Posts Tagged ‘chemicals’

EFP Brief No. 208: Forecasting of Long-term Innovation Development in Russian Economic Sectors: Results, Lessons and Policy Conclusions

Saturday, March 17th, 2012

The exercise presented includes scenarios of key Russian economic sectors and determines necessary technologies in accordance with such scenarios. As key sectors, the foresight team investigated the energy, iron and nonferrous-metals industry, agriculture, the chemical industry and pharmaceutics, the aircraft industry, commercial shipbuilding and the information sector.

Intensifying Foresight Efforts to Modernise the Russian Economy

Over the last years, we have seen increasing activity of federal and regional authorities in innovation and industrial policy in Russia. This activity has led to a series of documents and commissions concerned with the long-term development of the Russian economy. Among them are industry strategies (in more than 15 sectors), a conception of long-term socio-economic development for the Russian Federation (RF), priority directions for the development of science and technologies, and the Commission for Modernization and Technological Development of Russia’s Economy under the RF’s President.

The year 2006 marked the first “Concept for Long-Term Russian S&T Forecast till 2025” in the country’s modern history. This was developed and approved in cooperation with key ministries and science and business representatives. In 2006, practical steps toward implementing some of the foresight and forecast projects were launched (by 2012 we will have more than 50 key projects at different levels, including the national, regional and corporate level).

The first serious attempt to organise a foresight project at the national level was conducted more than 30 years ago within the Complex Program of S&T Development for the USSR. It aimed at S&T forecasting for a period of 20 years and can be considered a project of the first foresight generation (according to the definition by Georghiou et al., 2008). For the next 10-15 years, there was an absence of foresight and forecast exercises. In recent years, a number of initiatives have been launched to overcome this deficiency (for more information, see Sokolov & Poznyak, 2011).

Modern foresight projects in Russia today are very much in line with the current fifth generation of foresight exercises in developed countries, which includes a focus on social context and a strong policy-advisory orientation. Thus, we can say that Russian foresight development has taken a shortcut in these years and “leapfrogged” directly to what is currently considered the state of the art in foresight methodology.

The main challenges that these projects address are:

  • the need for diversification and a decreasing energy-output ratio of national GDP,
  • the increasing role of modernisation,
  • the transition to the innovation path proposed by the government,
  • threats from emerging countries (China, India) to Russia’s traditional markets,
  • changes in the global value chain, and the need to find new niches and markets,
  • opportunities to cooperate with foreign countries.

The key objectives of these projects are to:

  • identify key drivers and trends for the Russian economy,
  • identify the most critical technologies,
  • elaborate scenarios for key sectors and S&T fields,
  • develop policy recommendations at the federal and regional levels,
  • identify research priorities,
  • build expert networks around research organisations,
  • create pilot technology roadmaps for S&T fields and key sectors.

Methodology and Database for Foresight of Russian Economic Sectors

To achieve our aim, the database was based on two pillars. The first included information and relevant data from foreign and Russian forecasts, foresights at the country, industry and corporate level, and key Russian documents on S&T and industry development. The second pillar comprised data from various industry experts, representatives of key industries and consulting companies.

To construct various sector scenarios, we used elaborated qualitative models, which included sector analysis (characteristics of the technological base, organisation structure, role in exports, etc.), the identification of basic strategic alternatives for future sector development (e.g. technological and institutional), the construction of models of sector development, future visions, and the identification of priorities for S&T development in the sector in question for each vision.

This resulted in four to eight prospective scenarios for each key sector. To discuss the preliminary visions and present a final set of scenarios, we held a series of round tables and conferences. We also formed a multi-level pool of experts: the core included so-called “system experts” – high level professionals who were able to provide a comprehensive evaluation of the vision for the sector in question (2-3 persons for each sector); the next level included sector analysts who could contribute in-depth knowledge of different aspects relevant to the particular scenario (e.g., on markets and technologies; 7-12 persons for each sector); the last level was public relations experts and experts familiar with governmental and administrative processes and included representatives of industry journals, key federal and regional authorities (about 10-15 persons for each sector). We conducted focus groups, in-depth interviews and surveys to gain information from the experts participating in the project.

The beneficiaries of the project results are business (large, small and medium enterprises, business associations, industry institutions), government (state institutes for innovation development, federal and regional authorities), science (the system of Russian academies, research institutes), universities (leading institutes and labs in the Russian higher education system), and experts in the fields under consideration.

Project Results: Sectoral Models and Critical Paths

Some of the main sectoral results indicated that key sector development scenarios took institutional and technologic alternatives into account while identifying the main technologies necessary for implementing the scenarios. The results for the various sectors were highly diverse due to different sectoral structures and the number of sectors (ten). The table and illustration below briefly show some results for two sectors.

Medical Equipment and Pharmaceutics

After the sector analysis, we elaborated seven alternative paths of development for the pharmaceutics and medical equipment sector based on a literature review along the criteria mode of regulation, position in value-added chain, degree of modernisation and management. Then we verified alternatives by consulting industry experts and developed the five most probable models.

Information and Communication Technology

In case of the ICT sector, most experts agreed that a transition to the most preferable scenarios (“niche leader” or “technological leader”) cannot be accomplished directly. The only way to achieve them is to establish bridgeheads and use the competitive advantages gained to further advance toward the goal. Each scenario in Figure 1 contains a description of a future vision, possible barriers and risks, pros and cons, and recommendations for a shift in policy.

The exercise led to the following three policy-oriented results: (1) alternative “preferable” visions for the development of key sectors that are not limited only to the simple dichotomy of “bad” or “good” as in major government S&T documents; (2) recommendations for integrating long-term S&T forecasting as a basic instrument for strategic policymaking; (3) formation of a multi-level expert pool to serve as a communication network for discussing and constructing Russian S&T policy.

Foresight Culture Still Underdeveloped in Russia

We believe that the lessons and experience obtained during this project are representative of the whole field of foresight and forecast initiatives in modern Russian history. One of the key success factors in foresight is participation of key stakeholders and experts involved in shaping the future. In the case of Russia (at least 3-4 years ago), a lack of foresight culture has resulted in an “a priori”, indiscriminately negative perception of foresight initiatives. This can be explained historically by the fact that there have been some serious gaps between science and business and, as a result, in the supply of and demand for innovation. Mutual complaints are voiced to that effect. Business shows little interest in projects oriented toward long-term outcomes, lacks receptivity to innovations and displays low levels of global competition. We can say that the key actors (government and business) responsible for shaping the future are not fully up to the task. They have lost the “habit” of planning for a time span of more than 2-3 years.

One of the repercussions of the Soviet heritage is a lack of experts capable of acting as so-called “integrators”: experts able to devise strategies based on combining market pull with technological push. As a result, we have to first nurture a new generation of experts, typically to be recruited from representatives from the “technology” side, with the skills required to adopt a more comprehensive perspective of the sector as a whole.

Apart from qualification, a lack of expert commitment poses another problem in that experts show low interest in collaborative work and are more intent on lobbying and pushing their own individual interests.

Another serious drawback in foresight culture in Russia is an insufficient commitment to the processes required to formulate visions and scenarios on part of federal and regional authorities: they usually want to see “ready-to-use” results instead of participating in the process from the beginning.

We believe that a serious obstacle to the development of foresight culture in Russia is the lack of actually working, sustainable, systematic communication platforms for discussing different foresight results. Only in the past 2-3 years have they grown in number, particularly platforms launched by national research universities, technology platforms, etc. (for further information see Simachev, 2011).

Development of a common “cure” for deficiencies in foresight culture in Russia is complicated by the fact that Russian economic sectors are of a multi-structural nature, technologically and institutionally: some basic technologies are 100-150 years old and modernisation processes have not yet been completed in most industries. As a result, we observe a low level of innovation receptivity among Russian companies. Taking this into account, government policy should switch from “one-size-fits-all” instruments towards an innovation policy tailored to the specific situation in each sector or sub-sector.

Authors: Alexander Chulok, National Research University Higher School of Economics                                                       achulok@hse.ru
Sponsors: Ministry of Education and Science (Russian Federation)
Type: National foresight exercise
Organizer: Interdepartmental Analytical Center (www.iacenter.ru), Alexander Chulok, achulok@hse.ru
Duration: 2009-2010 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011  

 

EFP Brief No. 208_Forecasting Innovation in Russian Economic Sectors

Sources and References

Georghiou, L., Cassingena Harper, J., Keenan, M.; Miles, I. & Pooper, R. (eds.) (2008): The Handbook of Technology Foresight: Concepts and Practice. Cheltenham: Edward Elgar Publishing.

Sokolov A. & Poznyak A. (2011): Building Foresight Capacities for the Modernisation of the Russian Economy, EFP Brief No. 193, available for download at http://www.foresight-platform.eu.

Simachev Y. (2011): Technology Platforms as a New Instrument of the Russian Innovation Policy. available for download at http://www.iacenter.ru/publication-files/157/133.pdf

EFP Brief No. 160: Future Jobs and Skills in the EU

Tuesday, May 24th, 2011

The renewed Lisbon strategy stresses the need for Europe to place more emphasis on anticipating skill needs. Globalisation, technological change and demographic developments (including ageing and migration) pose huge challenges in that respect, comprising both risks and opportunities. At the same time, a lack of information on future skill needs has been a long-standing concern in Europe. With specific targets set in the Lisbon strategy, the need for regular forward-looking assessments has gained momentum. Subsequently, this resulted in the recent New Skills for New Jobs initiative by the European Commission, and related European projects aimed at identifying future job and skills needs using quantitative modelling approaches. While having advantages of robustness, stakeholders as well as the European Commission identified a clear need for complementary, more qualitative forward-looking analysis. Consequently, the European Commission (DG EMPL) earlier this year commissioned a series of 17 future-oriented sector studies (Horizon 2020) on innovation, skills and jobs following a qualitative methodology. The final results of these studies will become available in spring 2009, and will be followed by a number of other initiatives over the year to come and beyond.

EFMN Brief No. 160_Future Jobs and Skills

EFP Brief No. 143: Teagasc 2030: Reinventing the Irish Agri-Food Knowledge System

Sunday, May 22nd, 2011

Teagasc means ‘teaching’ or ‘instruction’ in Gaelic. It is the name of the food and agricultural research, education and advisory body in Ireland. By 2006, fundamental changes happening to the Common Agricultural Policy in Europe were already being felt throughout the Irish agri-food sector. New and emerging issues were gaining importance and looked likely to have an impact on the sector. It was necessary to ask how Teagasc could maintain its relevance to clients and stakeholders as it moved ahead. The study builds upon previous foresight exercises and long-term strategic studies undertaken in Ireland and the EU.

Employing Knowledge for  Developing a Positive Vision  and Creating Opportunities

Teagasc 2030 was designed to establish a broadly-shared vision of what the Irish agri-food and rural economy would look like in 2030 and a vision of what Teagasc could become as the leading science-based knowledge organisation in the sector. It set out to develop the strategic capabilities of Teagasc, improve its ability to provide proactive leadership on complex issues, identify strategies and mechanisms to maximize the impact of its knowledge generation and procurement, technology transfer and education activities through innovation support and to develop an internal culture of continuous renewal.

The Steering Committee (SC) included key Teagasc managers, high-level representatives from relevant organisations, such as the university system and the Environmental Protection Agency,influential business leaders from both the farming and food sectors, as well as international experts. The members of the SC played a decisive role in the process in that they were fully engaged and provided constructive input each time the group convened. The Working Group (WG), consisting of Teagasc employees aided by two international consultants, was responsible for the detailed planning and execution of the exercise. The Foresight Panel (FP) consisted of experts from Teagasc, representatives of the farming and food sectors, as well as experts from the research community, including a commercial research service provider. FP members participated in and contributed to workshops and other activities organized by the WG.

Early consultations with the SC reinforced the need for a structural approach that went beyond the traditional sectoral view. The SC emphasized the need for new strategic capabilities that would enable the organisation to operate in a rapidly changing context. One of the first tasks of the WG was to review foresight exercises on food, agriculture and the rural economy that had been conducted previously, whether in Ireland or around the world, start a discussion on the scope of the exercise and get agreement on the nature of the results it should provide. The first observation of the WG was that previous foresight exercises on food, agriculture and the rural economy tended to focus on problems related to commodity markets and the Common Agricultural Policy (CAP) system of payments. It was resolved at an early stage that Teagasc 2030 would have to do more than this by identifying how knowledge could help create opportunities for young people in the sector and by developing a positive and realistic vision of an innovation-led rural economy.

The work itself was organized in two phases. A Divergent Phase, where the main purpose was to study issues relating to the organisation, the sector and the broader economy in a creative and exploratory fashion, brought in outside knowledge and expertise, as well as relevant case-studies from abroad. The second Convergent Phase focused on choices to be made about desired outcomes, long-term visions for the future of Teagasc and the context in which it would operate, as well as the practical immediate steps to be taken on the basis of an action plan. Just before the end of the Divergent Phase a Radical Thinkers Workshop was organized to challenge peoples’ thinking and try to overcome any remaining inertia or scepticism as regards new ideas and the necessity for change.

The Divergent Phase

This consisted of paper writing on a number of key topics that provided important background to the members of the Foresight Panel. The papers were especially important as they allowed people who are not experts in a domain to get an overview of what is happening. The real action, however, was in a series of four workshops (WS).

Turning Towards a
Knowledge Based Bio-Economy

WS1 consisted of a scoping and profiling activity to determine the boundaries of the Teagasc 2030 exercise and to verify that the FP included a sufficiently broad range of actors. Important discussions arose concerning how agriculture and food related to the use of land in Ireland, the relationship between this and both the rural and national economy, how both the theatre and the actors might be changing, and how there was a need to revisit ideas of who the typical Teagasc client was, is now or would be in the future. The immediate output of this workshop was strongly criticized by the SC as not being radical enough. It was thought too traditional or sentimental in its attachment to ‘land’. The modern reality consists of urban agriculture, gardens on the sides of buildings, forests, marine and lake habitats, greenhouses and bio-reactors, as well as a food industry that has long outgrown a dependence on local production and that in some sectors relies almost entirely on imports for raw material inputs. This workshop started a process of reflection that lasted until the end of the exercise.

The feedback of the SC on the results of this first workshop was very important. Its intervention ensured that some of the issues addressed in the workshop did not conclude pre-maturely, but stayed open and continued to be debated for the best part of a year. New ideas need time to mature. The workshop started a process whereby traditional and ultimately limited thinking about farming and the rural economy were replaced with entirely new thinking about the knowledge-based bio-economy or KBBE.

WS2 focused on trying to understand relevant drivers of change, the factors shaping the future of Teagasc and the environment in which it operates. The focus was on identifying the drivers and the impacts that they could have on the economy in 2030. The discussion included references to trends and trend breaks. The exercise was intended to help people develop their ‘intuition’ about 2030.

WS3 focused on strategic issues and started the process of formulating the opportunities and challenges that the various sectors and stakeholders would face in 2030. By this stage the concept of the ‘Sustainable KBBE’ had started to come into focus.

WS4 was about developing scenarios to further develop thinking about the ‘Sustainable KBBE’ in 2030, to further explore and define the issues and challenges, and to identify the big questions, whose answers would impact on the structures and programmes of Teagasc going forward.

A Radical Thinkers Workshop was timed to take place between WS3 and WS4 to provide new ideas to the ongoing foresight process. This consisted of a series of talks followed by discussions, involving speakers from a variety of areas who were capable of presenting challenging views on relevant topics. It involved scientists, geographers, venture capitalists and policy makers. For some participants it was an opportunity to hear for the first time about a renewable chemicals industry based on crops grown for their chemistry rather than for food, feed or fibre. For others, it was an opportunity to hear what foreign experts think. A venture capitalist provided his vision of where important opportunities for investment would arise in future. A Danish speaker raised important questions about the organisation of research and innovation when he explained that, while Denmark performs about 1% of all global research, Danish industry requires access to the other 99% of global research if it is to achieve or maintain global competitiveness.

The Convergent Phase

This consisted of a series of three workshops involving the FP and had to provide an actionable plan for the transformation of Teagasc. Such a plan would require the commitment of Teagasc senior managers. It had to be something they would own and act upon. To make sure that they were adequately prepared, a series of internal meetings was arranged involving senior managers and representatives of the WG to help them understand the implications of the exercise, identify the main axes of change for the organisation and anticipate the detailed requirements of the last workshop. Although the foresight workshops were usually animated by members of the WG with help from the external consultants, the goal was for key sessions of the final workshop to be led by members of senior management with support from the WG. At the same time, an internal dissemination or consultation process took place involving all parts of the organisation. The goal was to explain what was happening and gather feedback on the changes required for moving forward. An external consultation process separately involved farming and food industry representatives. It too explained the ideas that were emerging. It gathered feedback and inputs from Teagasc clients as inputs to the final stages of the foresight exercise.

WS5 was dedicated to the development of scenarios about the Sustainable KBBE. In particular, the goal was to develop more specific thinking about the role of knowledge, learning, research, innovation, training and advice in the sector in 2030.

WS6 was used to finalize the scenarios and flesh out a vision for the sector in 2030 along with an identification of its knowledge requirements and the role that Teagasc would occupy in the system.

WS7 was devoted to the issue of organizational transformation and the directions of change for Teagasc. The senior management meetings played a significant role in determining the structure of this last meeting. Based on their discussions it was decided to focus on transformation under the major headings of leadership, partnership and governance.

The issue of leadership originally emerged in meetings of the SC and was echoed in discussions with industrial stakeholders. Leadership gaps emerged on long-term scientific and technological issues not only for small and medium-sized enterprises, but for larger companies as well.

The Vision of a  Sustainable Bio-Economy

One of the most important results was the development of a vision for the Agri-Food and Rural Economy in 2030 as a knowledge intensive, innovative, internationally competitive and market-led bio-economy. This helped to place the sector at the centre of something big and positive, with significant opportunities that would play a role not only in the rural economy, but also in the general knowledge economy, via its contribution to climate change, energy security, sustainability and the transition to a post-petroleum era.

Recognizing that countries with excellence in agriculture have opportunities for moving up the value-chain by selling not only their products but their know-how, the final report speculated about a time when the most important export of the dairy sector in Ireland might no longer be its milk, cheese, yoghurt and functional foods, but its management expertise and its technical knowledge about the organisation of competitive dairy production systems.

The Four Pillars of the KBBE

From an Irish perspective it made sense to complete this vision by distinguishing four pillars of the KBBE:

  • Food Production and Processing, which mainly represents mature industries where competition is relentless and global, where competitiveness often relies on efficiencies of scale, automation and process technologies, as well as scientific management and competitive sourcing.
  • Value-Added Food Processing, which includes advanced food processing and food service, functional foods, as well as food-additives and ingredients, bio-actives, nutraceuticals and cosmaceuticals. This sector is fast moving and innovative. There is continuous adoption and improvement of technologies for production, processing, distribution and preparation. Supply chains are constantly changing and considerable attention is given to intangibles such as patents,brands, provenance and traceability.
  • Agri-Environmental Goods and Services includes foodsafety and traceability, animal welfare, energy security, climate, clean air and water, fertile soils, bio-diversity, areas of public amenity, natural beauty and those of importance for cultural heritage. Although these are normally treated as spin-offs from other activities based on multifunctionality, they are given a separate identity in recognition of the overall role they will play in the quality of life of citizens, in energy and climate security as well as in the overall sustainability of society and the economy.
  • Energy and Bio-Processing includes the production of feedstock for bio-fuels and bio-polymers. This sector makes substantial investments in harnessing knowledge. It places great importance on knowledge as a factor of production. It corresponds to new and emerging areas of science and to entire new markets. It is characterized by a high level of risk and provides opportunities for government support to lead markets. This sector is where highvalue-added and commodity sectors of the future are being created.

Demographics Facilitating Change

A key observation concerning the future of Irish agriculture was the observation that approximately 40% of farmers in Ireland would retire in the next 10 years and that almost all farms would change hands at least once by 2030. This pointed to an opportunity to use the unavoidable dynamic of retirement and property transfer to restructure the farming sector so that land as a natural resource could make the greatest possible contribution to the economy. This would include enabling successful farmers to increase the area they manage and less successful ones to move on perhaps using models based on leasing.Discussions arose about ‘future farmers’ and ‘foresight farmers’. It is possible that the land transfers that will happen in the coming years will give rise to a younger, better educated and more international generation of farmers. Armed with agricultural MBAs, or degrees in bio-technology, many will approach farming as a business more than a family tradition or vocation. Their approach would be less sentimental and more scientificentrepreneurial. Such farmers represent very different clients for Teagasc than those it has served before.

Leadership, Partnership and Governance

One of the most important currents of debate throughout this foresight exercise concerned the traditional push-approach to technology transfer, the so-called ‘linear model’. The old approach was summarized as follows
143_bild1

whereas Teagasc in 2030 would need to focus on innovation support that would resemble something more like this:
143_bild2

One challenge that emerged was the need to become more demand-led as an organisation. Another challenge emerged from the recognition that no organisation can meet all of its research or knowledge needs internally and that an increasing share of these would need to be sourced outside. This is something that traditional research organisations are not used to doing, and, in future, they will need to engage both private and public service providers, as well as cooperate with international knowledge networks.

The vision that emerged for Teagasc as an organisation in 2030 was that of an organisation suffused with a culture of support for innovation by its clients, capable of:

  • providing leadership where necessary on innovationrelated issues,
  • developing and maintaining the partnerships required for research, innovation, technology transfer and education,
  • employing governance mechanisms to assure relevance and accountability to its clients and stakeholders.

Creation of a Permanent Foresight Unit

In many ways, the implementation of the action plan started even before the exercise was finished. A part of the action plan is a natural continuation of consultations with major stakeholder groups that was started as part of the foresight process. The most immediate and tangible result was the creation of a permanent foresight unit within Teagasc to oversee the implementation of the Teagasc 2030 action plan and to support other foresight activities as needed within the organisation.

The action plan is outlined in the Teagasc 2030 report. It includes steps to create a broader culture of innovation within the organisation and to intensify systematic interaction with client groups and stakeholders. It addresses reform of personnel structures to enable greater mobility of staff within the organisation, facilitate transdisciplinary work and align incentives with the needs of clients. Other structural reforms include a focus on network-based activities, as well as timelimited project-network-like interventions such as technology platforms and commodity working groups that pool the resources of partners and involve stakeholders in management.

The general message of Teagasc 2030 is a positive one based on the opportunities offered by the KBBE, not only for actors currently involved in the agri-food and rural economy, but for a whole new generation of bio-entrepreneurs who may have no prior link to the land.

The key to success continues to be innovation. What is new is the pace of innovation and the need for organisations such as Teagasc to operate simultaneously on several fronts in a more international context and in shorter time frames. The challenge for Teagasc in the future will be to increasingly channel its efforts and resources towards support for innovation, in particular for the development of the knowledge-partnerships required by clients for innovation in the KBBE.

Authors: Patrick Crehan – Patrick.Crehan@cka.be, Lance O’Brien – Lance.Obrien@teagasc.ie, Gerry Boyle – Gerry.Boyle@teagasc.ie, Owen Carton –  Owen.Carton@teagasc.ie
Sponsors: Teagasc the Irish food and agricultural research, advisory and training body
Type: Structural foresight
Organizer: Teagasc, CKA and SEZ
Duration: 1.5 yrs
Budget: €300,000
Time Horizon: 2030
Date of Brief: July 2008

Download: EFMN Brief No. 143_Teagasc 2030

Sources and References

All background papers, scenarios and proceedings as well as the final report are available from the Teagasc 2030 website at www.teagasc.ie/foresight/index.htm. The papers and presentations of the Radical Thinkers Workshop are available at http://www.teagasc.ie/publications/2007/20070725/index.htm.
Lance O’Brien is the head of the new Foresight Unit. He can be contacted at lance.obrien@teagsc.ie.

EFP Brief No. 137: The Future of Manufacturing in Europe A Survey of the Literature and a Modelling Approach

Saturday, May 21st, 2011

Manufacturing in Europe is facing challenges that may impact on its performance in the near future: the emergence of international competitors, new technologies allowing the emergence of new business models, increased off-shore and relocated activities. The aim of this study was to provide policy-makers with a long-term vision of European manufacturing, its characteristics, its place in the EU economy, in the world and the main challenges it will be facing. Its purpose was to identify, on the basis of current demographic, environmental, technological, economic and social trends, and possible scenarios, the likely bottlenecks, unsustainable trends and major challenges that European manufacturing will have to face over the coming 30 years. From this, implications for various microeconomic policies, notably for industrial policy, were explored, contributing to the mid-term review of industrial policy in 2007 by the European Commission’s Directorate-General for Enterprise and Industry.

Future of European Manufacturing

Manufacturing in Europe is affected by a changing world. In 2004, ten countries joined the EU followed by Bulgaria and Rumania in 2007. Most of the new member states have a different economic structure and other comparative advantages than the ‘old’ EU-15, in particular in labour-intensive industries. This is also the case for the candidate countries from the Balkans and Turkey. Enlargement hence not only offers opportunities in terms of a larger domestic EU market, but also in terms of specialisation and – associated – economies of scale and scope.
Secondly, a new wave of globalisation unprecedented in terms of scale and speed is unfolding. This process of economic integration – with resources becoming more mobile, economies becoming increasingly interdependent and financial markets becoming increasingly international – has important implications for the future of manufacturing. This also holds for the integration of China and India in the world economy; each is home to about 20 percent of world population. Both countries are leading and highly competitive exporters, India in software and IT-enabled services, and China in skill-intensive manufactures. Especially China has emerged as the powerhouse of the Asian region and has in less than 20 years become the world’s manufacturing and trading platform. Globalisation has also impacted European manufacturing in another way: lower production costs and the potential of new consumer markets have caused European manufacturers to increase the quality and design of their products and
have led to international sourcing of (parts of their) production. Thirdly, consumer demand in Europe itself is changing. As its citizens are becoming wealthier, they demand more services and place higher requirements on manufactured goods. Demographics (ageing) might strengthen this change. Finally, the pace of technological change appears to have sped up in viewof globalisation and increasing international competition. Globalisation, EU integration, shifting demand and progress in science and technology, and innovation – whether disruptive or not – will all have a major impact on how the manufacturing landscape in Europe in terms of location, production, distribution of labour and physical appearance will manifest itself in the near and longer-term future. The purpose of this long-term scenario study was twofold: (1) to provide policy-makers, decision-makers and others with
two long-term scenario-based views on the future of European manufacturing and (2) to explore the scope for EU policies to positively address and influence the future.

Combining Qualitative and Quantitative Foresight Approaches

The scenarios in this study have been developed in three consecutive stages, consisting of (i) a survey of existing futures studies, (ii) the drafting of qualitative scenarios, and (iii) a quantification of the scenarios using WorldScan, a dynamically applied general equilibrium model for the world economy. This approach was designed as a hybrid combining the traditional foresight studies with more quantitative oriented economic-scenario studies.
One important difference between the two groups of studies is the detail with which technological factors are explored in the foresight studies compared to the economic-scenario and modelling studies, which generally treat them as exogenous factors. Furthermore, while the foresight studies, in contrast to the modelling studies, largely employ qualitative scenarios, this study aims at combining the benefits of both approaches:
first synthesising the results from many foresight studies to develop qualitative scenarios, followed by a quantification of the expected implications to check for the consistency of the scenarios as well as assess the expected impacts of policy packages. Furthermore, the communities conducting foresight studies and economic-scenario modelling studies have largely co-evolved with little interaction between them. This has led to foresight studies, focusing on participative processes and qualitative (policy) analyses and recommendations, producing
results that are challenged by approaches focusing on quantitative analyses. This study therefore aimed to bridge the two communities by employing methods used in each of them. As such, the results of the study can also be seen as an experiment on how to conduct such studies in the future, combining methods from different communities.

A Three Part Structure

As outlined above the study consisted of three distinct parts: a literature survey, the development of qualitative scenarios and the quantification of the scenarios using a modelling approach.

Survey of Future Studies

The survey of futures studies served two goals: (1) to help identify the relevant main drivers and trends that form our current perspective and knowledge that can be seen as key to the future of manufacturing in Europe and (2) to explore what other expert groups and think tanks regard as possible manufacturing futures.

The timeframe considered in the literature surveyed ranged from 2015 to 2050. During the course of stage one, 101 foresight reports, scenario studies, academic publications and policy documents were surveyed along five clusters: international, technological, social and environmental trends and drivers as well as new business models. The studies surveyed covered European studies, global studies, North-American studies and South-East Asian studies in order of importance.

FutMan, ManVis and Manufuture – three major EU-wide foresight projects conducted over the past five years – formed the backbone of the survey. The results of these foresight studies were supplemented by other materials ranging from theme or aspect futures studies (e.g. expected income developments; impacts of climate change) to similar foresight studies carried out in other countries, such as the U.S. (e.g. IMTI, 1998; SRI), Japan (Nistep, 2005) and China (NRCSTD, 2005 – for further references see full background report [Zee & Brandes, 2007]).

Qualitative Scenarios

The survey identified at least five sets of major drivers affecting the future of European manufacturing. These drivers are: (1) globalisation and international competition, (2) technological progress, (3) socio-demographic change (in income and wealth, social values, shifting preferences, ageing), (4) energy and resource scarcity, and (5) climate change and the environment. Based on these, two scenarios were developed: Cosy at Home and Adventuring the World. The two scenarios exemplify two explicit but ‘moderate extremes’ based on further integrating markets, on the one hand, and a stalling or reversal of market integration, on the other. In Cosy at Home, inwardlooking, risk-averse, indecisive behaviour dominates the public as well as the private realm. In Adventuring the World outward-looking (resulting in a further opening-up), risk-loving and pro-active behaviour is prime.Cosy at Home  This scenario depicts a European manufacturing sector that faces an overall business and political climate that gradually becomes more inward-looking and passive. Uncertainty and indecisiveness at world level are answered with

a European response of retreat. Politically unstable regions, threats of international terrorism, absence of binding action at global scale to tackle the negative consequences of climate change and the inevitable depletion of fossil fuels, and – related – a lack of real breakthroughs in alternative energy production and promising new technologies (nanotechnology and to a lesser extent biotechnology), give people the feeling of standstill and uneasiness. This in turn translates into a downturn in consumer and producer confidence and more inward-looking and risk-averse behaviour. Trust is something that may be found close by, but certainly not far from home. Rising energy prices and strong increases in monitoring and control of international movements of persons, goods and services result in a cost explosion in international transport and trade, which significantly alters the turn-of-the-century trend towards a further integrated world economy.

Adventuring the World  This scenario depicts a European manufacturing sector that is faced with an overall business and political climate of international cooperation, openness, but also strong competition. European self-confidence strengthens as the political and ideological emptiness that characterised the turn-of-the-century era has been replaced with new inspiring notions of Europe’s role in the world. This includes Europe assuming the position of a front-runner in solving problems of global warming, energy use and ageing as well as major breakthroughs in European social and cultural integration. Renewed decisiveness has triggered momentum at the global level and geo-political instability and threats of international terrorism are gradually disappearing. Considerable progress is made in alternative energy production and promising new technologies (nanotechnologies and biotechnology) have taken hold. A general upswing in consumer and producer confidence combines with new openness, and outward-looking and adventurous entrepreneurial behaviour. Trust relationships thrive. Rising energy prices stimulate new and more cost efficient energy-saving ways of transport of persons and products. Adequate road pricing and energy taxation increasingly supplant traditional labour taxes, making mobility and energy consumption better manageable and curbing harmful consequences.

Quantification of Scenarios

In the third step, the scenarios were quantified using an applied general equilibrium model for three main purposes: (1) the model ensured that the scenarios were consistent, since economic variables allow to describe and relate constraints and the current knowledge about interactions in the economy in a consistent form; (2) the quantification gave a feeling for the relative importance of various developments for the future well-being of society; (3) the model also offered the possibility of assessing the impact of framework policies and their relative importance.
However, large parts of the scenarios could not be quantified, as the general trends observed are expected to impact variables over too long time horizons for workable quantitative assumptions. The complex feedback loops furthermore make it only realistic to illustrate the scenario trends related to economic growth and economic integration, which are at the heart of the WorldScan model. (For details on the quantification of the scenarios and their expected impact on manufacturing please see the ‘final report’).

Impact of Framework Policies on Scenarios

The quantification of scenarios sketched the macroeconomic developments, showing the possible impact of globalisation, technological change, ageing and structural change towards a service economy on economic growth and trade. Europe is expected to become less important as a place for manufacturing production in both scenarios as manufacturing shifts to Asia. The question whether these trends could be affected by policies was assessed in the third step. Rather than thinking about targeting and subsidizing specific industries, framework policies that could affect the environment where industrial production takes place in Europe were modelled for potential impact on the scenarios. The framework policies analysed were: (1) upgrading skills, (2) more effective regulation and less administrative burdens for firms, (3) R&D and innovation policies, (4) a strong competitive single market, (5) environmental policies, (6) supporting energy policies and (7) global trade policy. The macro-economic outcomes for the EU as a whole in 2025 for both scenarios were analysed under the different framework policies. The differences between the two scenarios are minor. In Adventuring the World, GDP increases slightly more than in Cosy at Home, mainly because of the large impact of R&D and internal market policies. Exports increase faster in Cosy at Home, largely due to a composition effect of a higher share of total exports destined for other European countries. An increase in intra-EU exports due to new single market policies thus has a larger effect on total exports. R&D and innovation policies have the largest impact representing about 40% of the total GDP effect based on the lower bound returns in the literature. The reduction in administrative burden adds about 1.5% to GDP, internal market policies about 2% and skills even less. However, over time, when the whole labour force has been educated, the effects of upgrading skills will be larger. From Gelauff and Lejour (2006) we know that GDP effects will be three times as high in 2040 compared to 2025. However, compared to other framework policies, the economic effects even in 2040 will be unsubstantial.

A Future for Manufacturing

The analysis has shown that the share of manufacturing in employment and value added has decreased in Europe for decades reflecting structural changes in the global economy. However, manufacturing will remain important for trade and productivity increases, outpacing by far the service sector.

Global manufacturing is expected to grow, fuelled by Asian economic development. Nevertheless, there is a future for manufacturing in Europe. In 2025, Europe’s share in global manufacturing production and trade is estimated to be about 20%, much higher than its share in global population. Manufacturing is also estimated to contribute more than 15% to European value added in 2025 and to remain the most important driver for exports. A further strengthening of the internal market and adequate R&D and innovation policies can have a substantial impact on these shares. Both can be influenced by EU policy-making, but the framework policies cannot reverse the trends in shares of value added and employment. Within the manufacturing sector various developments will take place. The study discriminated between ten aggregate manufacturing sectors: ‘food products’, ‘textiles and wearing apparel’, ‘wood and other manufacturing’, ‘pulp, paper and publishing’, ‘chemicals, rubber and plastics’, ‘basic metals’,
‘non-metallic minerals’, ‘electronic equipment’, ‘transport equipment’ and ‘other machinery and equipment’. Based on
historical productivity growth paths of these sectors, their trade openness, R&D intensity, energy efficiency and skill intensity, it is highly likely that these (sub)sectors will develop differently over time. This also applies to subsectors within the ten sectors identified. Most sectors can distinguish between basic and specialized manufacturing activities, with basic manufacturing on average being more affected by international
competitiveness than specialized manufacturing.

Openness a Key Determinant

A number of interesting conclusions about the future of manufacturing in Europe were drawn. The increase in trade and,more generally, globalisation appears to be one of the most important drivers, making the sectors that are already most open to international trade also the ones mostly affected in the future. They include textiles and wearing apparel, wood and other manufacturing, chemicals, rubber and plastics, electronic equipment, transport equipment and other machinery and equipment. Overall, the sectors food products and pulp, paper and publishing will be less influenced. These are more domestically oriented sectors, less R&D intensive and face less technological
progress. Europe has no comparative advantages in textiles and wearing apparel, electronic equipment and basic
metals. This disadvantage will become further manifest in the oncoming twenty years. In particular, this applies to electronic equipment, which – while in the past representing a relatively large sector – will decline even further. Textiles and wearing apparel is an already small sector in terms of value added and employment, which means that an even less prosperous future for this sector will also have less overall impact. Chemicals, rubber and plastics, transport equipment and other transport and equipment will be the most important manufacturing sectors in Europe,
despite a deteriorating comparative advantage in the other machinery and equipment sector. These sectors are important for European exports and will account for about a quarter of global production and trade in these sectors over the coming decades. Of the framework policies analysed in this study, improving skills, reducing the administrative burden and increasing energy efficiency, have the least impact on manufacturing. R&D and
innovation policies and strengthening the internal market, on the other hand, have the strongest and most positive impact on manufacturing. They are also the most ambitious in terms of policy formulation and implementation, and potentially very effective in supporting manufacturing because of their R&D intensity and open-to-trade nature. In the coming decades, Europe’s decreasing share in global manufacturing production and trade will flatten. The EU framework policies support this slowing of the relative decline of manufacturing activities in Europe, which may even come to a near standstill in sectors such as chemicals, rubber and plastics, and combined machinery and equipment.

Authors: Felix Brandes (TNO-IPG)  felix.brandes@tno.nl
Sponsors: European Commission – DG Enterprise & Industry
Type: European futures study on manufacturing
Organizer: CPB, the Netherlands (Arjan Lejour) & TNO-IPG (Frans van der Zee)
Duration: 01/2007-05/2007
Budget: 130,000€
Time Horizon: 2037
Date of Brief: March 2008

Download: EFMN Brief No. 137_ Manufacturing in Europe

Sources and Links

The key results of the study were published as part of Chapter 5 of the European Competitiveness Report 2007. More details and the full scenarios are published in the background reports and final report and can be accessed via the website of the European Commission and the CPB the Netherlands.
http://ec.europa.eu/enterprise/enterprise_policy/industry/index _en.htm

Brandes, F., A. Lejour, G. Verweij & F. van der Zee (2007)
“The Future of Manufacturing in Europe”, Final Report, 31st May 2007, available at:
http://ec.europa.eu/enterprise/enterprise_policy/industry/doc/f
uture_manufacturing_europe_final_report.pdf

CEC (2007) “Chapter 5: The Future of Manufacturing in Europe – a survey of the literature and a modelling approach”
in European Competitiveness Report 2007, 31st October 2007,SEC (2007)1444, available at:
http://ec.europa.eu/enterprise/enterprise_policy/competitiveness/1_eucompetrep/eu_compet_reports.htm

Lejour, A. & G. Verweij (2008) “Two quantitative scenarios
for the future of manufacturing in Europe”, CPB Netherlands
Bureau for Economic Policy Analysis, available at http://www.cpb.nl/nl/pub/cpbreeksen/document/160/doc160.pdf

Zee, F.A van der & F. Brandes (2007) “Manufacturing Futures
for Europe: A survey of the literature”, TNO the Netherlands,
available at:
http://ec.europa.eu/enterprise/enterprise_policy/industry/doc/future_manufacturing_europe_literature_final_report.pdf

EFP Brief No. 134: Future Challenge for Europe: Providing Security and Safety to Citizens

Saturday, May 21st, 2011

As stated in the recent EC Communication on ‘Reforming the budget, changing Europe’ (SEC (2007) 1188), the European Union has a key role to play in ‘providing security and safety to citizens’. Especially in the aftermath of 11th Sept. 2001 security related issues are becoming an increasingly important facet of global society and have an increasing impact on economy and science. The issues are manifold and include protecting citizens and state from organized crime, preventing terrorist acts, and responding to natural and manmade disasters. Civil security issues are becoming more and more important to governments and national economies across the globe, and the EU is no exception. The EC sees security research as an important policy objective, which started in 2001 with a Preparatory Action on Security Research (PASR) and is now the tenth theme of the FP7 Cooperation programme. Security and safety technologies are seen to have applications in many sectors including transport, civil protection, energy, environment, health and financial systems.

Analysing EFMN Documents: TextAnalyst

A selection of 160 foresight and futures studies was taken from the EFMN database. These were studies with different backgrounds, scopes, themes, horizons and on different scales. The semantic data-mining tool ‘TextAnalyst’ was employed to analyse the texts. First, out of the 160 studies, a small number of relevant studies was selected that had titles strongly related to the researched topic. TextAnalyst analysed these texts and found the most relevant keywords and semantic relations between the most important words. These terms were compiled into a keyword list for the researched topic. This list of keywords was used to analyse all 160 selected studies. The TextAnalyst
yielded all sentences containing any of the keywords, with an additional hyperlink in the text file allowing to view
the context in which the sentence occurred. The TextAnalyst also gave a semantic relation between the searched keywords and other words. The related terms thus identified were added to the list of keywords. The summary of sentences that contained one or more words from the list of keywords was manually read in the original context and if the sentence or the section where the sentence occurred was regarded as providing new or additional information, this section was copied into a text file. In order to avoid any extreme out-of-context copying of sentences, statements that were part of a scenario description were not added to the file. After this analysis of the 160 studies, a text file was created containing sections of the original studies with information related to the selected topic
and the reference to the original document. The dictionary for the analysis presented here consisted of the
following terms: anticipation, crisis, defence, defence, emergency, enemy, intelligence, military, NBC, NRBC, prevention, protection, risk, safety, secure, security, surveillance, terrorism, terrorist, threat and weapon. This analysis is exclusively based on the review of 36 foresights and future-oriented studies completed between 2000 and 2007 – most of them in 2004-2005. While most studies were carried out at a national level in Europe, the pool of sources also included seven studies conducted at the EU-level, eight Japanese national studies, the
global study AC-UNU Millennium project, the supranational study on information and communication technology (ICT) in the Nordic countries, and one Finnish study of regional scope.

Limitations of the Analysis

Attention should be paid to the fact that, while all 36 studies address certain safety and security issues, they are not all equally detailed. In particular, whereas some foresights (e.g. the UK Foresight) provide an in-depth analysis of the state-of-theart of technology, as well as a detailed forward look, the significance of some one-sentence statements, as they are typically made in Delphi studies such as the 8th Japanese National Foresight, may be more limited. Such statements have been considered very carefully so as not to bias the analysis. From the above, it follows that the following analysis – based on a restricted number of foresights – neither intends to be exhaustive nor to provide an overview of security and safety-related issues weighted according to their importance for future EU policies. However, it might provide some interesting insights about future safety and security threats – as predicted in foresights – as well as how future technological, societal or economic developments and policies might help to combat them. Since some of the analysed foresights are quite old, this means that some of the proposed actions could already have been implemented.

Safety & Security:  A Crosscutting Issue

Safety and security issues are generally related to all kinds of natural and human-induced (intentional and non-intentional) disasters or risks, which can affect individuals, societies or nations. Important technological and political tasks in the context of the protection of citizens and vital infrastructures have addressed a broad spectrum of issues such as future threats and vulnerabilities of critical infrastructures in key sectors (e.g. information systems, financial systems, industrial plants, public buildings, transport systems and infrastructures, communication networks, energy infrastructures, food distribution systems, etc) or the impact of terrorism and organized crime on the development of civil societies.

From the selected studies two major areas were identified bearing future risks for society: civil security and IT security. The area of civil security can be divided into subsections as follows:

  • terrorism and crime prevention,
  • ensuring the safety and security of critical infrastructures,
  • food and chemicals safety, and
  • threats from climate change and natural disasters.

Civil Security

Terrorism and Crime Prevention

Terrorism is expected to become a growing threat to all parts of society in the future mainly for two reasons. Firstly, due to the NRBC (nuclear, radiological, biological and chemical) weapons, the proliferation of ballistic, tactical and cruise missiles, and, on another level, the proliferation of small arms, the use of technological objects (e.g. civilian aircraft) as weapons and the transfer of technical know-how have multiplied risk factors for our societies. Also terrorist activities are becoming networked and are increasingly seeking points of entry into international business and, through corruption, into public administration.

The threat from terrorism must be counteracted by increased international cooperation on all levels and increased spending for security.

Another aspect raised by the study by the Finnish Committee for the Future is that because of continued synergy among, and miniaturization of, everything from chemistry sets and pharmaceutical manufacturing to genetic and nanotech engineering terrorist attacks will be much simpler to conduct in the future. Eventually an individual (single individual being massively destructive, SIMAD), acting alone, will be able to create and deploy a weapon of mass destruction.

In the broader context of terrorism, general crime prevention is an important aspect. The Japanese studies suggest that the security provided by governments will deteriorate in the future; thus people must provide for their own protection. Means like physical access control and burglary alarm systems for private homes are seen to be possible substitutes. The British study ‘Strategic Futures Thinking’ concludes that new technologies, such as DNA profiling, will prove increasingly vital in criminal trials as will more sophisticated detection, surveillance and monitoring devices in the wider field of crime prevention.

Safety and Security of Critical Infrastructures

Energy and transport infrastructures (so-called ‘critical infrastructures’) are crucial to economy and society. Therefore, it is hardly surprising that their safety and security is addressed in different foresights – at a national and supranational level. The Finnish foresight ‘Finnsight 2015’, for instance, stresses the fact that modern societies have increasingly become vulnerable in the sense that any malfunctioning or failure of critical infrastructures may paralyse the whole society. The foresights identify several threats to critical infrastructures:

  • Critical infrastructures increasingly rely on ICT applications and they more and more depend on the reliability of broad and complex ICT networks. Protecting critical infrastructures is therefore closely related to protecting the ICT networks they are based on. In this regard, ICT liability has to be ensured; it will also be particularly important to prevent criminal intrusion and the misuse of networked-based infrastructures.
  • Of course, on a global scale, terrorism is expected to remain one of the main threats in the future. Several foresights such as the Fistera study and the UK Foresight therematching them with the personal identification provided at the point of embarkation). Indeed, the terrorism threat is expected to give further momentum to the development of specific markets such as imaging technologies (allowing for instance the detection of suicide bombers in case remote identification and containment become reality).
  • Transport safety for citizens also implies reducing the risk of accidents. Thanks to the diffusion and increasing affordability of ICT, use of intelligent transport systems based on telematics as well as video-surveillance systems are expected to become more widespread to improve transport safety, for instance, by reacting in case fatigue, recreational drug use or medication impair the performance of the driver of a car or the pilot of a plane. Intelligent transport systems may also help maximise transport and logistics efficiency leading to benefits in terms of increased productivity and economic growth.

Food and Chemical Safety

Quite surprisingly, and despite their relevance for everyday life and everyone’s health, issues related to food safety is rarely addressed by the foresights screened. Some, however, do highlight that ensuring food safety requires assessing the long-term impact of harmful chemicals (e.g. heavy metals) on human beings, crops, as well as livestock. Food safety is therefore closely related to preventing damage to the environment due to chemicals in general. Standardized and socially approved tools for the risk assessment of chemicals should hence be developed. In this regard, chemical analysis is expected to be facilitated in the future through the use of miniature chemical analysis systems. Regarding functional foods, the monitoring of the long-term consequences of their use is underscored as essential. The EU may have a role to play in assessing health claims and the safety of new functional food products entering the market. Providing transparent information on health issues, safe threshold limits for specific functional food products, as well as on storage requirements will also contribute to promoting food safety for the consumer.

Threats from Climate Change  and Natural Disasters

Some studies emphasize the risk from climate change and natural disasters. Particularly in Japan the risk from natural disasters such as volcano eruptions, avalanches and earthquakes is addressed. The development of new predictive systems is proposed. Systems to observe disasters such as communications satellites, GPS, unmanned aircraft, and so on should be implemented in order to better understand situations after disasters have occurred and to be able to respond more swiftly.

Nearly all studies addressing climate change raise the issue of flooding – often in connection with the expected rise of the sea level. For instance the UK Foresight study claims that climate change will have a high impact under every scenario due to two threats. Firstly, the coasts are expected to be especially at risk: relative sea-level rise could increase the risk of coastal flooding by four to ten times. Secondly, precipitation is expected to increase flood risks across the country by two to four times. Flooding in towns and cities will be one of the greatest challenges in the future. Building in areas at risk from flooding should be avoided or, if inevitable, space should be provided to accommodate flooding in river and coastal areas. In this context, the development of effective modelling capabilities to predict flooding and manage flood routes in intra-urban areas should be pursued.

The study by the Finnish Committee for the Future also expects that change in precipitation will result in water tables falling on all continents. Droughts in areas where 40% of the population depends on watersheds controlled by two or more countries call for new water management strategies that can mitigate the effects of migration, conflicts, etc.  The threat of storm surges in coastal areas will increase due to rising sea levels combined with changes in the number, location, and strength of storms.

Although flooding is seen as one of the main challenges of the future, at the same time, it is also acknowledged that predictions in this area are steeped in uncertainty, as in the case of climate change or demographic and socio-economic trends. Thus, one has to develop robust water management strategies that will yield satisfactory living conditions for a wide range of possible scenarios.

IT Security

IT security in general is seen as a major topic of the future. Society depends on vulnerable, complex information technology systems, which need to be protected.

One major issue is the protection of privacy in the sense of protection against loss of control over one’s personal data. Already nowadays, Wikis and mostly blogs may contain data and information about an individual that could easily be disclosed to unauthorised others, given the low levels of security and privacy protection implemented so far. This risk will be enhanced in the future because of the widespread use of ambient intelligence (AmI) with its heterogeneity (in contrast to closed, codesigned systems), its complexity of hardware and software (introducing the dependability challenge), its distribution of knowledge and resources (co-operation and interconnection), as well as the foreseen mobility needs (which introduces more vulnerability than in a static world). Radio frequency identification (RFID) implants in people can also cause a threat to privacy, since they permit easy and instantaneous identification and authentication of individuals. On the other hand, they can increase security, for example, by enabling parents to easily track down their children in case of abduction.

The major challenge is to balance privacy and security needs. There are various ways to protect privacy in the future. Legislation to protect data of a personal nature is one of them. Another is by implementing new security measures. The level of privacy and security will be defined more by the location from where data are accessed than by the place where they are actually physically stored.

Another fast-growing area will be the provision of trust and guarantee services in the payments markets. A suggested new measure is establishing a clearinghouse where banks can anonymously share information about security breaches. Also, telecommunication companies are increasingly offering payment services. The introduction of m-payment systems will require new risk management systems and co-operation between different providers. It also calls for improved protection of confidential data provided by customers. Although wireless networks already provide a more secure network than the ones offered in fixed-line markets, there is need for further measures. Among those suggested are enhanced use of digital signatures (a kind of unique electronic stamp), authentication and encryption. One study suggests replacing binary network security (access or not) by more complex security mechanisms thereby granting differential access to different actors.

Three Prevailing Issues

Taking the limits of the applied methodology into account, the analysis of 36 foresights and future-oriented studies, which were completed between 2000 and 2007, yielded three major security and safety issues: terrorism, IT security and natural disaster protection in the context of the global climate change. Concerning terrorism, studies seem to perceive growing future threats to all parts of society mainly because of modern societies’ increasing dependence on computer networks and critical infrastructures and also because of the growing proliferation of NRBC agents, ballistic missiles and small arms. In the broader context of terrorism general crime prevention is also an important aspect.
IT security in general is seen as a major concern of the future. Important issues in this field are related to the protection of privacy in terms of protecting against the loss of control over personal data and to the containment of future risks connected with the widespread use of ambient intelligence (AmI), RFID chips or wireless networks. The studies addressing natural disaster protection predict rising global threats of climate change causing flooding, storms and other weather anomalies in the future. Such studies also expect that the change in precipitation will result in water tables falling on all continents, which calls for new water management strategies capable of mitigating the effects of migration, conflicts, etc.

Authors: Anette Braun (braun_a@vdi.de),   Nils Elsner (elsner@vdi.de), Andreas Hoffknecht (hoffknecht@vdi.de),  Sabine Korte (korte@vdi.de), Sylvie Rijkers-Defrasne (rijkers@vdi.de), Olav Teichert (teichert@vdi.de) – Future Technologies Division at VDI TZ
Type: Overview
Date of Brief: February 2008

 

Sources and References

  • ‘Reforming the budget, changing Europe – A public consultation paper in view of the 2008/2009 budget review’, Commission of the European Communities, SEC(2007)1188 final, Brussels, 12.9.2007.
  • ‘Meeting the challenge: the European security research agenda’, report of the European Security Research Advisory Board, September 2006.
  • 8th Japanese Foresight – Agriculture, forestry, fisheries and foods (2005)
  • 8th Japanese Foresight – Electronics (2005)
  • 8th Japanese Foresight – Environment (2005)
  • 8th Japanese Foresight – Frontier (2005)
  • 8th Japanese Foresight – Information and Communications (2005)
  • 8th Japanese Foresight – Manufacturing (2005)
  • 8th Japanese Foresight – Social Technology (2005)
  • AC-UNU Millenium Project – Antiterrorism Scenarios (2005)
  • Austrian BMVIT Safety and Security Research 2011 – EFMN Brief 33 (2005)
  • Dutch NRLO – Functional Foods Position and Future Perspectives (2001)
  • EC Ambient Intelligence in Everyday Life (AmI@Life) (2003)
  • EC High Level Expert Group (HLEG) – Foresighting the New Technology Wave

– Converging Technologies – Shaping the Future of European Societies (2004)

  • EC IPTS – D1gital Territ0ries (2007)
  • EC IPTS – The Future of M-payments (2001)
  • EC IPTS-ESTO – Future Bottlenecks in the Information Society (2001)
  • EC IPTS-ESTO Roadmapping Project – Healthcare Technologies Roadmapping – The Effective Delivery of Healthcare (2003)
  • Finnish Committee for the Future – Democracy and Futures (2006)
  • Finnish ESF – Uusimaa 2035 Scenario Project (2004)
  • Finnish TEKES – FinnSight 2015 (whole exercise) (2006)
  • FISTERA – Key European Technology Trajectories – 2nd Report (2004)
  • French FutuRIS (2004)
  • French Ministry of Defence – PP30 – Prospective Plan of the French Defense Policy in 30 Years (2004)
  • Turning the Water Wheel Inside Out. Foresight Study on Hydrological Science in The Netherlands (2005)
  • UK DEFRA – Climate Change Scenarios for the United Kingdom (2002)
  • Greek National Technological Foresight (Whole Exercise) (2005)
  • Ireland Marine Foresight (2005)
  • Japanese Optoelectronic Industry and Technology Development Association – Optical Technology Roadmap (2003)
  • Nordic Innovation Centre – ICT Foresight – Nordic foresight and visions on ICT in healthcare, security, the experience economy and production systems (2005-2007)
  • Strategic Futures Thinking – meta-analysis on published material on drivers and trends (2001)
  • UK National Foresight – Cyber Trust and Crime Prevention (2004)
  • UK National Foresight – Exploiting the Electromagnetic Spectrum (2004)
  • UK National Foresight – Flood and Coastal Defence (2004)
  • UK National Technology Foresight Programme – Foresight IT 2000 (2000)
  • UK National Technology Foresight Programme – Foresight Financial Services (2000)
  • UK National Technology Foresight Programme – Crime Prevention Panel

(2000)

 

Download: EFMN Brief No. 134_Safety_and_Security

EFP Brief No. 91: Government and Corporate Social Responsibility 2020

Friday, May 20th, 2011

While corporate social responsibility is increasingly requested in order to respond to current environmental challenges and threats to public health, the ISIS group of the Commissariat Général du Plan of the French Government (“The Plan”) analyses trends in corporate behaviour as well as regulatory principles underlying sustainable development and corporate social responsibility. Beyond this, the ISIS group explores future issues in different sectors in order to illustrate existing junctions and differences. Based on this prospective analysis, ISIS built four strategic scenarios for state intervention to make an inventory of tools to urge enterprises encompassing social and environmental issues in their schemes for economic development.

EFMN Brief No. 91 – Government and Corporate Social Responsibility 2020

EFP Brief No. 77: Technology for Industry Foresight – Kocaeli 2012

Friday, May 20th, 2011

Kocaeli is one of the leading industrial cities in Turkey. Technology Foresight exercise for industry in Kocaeli aimed at shaping the future of the region through university-industry collaboration by anticipating changes, developments and advancements in manufacturing technologies and increasing the effectiveness and competitiveness of the industry in the region.

EFMN Brief No. 77 – Technology for Industry Foresight – Kocaeli 2012

EFP Brief No. 63: South African Benchmark 2020

Friday, May 20th, 2011

The overall goal of this foresight study is the identification of global technological trends, which will influence the competitiveness and future development of South African industries over the next 15 years. The study specifically focuses on innovation areas that hold the potential to reduce industrial dependency on foreign technology. Broad-based recommendations are formulated, intending to support the formulation of policies, strategies and programmes aimed at growing South Africa’s technology and innovation base.

EFMN Brief No. 63 – South African Benchmark 2020

EFP Brief No. 54: Spanish Nuclear Energy Futures 2030

Tuesday, May 10th, 2011

The purpose of this exercise was to identify the main technologies that would influence the development of nuclear energy in Spain up until 2030. The picked up information is supposed to help to change the public opinion in Spain from a sceptic view towards a broader acceptance of the application of nuclear energy.

EFMN Brief No. 53 – European Manufacturing Visions ManVis 2020

EFP Brief No. 39: Turkish S+T Vision 2023

Friday, May 6th, 2011

‘Vision 2023: Strategies for Science and Technology’ is a national project aimed at providing Turkish stakeholders with a vision for the development of science and technology vision in Turkey over a period of 20 years. It involved comprises four strands: Technology Foresight, Technological Capacity, R+D Manpower and R+D Infrastructure. The Technology Foresight strand provided the backbone of the Vision 2023 project. The remaining three programmes supporting the Foresight strand by collecting data on the existing science, technology and innovation capacity, hard data on R+D manpower as well as R+D infrastructure, as well as an inventory of national technology assets and an overview of the institutional and legal framework for research prevailing at this time.

EFMN Brief No. 39 – Turkish S+T Vision 2023