horizon-scanning and the building of foresight capacities in key sectors.

(2) As regards the value for money, the evaluation concluded that the CTFP achieved “a paradigm shift” by greatly contributing to the creation of a shared vision for “the productive transformation of Colombia into a knowledge-economy”. Furthermore, the evaluation states that the CTFP has begun to pay off since a diverse set of stakeholders have already adopted the vision brought forward by the CTFP in formulating their long-term objectives.

(3) Regarding the organisational structure of the CTFP, the evaluation observed that the institutional anchoring of the technical and decision-making groups in COLCIENCIAS during the second cycle notably “increased the CTFP’s capacity to shape and inform policy processes and actors. However, these changes also made the programme appear to be more of a COLCIENCIAS instrument than a national programme.”

(4) With respect to the approaches and mix of methods, the evaluation highlighted that “one original and effective feature of CTFP has been the combination of thee conceptual and methodological approaches: Foresight, horizon scanning and productive chain.”

(5) Regarding implementation and aftercare of the second cycle, the evaluation stressed the need for an aftercare strategy in the Colombian foresight programme. If the key support institutions of the programme “were to consider implementing such a strategy, this would probably increase the ability of Foresight to inform policy and shape research priorities. At the same time, it would also allow sufficient time for new networks to exploit the momentum created and consolidate institutional alliances.”

(6) With regard to the CTFP’s contribution to the spread of a foresight culture in Colombia, the evaluation states: “Some stakeholders still see foresight as being exclusively expert-oriented.” Therefore, it was recommended “that the general public be encouraged to participate in projects and training courses. This would probably require alliances with the private and productive sectors, in order to increase the financial and implementation feasibility of large-scale courses and projects.”

(7) Concerning the presence and visibility of the CTFP, the evaluation states that “while CTFP stands up well alongside programmes conducted elsewhere, it has limited visibility in the international academic and professional literature.” A clear implication derived from this is “that all major reports should be […] made available on the internet, and more widely disseminated through, for example, conference presentations and articles in relevant publications.”

(8) With regard to the impacts related to science, technology and innovation (STI), the evaluation stated that out of a total of 24 projects and more than 30 capacity-building courses, “nine projects had positive impacts on public and private polices and strategies; six projects had positive impacts on the agendas of STI programmes and institutions; five projects had positive impacts on the consolidation of research groups; two projects had positive impacts on the consolidation of S&T capacities; and two projects had positive impacts on international projects.”

(9) Concerning policy recommendations and strategies, these have been highlighted as “fundamental elements of CTFP outputs”. According to the evaluation, “the most significant influence of the CTFP on public policy has been the work on the STI Vision 2019.” Moreover, the CTFP’s biotechnology project had a significant influence on the policies and research priorities of COLCIENCIAS’ National Biotechnology Programme.

Networking Key to Spreading Foresight Culture

The strengthening of networks was a central pillar for achieving the principal purpose of the CTFP. In this sense, the enlargement of inter-institutional networks was instrumental for the realisation of a strategy to spread a foresight culture in Colombia. On the side of the sponsors and organisers of the CTFP, building networks to facilitate the involvement of different expertises in support of an interdisciplinary approach to foresight in many fields and sectors was a vital aspect for all those who participated in the CTFP.

Dissemination Strategy Falls Short of Potential

The CTFP produced a large number of high-quality scientific outputs. However, the strategy to disseminate the preliminary and final results has pursued an approach not conducive to enhancing the international visibility of the CTFP as a best practice across the region. Moreover, in disseminating the new knowledge generated, there was a tendency to emphasise tangible over non-tangible outputs. Since the degree to which the newly produced knowledge contributes to the opening of new strategic options or the strategic re-orientation of sectors is an important success criteria for foresight, it is vital to embed this new knowledge in people’s and organisations’ practices. This requires that the dissemination of the results be tailored to different target groups, which also calls for different means of communication appropriate to the respective group. Although the CTFP delivered many tangible outputs, such as scientific publications (predominantly in Spanish), the approach chosen to disseminate the outputs and results remained far behind the possibilities of alternative approaches that could have enhanced the interaction between the different governmental and scientific communities or increased the international visibility of the CTFP as a best practice from which others could learn.

Methodological Progress Towards Context-sensitive Use of Methodology

The choice of the methods is the most distinctive feature of a foresight process. The evaluation of the CTFP stated that “an average CTFP study involved more than 10 methods, with more or less half of these being horizon-scanning techniques (including bibliometrics, trend extrapolation and patent analysis) and the other half related to Foresight and productive chain approaches (e.g. scenarios, brainstorming, stakeholders mapping, key technologies, morphological analysis, among others).” Regarding the use of foresight, the evaluation focused on the selection of methods but did not monitor how well the methods used lined up with the STI implementation environment, specifically in regard to strengthening capacities in support of policymaking in the area of science, technology and innovation with due regard to local concerns in Colombia. Therefore, a future monitoring or evaluation framework might also focus on adjusting or reconfiguring the methods applied to fit the foresight process needs in Colombia.

Towards Enhancing Colombia’s Foresight Capabilities

Given that there is no ‘one-size-fits-all’ approach to evaluate foresight and that the evaluation of foresight activities cannot be carried out independently of the national context (Georghiou and Keenan, 2006), it is difficult to assess the interaction between foresight and evaluation with respect to the impact on policy instruments or the improvement of overall system coordination through strengthening linkages between innovation actors.

The concepts of effectiveness, efficiency, appropriateness and behavioural additionality on which the framework to evaluate the CTFP rests are key to understanding the focus of foresight activities that are carried out to reconfigure institutional set-ups and re-orient policy goals. Georghiou and Keenan (2006) state that the “[…] evaluation of foresight must include understanding of the interaction of foresight outputs with the strategic behaviour of policy and economic actors.” In this sense, the evaluation of the second cycle of the CTFP was an important step towards better understanding the drivers of the strategic behaviour on part of the key implementing institutions in the Colombian system. However, further advancing Colombia’s foresight capacities depends to a high degree on the institutionalisation of foresight in the Colombian context.

Improve Dissemination Through Alternative Communication Channels

According to the results of the evaluation of the second CTFP cycle, a key lesson that can be drawn refers to the appropriation of the insights gained from the foresight programme. Although the fact that the foresight programme was conducted by COLCIENCIAS was an important institutional driver, the lack of an aftercare strategy constitutes a weak point for the strategic influence of the foresight knowledge generated on the target groups and sectors. Therefore, an important recommendation to increase the future impact of the CTFP is that alternative dissemination and communication channels should be exploited to a greater extent. An improved dissemination strategy should also take into account the need for a stronger diversification of foresight capacity building in Colombia.

Towards Further Institutionalisation of Foresight in Colombia

The “shift from networks and individual exercises [….] to more institutionalisation towards centres of excellence“ is an important step to “take on responsibility for preserving knowledge and for allowing lessons learned to be carried forward in a long-term framework“ (Popper et al., 2010). In this sense, the evaluation revealed that a move away from the somewhat centralistic approach to anchor the foresight process in COLCIENCIAS towards a more effective institutional mechanism was a necessary step to better embed foresight in the Colombian STI system. COLCIENCIAS recent decision to institutionalise the foresight practices in the framework of the CTFP by establishing the Colombian Foresight Institute (COFI) at the Universidad del Valle (Cali) can be considered an important move to enhance the aptitude for learning and thus strengthen the contribution of foresight to reorienting the Colombian STI system. In this arrangement, multiple organisations will be able to conduct foresight.

Under the bottom line, we can conclude that the evaluation came at the appropriate time to develop recommendations on how the foresight outputs, results and knowledge generated during the second cycle of the CTFP could be better appropriated by the stakeholders and embedded in a broader strategic policy context. In particular, an improved dissemination strategy and the search for alternative ways of institutionalising foresight are central pillars for engaging future resources and a broad set of stakeholders in a dynamic and self-reinforcing learning process based on which a foresight culture can develop in line with the evolving STI policy system in the Colombian context.

Authors: Dirk Johann                                            dirk.johann.fl@ait.ac.at                                
Sponsors: COLCIENCIAS (Colombian Office of Science and Technology)  
Type: Evaluation of Foresight Programme  
Geographic coverage: Colombia
Organizer: COLCIENCIAS (Colombian Office of Science and Technology)

PREST / Manchester Institute of Innovation Research (MIoIR), MBS, University of Manchester

Duration: 6–9 months Budget: € 40k Time Horizon: 2020 Date of Brief: May 2012

Download EFP Brief No 218_ Embedding Foresight in the Colombian Innovation System

Sources and References

Georghiou, L. and M. Keenan (2006), “Evaluation of National Foresight Activities: Assessing Rationale, Process and Impact”, Technological Forecasting and Social Change, 73, 761-777

Popper, R., L. Georghiou, M. Keenan, I. Miles et al. (2010), Evaluating Foresight – Fully-fledged Evaluation of the Colombian Technology Foresight Programme (CTFP), Colombia: Universidad del Valle