Posts Tagged ‘ecology’

EFP Brief No. 190: Agriculture and the Challenges of Energy

Wednesday, August 10th, 2011

Energy in agriculture is all too often seen as a purely cyclical issue whereas it brings more complex challenges in terms of economic stability for agricultural holdings, impacts on the environment and climate, on food supply chains and spatial planning. The present brief describes the main results of a prospective study led by the Centre for Studies and Strategic Foresight (at the French Ministry of Agriculture). A group of experts used the scenario method to imagine possible futures of the agriculture-energy system in 2030 and help identify priorities and options for public action.

Energy at the Heart of French Agriculture

Energy is of major importance for the future of agriculture in France although it receives relatively little analytical attention. Control of energy consumption is an economic issue for agricultural holdings, which consume energy both directly (fuel oil, electricity and natural gas) and indirectly (energy for the manufacture and shipment of farm inputs). All in all, French farming consumes around 11 Mtoe (million tonnes of oil equivalent) a year: 5.3 Mtoe directly and an estimated 5.4 Mtoe indirectly. Taking all French holdings together, expenditure on fuel and lubricants represents 8.3% of intermediate consumption, 13.1% of the costs of fertilisers and 21.6% of livestock feed. The share of energy consumption in production costs varies widely according to the type of production: 23% of intermediate consumption relates to fertilisers and soil improvement for cereal and protein crops; 67% results from feed purchased for granivorous livestock holdings between 2005 and 2008. For an identical output, there are wide variations in energy costs at the farm level depending on production systems and practices. The prices for these inputs may also vary widely, reflecting those of fossil fuels. A high oil price may therefore have major consequences for the economic balance of holdings: the double burden of low farm prices and high energy prices may cause unavoidable and difficult situations. The issue of energy also involves logistics, the organisation of agricultural supply chains and the distribution pattern of farming activities across regions. This is so because the distances separating production areas, consumption areas and sources of input supply are reflected in energy consumption.

Moreover, energy and climate are intertwined issues. Agriculture could contribute to national targets for containing global warming by cutting its emissions, producing renewable energy and sequestering carbon in soil. On the other hand, ambitious climate and environment policies may increase fossil fuel prices.

A Collective and Systemic Approach for the Scenario Method

Since the interaction between agriculture and energy is complex, this subject was addressed using a collective approach based on the scenario method.

The ‘Agriculture Energy 2030’ group involved around forty participants with a wide range of skills and backgrounds from concerned ministries (Agriculture and Fisheries, Sustainable Development), public agencies (ANR, ADEME, FranceAgriMer), technical institutes (CTIFL, IFIP, Institut de l’élevage), the farming world (FNCIVAM, FNCUMA, SAF), research bodies (CEMAGREF, INRA), civil society (FNE) and the private sector (Total, ANIA).

This foresight exercise is centred on agriculture. It leaves out both fisheries and forestry, and the agrifood and retail distribution industries are only marginally considered in the exercise. In addition, climate change is only considered for its direct link with energy, that is, greenhouse gas (GHG) emissions caused by direct and indirect energy consumption and renewable energy production. Issues relating to biomaterial and bioproduct production have also been considered in the core analysis. Finally, the analysis restricts itself to mainland France because the French overseas territories have very specific agricultural and energy features of their own.

The choice of time frame to 2030 is a trade-off between the desire to capture cyclical effects and the necessity of working with a manageable, not too distant time scale. Within this basic framework, the Agriculture Energy 2030 group identified five components made up of 33 variables relevant to explaining the possible futures of the agriculture-energy system.

A study card was created for each variable to set a number of hypotheses as to its future development. This exploratory work was based on the identification of past trends, emerging trends and the main areas of uncertainty to be considered when looking forward into the future. Proceeding very conventionally, these hypotheses were combined for each component to produce micro-scenarios, which were then combined to generate global scenarios. For greater consistency and to cast a more informative light on the issues surrounding agriculture and energy, the global scenarios were quantified using a model (Climagri) to estimate French farming production, energy consumption and GHG emissions by 2030. These scenarios are not predictions of the future and reflect even less the preferences of the expert group or the French Ministry of Agriculture. They were used as conjectures to alert actors and decision-makers.

A Set of Four Scenarios to Highlight Energy Challenges in Agriculture

Scenario 1: Regionalisation and frugality to confront the crisis

A profound energy crisis undermines conventional business models. The international context is tense and focused on protection of domestic markets. Around 2020, the management of public policies is entrusted to a greater extent to regional authorities, which are seen to be closer to the development issues of their territories. By 2030, the agricultural world has changed profoundly and faces a number of external constraints: energy prices at sustained high levels, a budget crisis and loss of legitimacy of the central government, a withdrawal to home regions and a contraction in international trade. Agriculture adapts as a matter of urgency, employing a strategy focused on the local level, accompanied by major institutional reform.

The growing self-sufficiency of production systems inevitably involves input reduction, more extensive livestock farming and diversification. The search for complementarity between crops and livestock or between types of crops across holdings and regions becomes a general reality. By 2030, this transformation is not harmonised across the French territory and there are major regional disparities. Lower levels of specialisation and production lead to a limited export capacity. French farming makes major cuts in its energy consumption (down by 32%). Renewable energy produced on the farm supplies additional income, but its development depends on local potential and dynamics. Extensive use is made of biomethanation and wood-for-energy, but expansion of biofuels is held back by high agricultural prices.

Scenario 2: Twin-track agriculture and energy realism

Against a backdrop of high energy price volatility and further trade liberalisation, public support for agriculture declines with a refocusing on remuneration for the public goods provided by agriculture. These changes have very different impacts on holdings depending on whether or not they meet local demand for the local supply and provision of public amenities. Two forms of agriculture exist side by side in 2030:

– “Business Farming” (mainly on the plains of the Northern , Western and Central France): these farms manage to be competitive and to position themselves on export markets. Intensification and restructuring result in a high-precision, high-input farming system. Energy use is optimised on these farms as a response to economic drivers. Energy optimisation is benefited by private-sector market supply of technology and counselling services.

– “Multifunctional agriculture”: these farms diversify their activity and are remunerated for the environmental services they provide (water, biodiversity, landscape, carbon storage). Their main activities are extensive livestock, organic and mixed crop-livestock farming. Such holdings adopt strategies focused on self-sufficiency and low energy use close to those in Scenario 1.

Overall, there is little change in energy consumption. Renewable energy production expands moderately, with investments being held back by price volatility. Biofuel production is more strongly developed in integrated and innovative industrial sectors.

Scenario 3: Health-centred agriculture with no major energy constraints

In 2030, urban consumers are more numerous and more influential. With the backing of the large retail chains, they have succeeded in imposing a major reduction in the use of pesticides by agriculture on grounds of the protection of human health rather than protection of the environment. In the absence of major energy constraints and strong environmental policies, urban sprawl continues to expand. Agricultural supply chains are shaped by their downstream components, with quality schemes and mandatory specifications becoming highly prescriptive with regard to reduced pesticide use. Producers adjust more or less. Some sectors are negatively affected by this new constraint. The most isolated rural regions experience significant abandonment of agriculture. Conversely, the major cities invest in periurban farming to meet the demand for open spaces and local food supply. A specialised and technically sophisticated agricultural model involving integrated pest management has developed. It aims at high production levels and at abating pesticide use at the same time. In parallel, organic farming develops significantly. The absence of any major constraint in terms of policy or energy pricing results in a slight fall in overall energy consumption since production inputs are partially substituted by efficiency gains in machinery. The production of biofuels expands strongly, driven by the early arrival of second generation technologies.

Scenario 4: Ecological agriculture and energy savings

Approaching 2015, the need to make sharp reductions in the environmental impact of human activity leads to a consensus both in the developed world and slowly in the emerging countries. European households adapt their consumption patterns out of concern for preservation of the environment and in response to prices that now include the environmental cost of products. The implementation in 2016 of a common EU-US CO2 market with border adjustment mechanisms triggers a massive shift towards ecological modernisation. In this context, agriculture evolves toward new production models with smaller environmental impacts; the trend is supported by a reformed agricultural policy. This change, however, is both difficult and gradual. The initial resistance of the farming world delays the behavioural changes. Major mutations in the whole agri-food system are also required. From 2020 on, French agriculture becomes ‘ecologically intensive’ on the wide cereal-growing plains of the country: for example, crop diversification, general use of nitrogen-fixing crops at the beginning of rotation sequences and no-tillage become common. In hilly and mountainous lands, farmers are paid for environmental services and are encouraged to meet self-sufficiency at the farm (diversified systems based on mixed crop-livestock farming) or across whole regions (complementarity between farms). Biomethanation and renewable energy production are strongly developed.

Future Requirements for Policy

The expert group sketched out ‘come what may’ strategies that can be expected to remain valid in any future context. The use of fertilisers is a core element of energy balance, and the technical means for reducing nitrogen inputs are well known (long crop rotation sequences and diversified crop choices, use of green manure, organic sources of nitrogen and so on). Their general adoption requires awareness-raising and educational efforts directed at the farmers along with networking to support farmers in exchanging experiences. The need for changes may call for the use of strong normative or economic instruments.

The Agriculture Energy 2030 group has highlighted the advantages of biomethanation, on condition that the digestates are correctly recycled. The structuring and development of the relevant sector supply chains are major issues. Digestate centrifugation is one of the most promising avenues because it allows an easily transported solid phase rich in nutrients (ammonia, phosphate, potassium) to be isolated, along with a liquid phase that is rich in nitrogen but which must be used in nearby areas (spreading). Official approval for the products obtained in this way could provide a major boost.

Another advantage of biomethanation is the production of renewable energy (electricity and heat). The existing support schemes for the installation of digesters on farms should be accompanied by biogas purchase prices to offer greater incentives and forward visibility to investors.

Preference for local supply of protein for animal feed was seen as an advantageous strategy. The goal is to reduce the transportation of these inputs through on-farm production or local supply and to give preference to protein sources requiring low levels of inputs for their production. Grass-based livestock farming particularly deserves to be encouraged given its self-sufficiency and the numerous amenities it provides. Strategies aimed at expanding the use of grass in livestock farming and introducing legumes into pastures are of interest and should receive appropriate technical assistance.

Agricultural machinery constitutes a major area for fuel savings and a lever for change, which could be easily used. Investment in proper adjustment and maintenance of tractors, replacement of machinery and reductions in engine power should receive financial support while giving priority to pooled uses. Elimination of the need to till the soil (notably by means of zero-tillage) could be explored for the reduction of fuel consumption. Extensive effort on training and research is, however, required.

Innovation in the organisation of the agricultural sector to improve energy balances across production regions is needed. The group recommends that production systems should be diversified and products traded between holdings. Support would be appropriate for farmers committing to innovative modes of production (e.g., crop-livestock complementarity, organic farming, high environmental value) through proactive policies on land and installations, especially in the most specialised regions. In addition, the provision of technical and financial support for the development of on-farm primary processing of water-rich products could help reduce transport-related energy consumption while at the same time diversifying farmers’ income sources.

There is nevertheless a need to study case by case the energy efficiency and economic viability of this kind of development, which requires major investments and increases farm workload. The development of on-farm storage facilities and conservation technologies helps reduce wastage and thus provides another tool for action. Lastly, there are avenues to be explored for the improvement of the energy performance of short supply chains: delivery pooling, modal transfer, avoidance of empty return trips and so on.

  • The development of renewable energy production must be supported and channelled. Renewable energy, other than biomass can provide additional income, depending on farmers’ investment capacity and local potential. Moderate purchase prices should help avoid excessive speculation and the risk of unbridled development of installations on agricultural land. Where biofuels are concerned, public support should favour the most competitive and best environmentally performing sectors. Such targeting of support would help ensure that budget leeway can be found to increase R&D efforts and assist investment in second-generation technologies. Support of this kind should be made conditional on compliance with demanding sustainability criteria. The rising importance of ligno-cellulosic biofuels will also require sustainable management and the mobilisation of large quantities of biomass. Farm fuel taxation might also be revised in order to offer greater incentives for fuel economy.
  • Reduction of the energy consumption of buildings is a necessity for the high direct energy consuming sectors. Large-scale investment should, for instance, be provided for the modification and effective insulation of buildings, the installation of heat economisers or biomass boilers and for lighting optimisation. Financial support in the form of grants or loans could be provided on condition of complying with thermal standards for buildings. A wide-ranging scheme could be implemented along the same lines as the PMPOA (French programme for the control of pollution of agricultural origin). Lastly, priorities for agronomic research and the dissemination of innovation in agriculture were highlighted. Indeed, considerable uncertainty remains and more knowledge should be gained on indirect energy consumption (especially for animal feedstuffs), end-to-end energy balances in agricultural supply chains, the logistics of agricultural and food products and the energy content of those logistics. In particular, current work on the development of short marketing chains for agricultural products should not neglect this aspect. Generally speaking, comparisons of the energy balances of different agricultural holdings must be continued and improved to help understand discrepan-cies in levels of consumption and energy efficiency in different production systems.

Varietal improvement should focus on the development of high-yield protein crops and less nitrogen-dependant cereals and oilseeds. Alongside this, research into production systems should address low-energy systems (e.g., integrated production, grass-based systems) and alternatives to tillage. Support for organic farming should go hand in hand with research into increased yields and methods for reducing direct energy consumption.

Innovation transfer is the keystone of any successful strategy. Governance of R&D should be broadened, for example, by involving practitioners in the R&D organisations. Developing a network of experimental farms is also essential for the definition and transfer of innovative techniques and technical benchmarks. Lastly, several factors are holding back useful initiatives to sustainably improve the energy efficiency of agricultural holdings and supply chains: energy price volatility, low taxation on energy products in agriculture and lack of knowledge. Efforts to communicate, raise awareness and provide training must accompany any action.

Authors: Thuriane Mahé                               thuriane.mahe@agriculture.gouv.fr

Julien Vert                                      julien.vert@agriculture.gouv.fr

Fabienne Portet                              fabienne.portet@agriculture.gouv.fr

Sponsors: Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning
Type: National foresight exercise
Organizer: Centre for Studies and Strategic Foresight (CEP)
Duration: Jun 09-Dec10 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011

 

Download EFP Brief No 190_Agriculture and Energy_2030

Sources and References

Vert J., Portet F., (coord.), Prospective Agriculture Énergie 2030. L’agriculture face aux défis énergétiques, Centre d’Études et de Prospective, SSP, Ministère de l’Agriculture, de l’Alimentation, de la Pêche, de la Ruralité et de l’Aménagement du Territoire, 2010 (in French).

Prospective analysis Agriculture Energy 2030 (in English), see http://agriculture.gouv.fr/IMG/pdf/CEP_Agriculture_Energy_2030_Synthesis_English.pdf.

For further information on this project, see http://agriculture.gouv.fr/agriculture-energie-2030,1440.

EFP Brief No. 176: Foresighting the Agri-climate Ecology

Tuesday, May 24th, 2011

This exercise was part of an EU FP7 Blue Skies Project aimed at piloting, developing and testing in real situations a foresight methodology designed to bring together key stakeholders to explore the longer term challenges that face their sector (or cut across sectors) and to build a shared vision that could guide the development of the relevant European research agenda. This approach was applied to the first theme selected, namely “Application of Breakthrough Technologies to Adaptation to Climate Change in Agriculture”. This met the criteria for a sectorally driven topic, was research-driven and involved a clear and vital European policy challenge. Moreover, from an early stage, there was strong stakeholder engagement from the Standing Committee on Agricultural Research and the Directorate-General for Research in Agriculture, Forestry, Fisheries, Aquaculture.

Urgency of Agri-climate Challenge

There is a general consensus that agriculture in Europe will confront major challenges related to rising global temperatures, an increasing number of extreme climatic events and a series of consequences which may occa-sionally be positive but the sum total of which threaten food security, health and well-being, particularly but not exclusively in rural regions. The urgency of mitigation measures should not be minimised, not least because of the substantial contribution agriculture itself makes to greenhouse gas emissions. Nonetheless, the reality is that such measures at this stage are only likely to offset what is to come. In consequence, thinking is already focusing on strategies for adaptation. The exercise built on the foresight work of the Standing Committee on Agricultural Research (SCAR) and the Directorate-General for Research and Innovation (DG RTD), Agriculture, Forestry, Fisheries, Aquaculture, which had generated two important reports. A strategic link was also established with the group working on the Joint Programming Initiative developing in this area. Sev-eral meetings were held with DG RTD to improve the mapping of the research and ‘innovation ecology’ or ‘eco-system’ (an underpinning concept of the project which emphasises flows and interdependencies in the innova-tions system) and to discuss the appropriate tactics for interfacing with this community. An initial description of the ecology was prepared as background for the workshop, and the event was held in Brussels on 14 December, 2009 with the participation of 26 senior experts in agriculture and related technologies, policy and foresight.

Purpose

The purpose of the workshop was to bring together these experts from the domain of agricultural research and associated policy and user areas with thinkers and specialists from outside to explore a foresight vision of the contributions that breakthrough technologies could make. Since such technologies could have profound socioeconomic consequences or even demand major socioeconomic change as preconditions, the socio-economic dimension must also be prominent. To open up scope for innovative thinking, the first part of the workshop focused on articulating the challenges of ad-aptation in the form of a “functional specification”, for example the level of salinity tolerance that a major crop would have to achieve or the need to increase cloud precipitation in a cost-effective way. A second session considered the potential of breakthrough technologies for adaptation, whether in isolation or through convergence. Workshop participants were then asked to co-construct a success scenario for the year 2050 in which European agriculture (or its functions) will have made the best use of potential breakthroughs to adapt to climate change scenarios. On the basis of the success scenario, attention then focused on the steps needed now and in the coming years to achieve the desired outcome.
In this case, the tailored structure was based upon identi-fication and prioritisation of challenges in the domains of pests and diseases, water and land, and socio-economic dimensions. With an intervening wild-card exercise, the second main step involved identifying potential solutions to the challenges resulting from breakthrough technolo-gies in bio and non-bio domains. The timescale was 2050 in recognition of the rate of change of drivers and effects.

Linking Success Scenario and Ecosystem Mapping

The aim of the exercise was to pilot and test in real situations a foresight methodology designed to bring together key stakeholders to explore the longer term challenges that face their sector (or cut across sectors) and to build a shared vision that could guide the devel-opment of the relevant European research agenda. This includes identifying the changes in the European research and innovation ecosystem that would be needed to take forward that agenda. The target is not the Eighth Framework Programme in isolation or the specific case of the Joint Programming Initiatives but rather embedding them as core elements of wider cooperation and coordination mechanisms and proc-esses around the challenges facing the sectors exam-ined. The project combines the core approach of the “Success Scenario Workshop” with the mapping of the research and innovation ecosystem to address differ-ent types of research and innovation challenges.

The “Success Scenario Approach” is an action-based approach, which helps to generate a shared vision among senior stakeholders of what success in the area would look like, specified in terms of goals and indicators, which provide the starting point for developing a road-map to get there. The purpose of having such a vision of success is to set a ‘stretch target’ for all the stakeholders. The discussion and debate involved develops mutual understanding and a common platform of knowledge that helps to align the actors for action. In practice, the struc-ture of a workshop begins with a consideration of key drivers or challenges, builds a vision of success, and then focuses on actions to make the vision a reality. The work-shop helps to flag hidden bottlenecks and constraints pre-venting progress as well as windows of opportunity for joint policy coordination and action. Important outcomes of these workshops are the insights they provide in terms of the level of maturity in policy design and development and the viability and robustness of long-term policy scenarios to guide policy-making. The workshops also provide indi-cations on whether there is a need for further discussion to refine thinking and policy design and/or to bring additional stakeholders into the discussion.

The workshop approach is supported by a mapping of the research and innovation ecosystem, a concept that stresses the interdependencies between actors in re-search and innovation – here understood broadly to include policy as well as industrial innovation. The map articulates the identities and roles of key actors, the networks in place and the flows of money and knowl-edge. It also provides an overview of existing initiatives and the level of maturity of the system, how well it is working and whether networks need to be re-aligned or re-configured. Towards the end of the process, road-maps or implementation plans are developed identifying the key steps to be taken to put European research in the area on the appropriate footing.

Challenges in Three Key Areas

The Farhorizon Agri-climate Workshop working group discussions were structured on the challenges arising from climate change impacts on agriculture in three key areas, namely pests and diseases, water and land, and socio-economic aspects (including events outside Europe). Each cluster of challenges is explored in more detail below.

Cluster 1: Pests and Diseases

Early warning systems: Among the key impacts identi-fied in the first cluster were the migration of pests from hot countries and the need to detect and control the spread of invasive species. This requires action on a number of levels, including efforts to improve detection of invasive plant species or crops bringing new pests and diseases into Europe. Accuracy and timeliness of detec-tion systems is key for effective responses, hence the need for robust monitoring and early warning systems for picking up signs in initial phases. Sophisticated ICT-based expert systems together with smart technologies can detect weeds (and hidden pests) in imported plants.

Genetic engineering and genomics: In Europe monocul-tures represent a major problem due to additional risks relating to pests. There is a need to plan a shift to polycul-ture for a more diverse set of animals and plants. Genetic engineering has focused on one particular challenge while it also needs to address other challenges, such as adapt-ing existing crops quickly, genetic traits for animal health and the potential of genomics for enhancing plants’ ca-pacity for survival in stressful environments, requiring a focus on a broader genetic strain.

Territorial diversity and local, traditional knowledge: Re-search challenges range from experimentation with di-versified cropping to research on viroids and the spread of pests and human allergies. Despite territorial diversity in climate impacts, regions do not operate in silos result-ing in cross-impacts on bordering regions. This highlights the need for closer cooperation between disciplines in-cluding ICT, GIS, ‘omics’ (refers to disciplines that have the omics syllable in common, e.g. genomics) and taxon-omy. There are concerns about a shortfall of plant spe-cialists and taxonomists and the loss of traditional knowl-edge due to the growing attraction of genomics.

Cluster 2: Climate change impacts on water and land

The second cluster relating to climate change impacts on water and land can be divided into (i) ‘general impacts’, i.e. changes in temperature, solar radiation, rainfall, changes or increases in toxic air(borne) pollutant levels, water shortages, changes in plant types, changes in carbon dioxide levels and impacts on ecosystem(s). The speed of change in systems and their (and our) ability to respond is a key issue now (i.e. from traditional national systems and cultures to new global set-ups). (ii) ‘Water quality impacts’ – i.e. groundwater being affected by changing quantities of rainfall, potentially allowing the concentration of pollutants etc. to increase; changes in the relative priorities for water use compared to the cur-rent priority of drinking water quality over agriculture water quality. Increased biological activity is proportional to temperature increases, which could reduce water quality. (iii) ‘Water quantity impacts’ – i.e. droughts, floods and the generally shifting availability of water in space and time. Climate change could generally decrease the resis-tance and resilience of species (plant and other). (iv) ‘Impacts on land’ – i.e. mineral transport processes will be affected; soil dynamics will change (change of soil fertil-ity); desertification will alter land use; there will be a modi-fication in soil flora and fauna; where people live (have to live) may change; ‘ecosystem’ goods and services supported by the land will change; there is a changing sus-ceptibility of a variety of these things due to temperature.

Cluster 3: Socio-economic impacts

The foreseen impacts range from the urgency to de-velop new economic and agriculture models to invest-ments in technologies that are cost-effective, reliable and acceptable to society. These impacts can lead to ten-sions, insecurity, instability, especially in developing countries, due to scarce resources to address these con-cerns. This poses a general challenge of how to detect the tipping point in these situations and take action to reduce these tensions. Free trade discussions are ne-glecting climate change due to potential conflicts with the objectives of WTO negotiations. This calls for cli-mate change issues to be given a higher profile on the WTO agenda. Europe needs to develop an integrated response to economic growth, free trade and climate change based on improved communication between institutions and policy sectors, and ultimately new mod-els of economic growth decoupled from fossil carbon.

A potential impact with socio-economic effects is the emergence of local threats to agricultural systems lead-ing to the abandonment of sectors. Sectors of activity are in this scenario threatened by diseases, lack of water and other effects caused by extreme weather events. The challenges involve adapting to novel situations by new breeds and/or new technologies, investing in new tech-nologies, supplying information, educating and training people to adapt to necessary changes in lifestyle, and improving communication on climate change issues. In such situations, an increase in climate change refugees is envisaged, creating a dual challenge of prevention and integration. The means identified were international co-operation, technology transfer and education. Another key challenge is to identify effective means for keeping the environmental impact of intensification to a minimum through a new model of sustainably competitive agricul-ture based on: 1) profitability at farm level, 2) marketabil-ity of food products, 3) environmental sustainability, 4) coping with climate change, 5) energy efficiency and 6) coping with competing land uses. Developing and imple-menting this new model will require a very high level of policy coordination at the national, EU and global level. This model would address land management through transparent, effective processes for mediating conflicting uses, the introduction of new climate and agri-technologies based on public acceptance and the adaptation of educa-tion systems to promote change in lifestyle.

Agri-climate Success Scenario for 2050

Drawing on the insights gained from the analysis of challenges and suggested responses, a success sce-nario was constructed to illustrate an aspirational path by which these could shape the future:
The scene for the success scenario was set with refer-ence to future historical events including a Second Great World Food Crisis in the early 2040s, in which Europeans will have been forced to change their diet but where prescient actions taken to prepare the agricul-tural system from 2015 onwards will have insulated the Continent from the worst effects of climate change. A review written from the perspective of 2040 of the past 40 years illustrated how two generations of researchers were able to engage with a series of challenges and bring with them Europe’s timely actions to provide impor-tant insights on how proactive, forward-looking ap-proaches can be realised through joint transnational re-search initiatives. It referred to how farmers will have become increasingly used to facing the impacts of climate change reflecting the risks identified in the work-shop.

Elements of the foreseen policy approach included:

• European early warning and response strategy and facility
• Capitalising on existing knowledge
• Networked specialisation (a trans-European network of institutions synthesizing a large pool of knowledge).
A research agenda for agriculture included:
• Energy adaptation based on a mix of approaches including reduction of transport in production and dis-tribution, design of greenhouses that capture energy rather than use it, and breakthroughs in bio-energy from trees alleviating stresses on land use.
• Fertilisers that use less material input (potassium and phosphate) and less energy in their production.
• New varieties of plants with a reduced need for fertilisers and new varieties of fertilisers from manure and nitrogen fixing in grasses. Opposition to geneti-cally modified crops was dissipated by creating plants designed to be low risk (for example without the ability to spread pollen).
• Water use and drought resistance are critical factors particularly for Mediterranean regions. A multifaceted strategy includes the selection of plant varieties to con-serve water and breeding of drought resistant varieties.
• Soil fertility and dynamics provide an important re-search theme. The network supported a more robust and sustainable agriculture model and locally adapted systems. Its links to local farming communities and
researchers placed it in a strong position to spearhead change at the European level.

In summary, as a result of an early investment in capacity-building to cope with the climate impacts on agriculture from a range of perspectives (policy design, implementa-tion, knowledge capture and transfer), the success sce-nario describes an agricultural landscape in Europe 2050 that is highly diversified and yet robust to climate change effects. The success scenario also includes a retrospective on policy describing a situation where societal challenges dominate the bulk of effort and resources in the European research and innovation ecosystem. Reference was made to a situation in the early part of the century where the research and innovation constituencies is largely separate and the public viewed researchers as an isolated elite interested mainly in securing a continuous flow of funding. In this scenario, the financial crisis causes researchers to be much more explicit about how their work will contribute to economic recovery and major societal challenges. At the same time political, business and social leaders will have reassured the scientific community that substantial funding will be reserved for investigator-driven research but that much more effort will be made to ensure success-ful translation of the results of that work. Building the con-stituency to address the grand challenge of adaptation to climate change in agriculture will have been aided by or-ganisational innovations, including policy platforms that bring together a range of stakeholders responsible for policies relating to agriculture, climate change, research, and innovation, as well as the players in the field (re-searchers, farmers, business and intermediaries), who will have been sensitised to the challenges at a very early stage. Foresight actions will also have been used to help build a common vision and mobilise the participants.

Foresight Helps Adapt to Climate Change

This approach was intended to provide a practical dem-onstration of ways in which foresight involving key stake-holders can help develop new initiatives at European level. In practice, the Farhorizon workshop was placed in the context of a sequence of foresight activities, and it is fair to say that the net effect of all of these activities helped the agriculture and climate change research com-munities to become one of the first to engage realistically with the Joint Programming Initiative and to position itself for further opportunities within the Innovation Union framework. In terms of content, the workshop reinforced and extended certain conclusions of its predecessors and made a distinctive contribution by demonstrating the po-tential of breakthrough for non-bio-based technologies to contribute to the adaptive response to climate change in European agriculture. Within the bio-based list some more controversial issues were also made explicit.

Download EFP Brief No. 176_Foresighting the AgriClimate Ecology

Sources and References

European Commission [EC] (2009), ‘New challenges for agricultural research: Climate change, food security, rural devel-opment, agricultural knowledge systems’, 2nd SCAR Foresight exercise, DG Research, Brussels: EC.