Posts Tagged ‘building (housing)’

EFP Brief No. 152: Combining ICT and Cognitive Science: Opportunities and Risks

Tuesday, May 24th, 2011

Many experts think that the technological convergence of previously separated sciences like nanotechnology, biotechnology, information and communication technologies and cognitive sciences will have a deep, long-term impact on society and economy. Key actors in society need to become aware of the challenges linked to converging applications (CA) and take decisions in support of developing them. By analysing CA-related opportunities and risks at a very early stage, we hope to contribute to reducing possible adverse effects in the future.

EFMN Brief No. 152_ICT and Cognitive Science

EFP Brief No. 151: Furniture Foresight Centre – CEFFOR®

Tuesday, May 24th, 2011

CEFFOR was created to promote the sustainable development (in terms of all three pillars: economic, social and environmental) of the
furniture industry in countries with high costs of production. CEFFOR is to accomplish this task by means of contributing strategic
information to the social agents and companies who participate in determining enterprise strategies and industry policies.

EFMN Brief No. 151_Furniture Foresight Centre

EFP Brief No. 143: Teagasc 2030: Reinventing the Irish Agri-Food Knowledge System

Sunday, May 22nd, 2011

Teagasc means ‘teaching’ or ‘instruction’ in Gaelic. It is the name of the food and agricultural research, education and advisory body in Ireland. By 2006, fundamental changes happening to the Common Agricultural Policy in Europe were already being felt throughout the Irish agri-food sector. New and emerging issues were gaining importance and looked likely to have an impact on the sector. It was necessary to ask how Teagasc could maintain its relevance to clients and stakeholders as it moved ahead. The study builds upon previous foresight exercises and long-term strategic studies undertaken in Ireland and the EU.

Employing Knowledge for  Developing a Positive Vision  and Creating Opportunities

Teagasc 2030 was designed to establish a broadly-shared vision of what the Irish agri-food and rural economy would look like in 2030 and a vision of what Teagasc could become as the leading science-based knowledge organisation in the sector. It set out to develop the strategic capabilities of Teagasc, improve its ability to provide proactive leadership on complex issues, identify strategies and mechanisms to maximize the impact of its knowledge generation and procurement, technology transfer and education activities through innovation support and to develop an internal culture of continuous renewal.

The Steering Committee (SC) included key Teagasc managers, high-level representatives from relevant organisations, such as the university system and the Environmental Protection Agency,influential business leaders from both the farming and food sectors, as well as international experts. The members of the SC played a decisive role in the process in that they were fully engaged and provided constructive input each time the group convened. The Working Group (WG), consisting of Teagasc employees aided by two international consultants, was responsible for the detailed planning and execution of the exercise. The Foresight Panel (FP) consisted of experts from Teagasc, representatives of the farming and food sectors, as well as experts from the research community, including a commercial research service provider. FP members participated in and contributed to workshops and other activities organized by the WG.

Early consultations with the SC reinforced the need for a structural approach that went beyond the traditional sectoral view. The SC emphasized the need for new strategic capabilities that would enable the organisation to operate in a rapidly changing context. One of the first tasks of the WG was to review foresight exercises on food, agriculture and the rural economy that had been conducted previously, whether in Ireland or around the world, start a discussion on the scope of the exercise and get agreement on the nature of the results it should provide. The first observation of the WG was that previous foresight exercises on food, agriculture and the rural economy tended to focus on problems related to commodity markets and the Common Agricultural Policy (CAP) system of payments. It was resolved at an early stage that Teagasc 2030 would have to do more than this by identifying how knowledge could help create opportunities for young people in the sector and by developing a positive and realistic vision of an innovation-led rural economy.

The work itself was organized in two phases. A Divergent Phase, where the main purpose was to study issues relating to the organisation, the sector and the broader economy in a creative and exploratory fashion, brought in outside knowledge and expertise, as well as relevant case-studies from abroad. The second Convergent Phase focused on choices to be made about desired outcomes, long-term visions for the future of Teagasc and the context in which it would operate, as well as the practical immediate steps to be taken on the basis of an action plan. Just before the end of the Divergent Phase a Radical Thinkers Workshop was organized to challenge peoples’ thinking and try to overcome any remaining inertia or scepticism as regards new ideas and the necessity for change.

The Divergent Phase

This consisted of paper writing on a number of key topics that provided important background to the members of the Foresight Panel. The papers were especially important as they allowed people who are not experts in a domain to get an overview of what is happening. The real action, however, was in a series of four workshops (WS).

Turning Towards a
Knowledge Based Bio-Economy

WS1 consisted of a scoping and profiling activity to determine the boundaries of the Teagasc 2030 exercise and to verify that the FP included a sufficiently broad range of actors. Important discussions arose concerning how agriculture and food related to the use of land in Ireland, the relationship between this and both the rural and national economy, how both the theatre and the actors might be changing, and how there was a need to revisit ideas of who the typical Teagasc client was, is now or would be in the future. The immediate output of this workshop was strongly criticized by the SC as not being radical enough. It was thought too traditional or sentimental in its attachment to ‘land’. The modern reality consists of urban agriculture, gardens on the sides of buildings, forests, marine and lake habitats, greenhouses and bio-reactors, as well as a food industry that has long outgrown a dependence on local production and that in some sectors relies almost entirely on imports for raw material inputs. This workshop started a process of reflection that lasted until the end of the exercise.

The feedback of the SC on the results of this first workshop was very important. Its intervention ensured that some of the issues addressed in the workshop did not conclude pre-maturely, but stayed open and continued to be debated for the best part of a year. New ideas need time to mature. The workshop started a process whereby traditional and ultimately limited thinking about farming and the rural economy were replaced with entirely new thinking about the knowledge-based bio-economy or KBBE.

WS2 focused on trying to understand relevant drivers of change, the factors shaping the future of Teagasc and the environment in which it operates. The focus was on identifying the drivers and the impacts that they could have on the economy in 2030. The discussion included references to trends and trend breaks. The exercise was intended to help people develop their ‘intuition’ about 2030.

WS3 focused on strategic issues and started the process of formulating the opportunities and challenges that the various sectors and stakeholders would face in 2030. By this stage the concept of the ‘Sustainable KBBE’ had started to come into focus.

WS4 was about developing scenarios to further develop thinking about the ‘Sustainable KBBE’ in 2030, to further explore and define the issues and challenges, and to identify the big questions, whose answers would impact on the structures and programmes of Teagasc going forward.

A Radical Thinkers Workshop was timed to take place between WS3 and WS4 to provide new ideas to the ongoing foresight process. This consisted of a series of talks followed by discussions, involving speakers from a variety of areas who were capable of presenting challenging views on relevant topics. It involved scientists, geographers, venture capitalists and policy makers. For some participants it was an opportunity to hear for the first time about a renewable chemicals industry based on crops grown for their chemistry rather than for food, feed or fibre. For others, it was an opportunity to hear what foreign experts think. A venture capitalist provided his vision of where important opportunities for investment would arise in future. A Danish speaker raised important questions about the organisation of research and innovation when he explained that, while Denmark performs about 1% of all global research, Danish industry requires access to the other 99% of global research if it is to achieve or maintain global competitiveness.

The Convergent Phase

This consisted of a series of three workshops involving the FP and had to provide an actionable plan for the transformation of Teagasc. Such a plan would require the commitment of Teagasc senior managers. It had to be something they would own and act upon. To make sure that they were adequately prepared, a series of internal meetings was arranged involving senior managers and representatives of the WG to help them understand the implications of the exercise, identify the main axes of change for the organisation and anticipate the detailed requirements of the last workshop. Although the foresight workshops were usually animated by members of the WG with help from the external consultants, the goal was for key sessions of the final workshop to be led by members of senior management with support from the WG. At the same time, an internal dissemination or consultation process took place involving all parts of the organisation. The goal was to explain what was happening and gather feedback on the changes required for moving forward. An external consultation process separately involved farming and food industry representatives. It too explained the ideas that were emerging. It gathered feedback and inputs from Teagasc clients as inputs to the final stages of the foresight exercise.

WS5 was dedicated to the development of scenarios about the Sustainable KBBE. In particular, the goal was to develop more specific thinking about the role of knowledge, learning, research, innovation, training and advice in the sector in 2030.

WS6 was used to finalize the scenarios and flesh out a vision for the sector in 2030 along with an identification of its knowledge requirements and the role that Teagasc would occupy in the system.

WS7 was devoted to the issue of organizational transformation and the directions of change for Teagasc. The senior management meetings played a significant role in determining the structure of this last meeting. Based on their discussions it was decided to focus on transformation under the major headings of leadership, partnership and governance.

The issue of leadership originally emerged in meetings of the SC and was echoed in discussions with industrial stakeholders. Leadership gaps emerged on long-term scientific and technological issues not only for small and medium-sized enterprises, but for larger companies as well.

The Vision of a  Sustainable Bio-Economy

One of the most important results was the development of a vision for the Agri-Food and Rural Economy in 2030 as a knowledge intensive, innovative, internationally competitive and market-led bio-economy. This helped to place the sector at the centre of something big and positive, with significant opportunities that would play a role not only in the rural economy, but also in the general knowledge economy, via its contribution to climate change, energy security, sustainability and the transition to a post-petroleum era.

Recognizing that countries with excellence in agriculture have opportunities for moving up the value-chain by selling not only their products but their know-how, the final report speculated about a time when the most important export of the dairy sector in Ireland might no longer be its milk, cheese, yoghurt and functional foods, but its management expertise and its technical knowledge about the organisation of competitive dairy production systems.

The Four Pillars of the KBBE

From an Irish perspective it made sense to complete this vision by distinguishing four pillars of the KBBE:

  • Food Production and Processing, which mainly represents mature industries where competition is relentless and global, where competitiveness often relies on efficiencies of scale, automation and process technologies, as well as scientific management and competitive sourcing.
  • Value-Added Food Processing, which includes advanced food processing and food service, functional foods, as well as food-additives and ingredients, bio-actives, nutraceuticals and cosmaceuticals. This sector is fast moving and innovative. There is continuous adoption and improvement of technologies for production, processing, distribution and preparation. Supply chains are constantly changing and considerable attention is given to intangibles such as patents,brands, provenance and traceability.
  • Agri-Environmental Goods and Services includes foodsafety and traceability, animal welfare, energy security, climate, clean air and water, fertile soils, bio-diversity, areas of public amenity, natural beauty and those of importance for cultural heritage. Although these are normally treated as spin-offs from other activities based on multifunctionality, they are given a separate identity in recognition of the overall role they will play in the quality of life of citizens, in energy and climate security as well as in the overall sustainability of society and the economy.
  • Energy and Bio-Processing includes the production of feedstock for bio-fuels and bio-polymers. This sector makes substantial investments in harnessing knowledge. It places great importance on knowledge as a factor of production. It corresponds to new and emerging areas of science and to entire new markets. It is characterized by a high level of risk and provides opportunities for government support to lead markets. This sector is where highvalue-added and commodity sectors of the future are being created.

Demographics Facilitating Change

A key observation concerning the future of Irish agriculture was the observation that approximately 40% of farmers in Ireland would retire in the next 10 years and that almost all farms would change hands at least once by 2030. This pointed to an opportunity to use the unavoidable dynamic of retirement and property transfer to restructure the farming sector so that land as a natural resource could make the greatest possible contribution to the economy. This would include enabling successful farmers to increase the area they manage and less successful ones to move on perhaps using models based on leasing.Discussions arose about ‘future farmers’ and ‘foresight farmers’. It is possible that the land transfers that will happen in the coming years will give rise to a younger, better educated and more international generation of farmers. Armed with agricultural MBAs, or degrees in bio-technology, many will approach farming as a business more than a family tradition or vocation. Their approach would be less sentimental and more scientificentrepreneurial. Such farmers represent very different clients for Teagasc than those it has served before.

Leadership, Partnership and Governance

One of the most important currents of debate throughout this foresight exercise concerned the traditional push-approach to technology transfer, the so-called ‘linear model’. The old approach was summarized as follows
143_bild1

whereas Teagasc in 2030 would need to focus on innovation support that would resemble something more like this:
143_bild2

One challenge that emerged was the need to become more demand-led as an organisation. Another challenge emerged from the recognition that no organisation can meet all of its research or knowledge needs internally and that an increasing share of these would need to be sourced outside. This is something that traditional research organisations are not used to doing, and, in future, they will need to engage both private and public service providers, as well as cooperate with international knowledge networks.

The vision that emerged for Teagasc as an organisation in 2030 was that of an organisation suffused with a culture of support for innovation by its clients, capable of:

  • providing leadership where necessary on innovationrelated issues,
  • developing and maintaining the partnerships required for research, innovation, technology transfer and education,
  • employing governance mechanisms to assure relevance and accountability to its clients and stakeholders.

Creation of a Permanent Foresight Unit

In many ways, the implementation of the action plan started even before the exercise was finished. A part of the action plan is a natural continuation of consultations with major stakeholder groups that was started as part of the foresight process. The most immediate and tangible result was the creation of a permanent foresight unit within Teagasc to oversee the implementation of the Teagasc 2030 action plan and to support other foresight activities as needed within the organisation.

The action plan is outlined in the Teagasc 2030 report. It includes steps to create a broader culture of innovation within the organisation and to intensify systematic interaction with client groups and stakeholders. It addresses reform of personnel structures to enable greater mobility of staff within the organisation, facilitate transdisciplinary work and align incentives with the needs of clients. Other structural reforms include a focus on network-based activities, as well as timelimited project-network-like interventions such as technology platforms and commodity working groups that pool the resources of partners and involve stakeholders in management.

The general message of Teagasc 2030 is a positive one based on the opportunities offered by the KBBE, not only for actors currently involved in the agri-food and rural economy, but for a whole new generation of bio-entrepreneurs who may have no prior link to the land.

The key to success continues to be innovation. What is new is the pace of innovation and the need for organisations such as Teagasc to operate simultaneously on several fronts in a more international context and in shorter time frames. The challenge for Teagasc in the future will be to increasingly channel its efforts and resources towards support for innovation, in particular for the development of the knowledge-partnerships required by clients for innovation in the KBBE.

Authors: Patrick Crehan – Patrick.Crehan@cka.be, Lance O’Brien – Lance.Obrien@teagasc.ie, Gerry Boyle – Gerry.Boyle@teagasc.ie, Owen Carton –  Owen.Carton@teagasc.ie
Sponsors: Teagasc the Irish food and agricultural research, advisory and training body
Type: Structural foresight
Organizer: Teagasc, CKA and SEZ
Duration: 1.5 yrs
Budget: €300,000
Time Horizon: 2030
Date of Brief: July 2008

Download: EFMN Brief No. 143_Teagasc 2030

Sources and References

All background papers, scenarios and proceedings as well as the final report are available from the Teagasc 2030 website at www.teagasc.ie/foresight/index.htm. The papers and presentations of the Radical Thinkers Workshop are available at http://www.teagasc.ie/publications/2007/20070725/index.htm.
Lance O’Brien is the head of the new Foresight Unit. He can be contacted at lance.obrien@teagsc.ie.

EFP Brief No. 140: Security of Energy Supply: A Quantitative Scenario Study on Future Energy Systems for the EU25 for 2030

Saturday, May 21st, 2011

The quantitative scenario study on the EU energy system focuses on the security of energy supply and different alternatives for the EU energy system. Five different scenarios for the EU25 energy system by 2030 were developed. The scenarios were then grouped into two main families called “advanced conventional” and “domestic action” and their respective pros and cons analysed with regard to all relevant EU-policy fields for providing policy recommendations.

The Dual Challenge of Climate Protection
and Security of Energy Supply

The EU currently faces two different challenges with regard to the future development of the EU energy system and the question of the ‘security of energy supply’. Firstly, the era of cheap and abundant conventional energy resources appears to be coming to an end. This means that maintaining reliable supply levels implies significant and timely investment in new and more expensive oil and gas production, which will put upward pressure on world market prices for oil, gas and, to a lesser extent, coal – with potential impacts for economic development and growth. Furthermore, the geographical concentration of oil and gas export potential, combined with newly emerging
large energy importing economies (i.e. China, India) can be expected to intensify international competition for market access to the declining resources and, ultimately, may also generate international conflicts.
Distinct from these issues, a second challenge has emerged. Climate change requires substantial reductions in global
greenhouse gas emissions, which essentially means using less energy and switching to carbon neutral energy carriers.
Both challenges require determined and timely action from the EU and its member states, as well as from the international community at large. A conventional, albeit advanced, “business as usual” (BAU) strategy is likely to face increasing problems when trying to adequately cope with these simultaneous challenges. In order to analyse important strategies and/or technology decisions (higher/lower nuclear share in electricity generation, increased energy efficiency and use of combined heating and power [CHP], increased use of renewable energies) and highlight
a range of possible future energy solutions for the EU25, five different scenarios have been developed according to the strategies and targets requested by the European Parliament’s Committee on Industry, Research and Energy (ITRE).

Five Options to Go Ahead

In order to draw different possible futures of the EU energy system, five scenarios based on two main sources were designed. The basic data, economic assumptions and the main results for the BAU scenario were derived from the latest available EU energy and transport projections (Decker 2006, Mantzos 2006, Mantzos & Capros 2006). Demand-side projections and analyses of higher penetrations of energy efficiency and renewable energies were derived from a recent scenario analysis by the Wuppertal Institute (Lechtenböhmer et al. 2005a/b). The quantification and combination of potentials, costs, strategies, policies and measures, and the calculation of scenarios were carried out using the Wuppertal Scenario Technique.

In the business as usual (BAU) scenario, the continuation of energy policy trends would already lead to a strong primary energy efficiency increase within the EU25. However, this increase would not be sufficient to compensate for growing GDP. As a consequence, primary energy demand would increase by almost 15% and import dependency by more than a third. Due to an increased share of renewable energy sources (RES) and a switch to natural gas, CO2 emissions would increase by only 3% to 6.6%, depending on the nuclear energy policy. With regard to climate policy, it is assumed in the BAU scenario that the EU25 will accept international emission reduction targets for the commitment periods after 2012 of 15% by 2020 and 30% by 2030.

The N+ scenario – as defined in accordance with the request by the ITRE committee – is a variant of the BAU scenario based on the expansion of nuclear energy (thus N+). While in the BAU scenario nuclear capacity declines by 28% from 141 GW (2000) to 101 GW in 2030, in the N+ scenario the construction of about ten more new nuclear power plants of 1300 MW each is assumed, which would result in a nuclear capacity of about 126 GW in 2030 – or 25% more than in the BAU scenario. CO2 emissions in power and steam generation decrease by about 6.6% vs. BAU by 2030, whereas total emissions from the EU25 decrease by 1.9%. Furthermore, this scenario also includes the use of carbon capture and storage (CCS), which can further reduce CO2 emissions, albeit fairly modestly in the case of the EU (another 6%~7% of the power sector emissions compared to BAU).

The N– scenario marks the other end of a range of possible nuclear energy BAU scenarios. Power plants are assumed to perform less well in this scenario and this, together with waste issues and a stronger perception of the risks of nuclear energy, combines to increase the pressure on plant operators. Consequently, no new nuclear power plants are commissioned and a in 2030. In total, CO2 emissions in this scenario would be at a level of 72 million tonnes, or 1.9%, more than in the BAU scenario by 2030.

Table 1: Comparison of the scenarios – results for 2030
 

 

Scenario  

CO2 emissions (% ∆

1990)

Primary energy

demand

(% ∆

1990)

Import dependency Nuclear share in electricity

generation

RES

share in

PE demand

Energy effi-

ciency

growth rate

(2000 – 2030)

BAU +4.7% +14.6% 64.8% 18.7% 12.2% 1.5%/ year
N+

(+CCS)

+3.0%

(+1.3%)

+16.4% 62.7% 23.6% 12.0%
N +6.6% +12.2% 66.5% 13.8% 12.4%
EE –18.8% – 8.2% 59.8% 15.7% 15.0% 2.2%/ year
RE – 45.1% – 20.1% 49.1% 16.4% 31.4% 2.7%/ year

Source: own calculations, Wuppertal Institute, 2006

 

The energy efficiency (EE) scenario assumes strong policy at EU level, as well as within the member states, targeted at accelerating the rate of increase of energy efficiency in order to reach a level of energy efficiency 50% higher than in the BAU scenario by 2030. This means that energy efficiency (GDP per ktoe primary energy use) would increase by 2.2% per year and reach 10.5 MEur/ktoe in 2030 (BAU: 8.5).

The renewable energy expansion (RE) scenario describes a restructuring towards a renewable energy system with a target of approaching a renewable energy supply as high as possible by 2030. To achieve such a high share of renewable energy, the scenario combines an even stronger drive towards energy efficiency (11.9 MEur/ktoe by 2030) with an accelerated expansion strategy of renewable energies, which reach a share of 31% of total primary energy supply in 2030. This strategy depends on the feasibility of the projected 34% share of fluctuating energies (wind, hydro, solar, tidal and wave) in the electricity system and on the feasibility of accelerating energy efficiency improvement to 2.7% per year.

Policy Choices

The five scenarios developed for the study have been analysed with regard to the core energy policy fields. Brief discussions on recent trends, followed by implications for policy needs with regard to the different scenarios, have been discussed for each scenario.

The energy issues considered in this report interact directly and indirectly with many European policies, in particular the climate policy, the Lisbon strategy and the external (energy markets) policy, which do not focus exclusively on energy but function as framework policies. These policy areas with wider scope can significantly influence the feasibility of potential pathways for the development of the energy system. In addition to these crosscutting policies, the following key energy policies are touched upon in the study: single European energy market, energy efficiency, renewable energies and energy technology policy.

Policies on EU External Energy Markets

The comparison of scenarios with regard to policies on EU external energy markets shows that quite different challenges lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – particular emphasis would be needed on external energy supply through the establishment of stable political relations with oil and gas producing countries and (for gas) transit countries and the mobilisation of huge investments– most of all for natural gas. In BAU/N+ the extended efforts to promote clean energy technology transfer in conjunction
with a widening use of emission trading (notably the EU’s emission trading system and clean development mechanism)
are, to some extent, favourable to global stability but, on the other hand, also need global political stability.
The energy efficiency scenario and a fortiori the renewable energy expansion scenario would significantly relieve the
pressure on external supplies to the EU due to decreased imports, while offering additional options to mitigate the worldwide depletion of fossil resources.

Single European Energy Market

In spite of the general current policy lines for the creation of the legal and technical provisions for a single European energy market, which are important in all scenarios and have still to be developed, quite different challenges would lie ahead in each scenario. In the BAU scenario – and in both nuclear scenarios – current
policy trends would have to be pursued and even accelerated. Large investment would be needed for improvements of gas
and electricity networks – about € 45 bn to € 50 bn for electricity grid investment including cross-border transmission, about € 11 bn to € 14 bn for long distance gas transmission, gas storage and liquefied natural gas terminals (CESI et al. 2005) and about € 800 bn over the 25-year scenario period for huge replacements in the existing stock of condensing power plants. The energy efficiency scenario and, to an even greater extent,
the renewable energy expansion scenario would present significant new challenges regarding accelerating progress in
energy efficiency and the restructuring of the energy system towards higher shares of renewable energy sources and of
CHP in district heating and industry. Grid investments for electricity would be expected to be near the upper limit of the above-mentioned numbers, while those for natural gas would approach the lower end. Investments for new power generation would be 20% lower in the EE scenario than in the BAU scenario and 10% lower in the RE scenario. In the RE scenario the effect of much lower capacity is partly offset by higher cost per kilowatt installed. Furthermore, investment would be completely different. While even in the BAU scenario investments in new CHP and renewable capacities are projected to overtake investments in fossil and nuclear generation, the latter will stand in the EE scenario for only 20% of total investment and in the RE scenario for less than 10%.

Policy for Energy Efficiency

The comparison of the current EU policy towards energy efficiency with the three scenarios – BAU, EE and RE – shows
some crucial results. The current EU demand side energy efficiency policy would (by definition) be sufficient in many fields to realise the BAU scenario as well as the two nuclear scenarios N+/N–. However, particularly in the transport sector, in electrical appliances and in industry, further action would be needed. Further action would be necessary as well to protract these policies until 2030. On the other hand, the current political targets with
respect to energy efficiency, as set out by the Green Paper “Doing more with less” and the Energy End-Use Efficiency
Directive, would not be achieved in the BAU scenario. A much stronger policy for energy efficiency in the EU would
be needed in order to meet the energy efficiency and the renewable energy expansion scenarios. This policy would have to instigate strong and rapid action in order to implement ambitious efficiency targets close to the technical optimum, introduce further stepwise improvements in the energy efficiency of cars, appliances, buildings and businesses, strengthen technology development and provide substantial financial support and appropriate institutions. The evolution in energy market design would also affect the progress in energy efficiency and renewable
energy use by affecting end use prices, investment in new and efficient (CHP) generation capacity and the prospects for the introduction of demand side management policies.

Policy for Renewable Energies

It is assumed that the EU will pursue a very active policy to promote renewable energies in all scenarios. As the analysis of the existing policy shows, broad additional activities are indispensable even in the BAU scenario. However, in this scenario – as in all the others apart from the RE scenario – set targets will be missed and the EU would have to solve the problem of further fostering a supportive framework for renewable energies
against a background of possible disappointment. In the renewable energy expansion scenario on the other hand,
both current targets and ambitious targets for the future (20% in 2020, 35% in 2030) are achievable. However, the scenario also illustrates that these targets require a substantial restructuring of the whole energy system and economy by using the opening window of opportunity presented by the ageing energy system and its subsequent high reinvestment need. It appears that current policy for renewable energy – in spite of its impressive success – is not yet in a position to implement the changes needed for the realisation of this scenario.

Conclusion and Policy Implications

Two Ways to Go

The scenarios discussed in this report can be grouped into two main strategies.

The first type of strategy could be called “advanced conventional”. This route is described by the BAU scenario combined with the N+ scenario and specific greenhouse gas mitigation options of carbon capture and storage and, particularly, the use of clean technology transfer and other flexible mechanisms to achieve emission reductions outside the EU.

The other type of strategy, “domestic action”, relies much more on the domestic potential of renewable energy sources and energy efficiency and seems to have the capability to adequately cope with both major challenges so that the risks emanating from these are significantly lower.

Both strategies have crucial preconditions that may pose severe challenges to their feasibility. The advanced conventional strategy crucially relies on the successful implementation of an active foreign energy and technology transfer policy. Strong international competition for energy resources may become an increasing threat for this crucial foreign policy link. However, this scenario would carry less risk with respect to the management of change inside the domestic European society, since changes tend to be less radical than in alternative scenarios. The domestic action strategy, on the other hand, would swap, to some extent, the external threats from climate change and geopolitical turmoil for bigger challenges with respect to the management of the more radical changes inside the domestic European society (i.e. within the EU and its member states). More specifically, this strategy would stand or fall on the successful restructuring of the EU energy system and the bulk of all investment decisions.

Robust Strategies

In spite of the diverging, and at least partly mutually exclusive, directions in which energy policy could steer (energy) policy choices, there are a number of policy actions that would be required in any strategy and which differ only in terms of intensity. Consequently, these policy areas should be given high priority for securing energy supply regardless of the strategy prioritised.

  • The first strategy is enhancing demand side energy efficiency including cogeneration.
  • The next robust option concerns renewable energies. All the scenarios assume high increases in this area as well, particularly in wind power generation and biomass use. What is more, some policies are already partly in place and the current targets on the EU level already correspond to a very ambitious RE scenario, but need to be supported by stronger policies and expanded by 2020 and 2030.
  • In the energy market overall, and taking into account the efforts being made to enhance energy efficiency, it is also important that retail pricing of electricity appropriately reflect its scarcity and emission impacts on the wholesale market.
  • Robust steps towards a future EU external energy and climate policy include the fostering of clean development and clean technology transfer, as this will strengthen international relations, partly relieve demand pressure on energy markets, create additional or strategically needed emission credits and expand markets for renewable and efficiency technologies, which would, in turn, support the domestic development of these technologies.

 

Authors: Stefan Lechtenböhmer        stefan.lechtenboehmer@wupperinst.org

Maike Bunse           maike.bunse@wupperinst.org

Adriaan Perrels       adriaan.perrels@vatt.fi

Karin Arnold, Stephan Ramesohl, Anja Scholten, Nikolaus Supersberger

Sponsors: European Parliament, Committee on Industry, Research and Energy (ITRE), IP/A/ITRE/ST/2005-70
Type: Single issue
Organizer: Wuppertal Institute for Climate, Energy, Environment, Doeppersberg 19, 42103 Wuppertal, Germany, info@wupperinst.org; Government Institute for Economic Reasearch VATT, Arkadiankatu 7, 00101 Helsinki, Finland, webmaster@vatt.fi
Duration: 01/2006-08/2006
Budget: n.a.
Time Horizon: 2030
Date of Brief: April 2008

Download: EFMN Brief No. 140_ Security of Energy Supply

Sources and References

Cesi et al. (2005): Centro Elettrotecnico Sperimentale Italiano, Instituto de

Investigacion Tecnologica, Mercados Energeticos, Ramboll TENEnergy Invest.

Decker, M. (2006): New (2005) Energy Baseline, Presentation to National Emission Ceilings and Policy Instruments Working Group, Meeting on 1. 2. 2006.

Lechtenböhmer, et al. (2005a): Target 2020, Policies and Measures to reduce Greenhouse gas emissions in the EU, Scenario analysis on behalf of WWF-European Policy Office, Wuppertal, Brussels.

Lechtenböhmer et al. (2005b): Energy efficiency as a key element of the EU’s post-Kyoto strategy: results of an integrated scenario analysis. In: Energy savings: what works & who delivers, ECEEE 2005 Summer Study Proceedings; volume 1. Stockholm: Europ. Council for an EnergyEfficient Economy, 2005, p. 203-212.

Lechtenböhmer et al. (2006): Security of Energy Supply – The Potential and Reserves of Various Energy Sources, Technologies Furthering Self Reliance and the Impact of Policy Decisions. Study on behalf of the European Parliament. IP/ITRE/ST/2005-70.

Lechtenböhmer et al. (2007): The Blessings of Energy Efficiency in an Enhanced EU Sustainability Scenario. In: eceee 2007 Summer Study Proceedings: Saving energy – just do it! 4-9 June 2007. La Colle sur Loup, France. ISBN 978-91-633-0899-4.

Mantzos, L. (2006): PRIMES model of scenario results for the EU25, NEC-PI Meeting, July 2006, Brussels.

Mantzos, L., Capros P. (2006): European energy and Transport. Scenarios on energy efficiency and renewables, Ed.: DG TREN, Brussels.

EFP Brief No. 139: Future Prospects of Care Facilities and Services for the Dependent Elderly in France

Saturday, May 21st, 2011

Following the submission of an initial report in July 2005 on the evolution of illness related to old age and estimations of the number of accommodations available for the dependent elderly, the French minister in charge of elderly affairs asked the Strategic Analysis Centre to further consider how to provide and finance the care of dependent persons until 2025. Relying on a single quantitative scenario, the report proposes a global strategy turning on several key principles: a preference for in-home care and supplying treatment in a welcoming environment, reliance on technological and social innovation, the qualitative improvement of establishments housing the most dependent persons and the use of new regulatory tools in order to promote performance and a better territorial distribution.

Creating a Free Choice Scenario

For economic and social reasons, the French government is willing to give the elderly a freedom of choice regarding
healthcare and accommodations. Such a policy requires the simultaneous and complementary development of services
designed to care for the elderly in their own homes as well as access to retirement homes. A policy to that end has been launched in the framework of the first “Ageing and Solidarity” plan, which includes a significant attempt to increase availability of all the types of care for the dependent elderly. Efficient investment implies an extensive
study of a balanced scenario including the development of a global offer covering all types of home and institutional
care. In this respect, the minister in charge of elderly affairs asked the Strategic Analysis Centre to

  • establish the number of additional rooms in homes for dependant elderly (EHPAD1) needed from 2010-2015 and an estimation for the year 2025,
  • anticipate the number of home care assistants required in these two time horizons,
  • analyse the geographical distribution and propose guidelines for better EHPAD accommodations,
  • examine issues related to financing and ensuring an even geographical distribution.

A first report was elaborated in 2005 with quantitative forecasts including various scenarios of home and institutional care capacities. The second report, published in June 2006, proposes a single scenario, including an estimation of the requested workforce, taking societal and financial aspects into account.

Developing the Scenarios and Political Options

Studying the ageing society implies taking different variables into account such as demography, healthcare improvement, the development of people’s behaviour and also various political options.

In addition to the Strategic Analysis Centre’s staff, the National Institute of Economic Statistics (INSEE), the National Solidarity Fund for Autonomy (CNSA), the health ministry’s department of statistics (DREES) and other central administration resources were solicited for this exercise.

First Report: an Extensive Quantitative Analysis

The first report aimed at exploring possible scenarios for the development of the number of accommodations available for the dependent elderly (EHPAD) for the years 2010, 2015 and 2025. This exercise required the following sequence of calculations:

  • elderly population growth,
  • the development of the prevalence of dependency within this population,
  • the consequences in terms of demand for home and institutional care,
  • achievable supply of accommodations and workforce in this sector.

As a result, five scenarios were adopted to reflect different balances between home and institutional care. In addition, each of these scenarios was developed based on two different dependency rates and for three time-horizons.

In order to calculate the respective workforces that would be required for home and institutional care in each case, the team also had to envisage different levels of assistance.

Second Report: Further Exploration of a Single  Scenario and Elaboration of Recommendations

The second report was elaborated by a group of 60 experts from various local and national institutions, universities, hospitals and associations. Their work also relied on the results of an ethnological study carried out in three different homes for dependent elderly.

First, the group conducted an in-depth analysis of a single scenario by distinguishing different levels of dependency and types of skills required for health care and assistance. The results were used to predict the development of the labour market in this sector until 2025.

Workshops were then organised in order to arrive at recommendations on how to conceive future homes for dependent elderly and optimise the financing of national and local schemes addressing the ageing population.

More Intensive Institutional
Care for the Most Dependent

Demographic development is reasonably predictable. The following chart gives a projection of the number of dependent elderly aged 75 and older:

x 1000

2005 2010 2015 2025 2030
High projection 682 741 808 920 1 017
Low projection 657 691 732 805    855

Source: Insee Destinie, projections Drees-Insee

The first report established five possible scenarios in order to capture the broadest possible range of impacts of population ageing on the caring system:

  • Scenario 1 assumed that the current distribution between home care and institutional care would remain constant, thus predicting an increased need for places in rest homes and other care institutions.
  • Scenario 2 and 3 planned for an increased recourse to home care: for all elderly, irrespective of the level of dependency prevalence (sc. 2), and for all elderly with the exception of the most dependent (sc. 3). These two scenarios led to a reduced need for specialised accommodations.
  • Scenarios 4 and 5 envisaged an increasing recourse to institutional care: for all elderly in scenario 4; for the most dependent only in scenario 5. Scenarios 2 and 4 were abandoned as too extreme, whereas scenario 3 was chosen as the most efficient and socially satisfactory framework for the future development of the French elderly care scheme.

Forecasts on Needs for Accom- modations and Human Resources

In this scenario, the rate of the most dependent elderly benefiting from institutional care is expected to reach 67% by 2010 and then be stabilised. Simultaneously, the rate of less dependent elderly who benefit from home care is expected to rise progressively.

This scenario thus assumes two consequences in terms of accommodations and human resources:

  • intensified care in specialised institutions and
  • more dense and diversified types of home care.
Needs for Specialised Facilities

Consequently, with the projected institutional care rates, the report recommends increasing the number of places in specialised facilities up to 680 000 in 2010 – among them 610 000 for the elderly aged 75 and older – and to stabilise this number after 2010.

The following targets for the distribution of places for the 75+ population show that, even within the institutional care solution, priority is given to temporary, flexible care solutions.

  2010 2015 2025
Little medicalised accommodations 90 000 90 000 90 000
EHPAD 420 000 402 000 392 000
Long-stay hospital accommodations 60 000 60 000 60 000
Temporary accommoda-

tions

40 000 58 000 68 000
Total 610 000 610 000 610 000

Reaching these targets implies various actions: a sustained effort to create new places by 2010, but also withdrawing licences from obsolete structures and converting some nonspecialised accommodations into EHPAD.

Increased Need for Institutional and Home Care Personnel

The population in specialised institutions can thus be expected to increase by 2010 and be comparatively more dependent than it currently is. These two trends justify the need for a drastic increase in personnel in these institutions. The report team has chosen to rely on two projections in terms of supervision rates (number of staff per 100 residents):

  • a low projection: from 57.4 in 2003 to 75.7 in 2025,
  • a high projection: from 57.4 in 2003 to 81.4 in 2025.

As regards home care, the growing share of elderly people who would benefit from this solution implies that the need for staff in the medical, paramedical and social home care sector will also clearly increase.

In the current situation, each dependent person benefits from an average assistance volume of 150 hours per month (the calculation is based on the French dependence allocation distribution). The report team suggests increasing this average volume by 55% by 2025. It must be noted that these projections are based on the assumption that the help currently received by the elderly from their relatives will remain constant, which is all but certain.

Need for institutional and home care staff 2005-2025:

2005 2010 2015 2025
Low institutional care projection
Institut.-care staff 233 400 279 900 296 700 315 500
Home-care staff 375 600 415 500 501 400 739 500
Total 608 900 695 400 798 100 1 055 000
High institutional care projection
Institut.-care staff 233 400 290 000 313 800 333 000
Home-care staff 375 600 415 500 501 400 739 500
Total 608 900 705 500 815 200 1 072 500

In terms of job creation, in total, 342 000 to 360 000 positions will be available in this sector over the next ten years, which represents 4,6% of all available positions in the French economy (this includes net creations and replacements after retirement). Net job creation in the elderly care sector alone can be expected to account for 11% of new jobs in France over the same period.

Guidelines for Better EHPAD Accommodations:
Diversification and Territorial Distribution

The Social Background to the Free Choice Scenario

The target population (aged 85+, 2015-2020) forms a very different social group from today’s elderly. The current babyboomers are more individualistic; they have developed an identity of active (and exigent) consumers, are geographically and professionally mobile and are used to actively deciding upon matters affecting the course of their lives. These features will have to be taken into account in drawing up tomorrow’s care system and the care accommodations it is to provide. This system and the related accommodations will have to – answer a broad diversity of needs and thus provide an equally broad diversity of adapted services and – take into account a diversity of life territories, values and cultures, and thus be equitably distributed geographically to allow the elderly to maintain their life habits.

An EHPAD should ultimately provide its residents with all needed services and assistance, while being a true living place in the full sense of the word. This includes several objectives, which have some technical impacts.

Supporting a Project for Life and Maintaining Social Life
  • Project for life: EHPAD should be conceived so as to allow the residents to further develop and not to simply “end their lives”. This includes preserving their freedom in terms of time and space organisation, favouring creativity and encouraging autonomy.
  • Social life: Residents should be encouraged and supported in the perpetuation of their social life through the preservation of family links. This means that exchanges between the residents and the exterior should be encouraged

(vicinity, city, village etc.)

EHPAD’s Projected Features to Answer these Needs

Localisation elements

  • The geographical distribution of EHPADs should allow residents to remain in the vicinity of their former place of residence in order to facilitate preserving their family and social links.
  • EHPAD’s localisation should ensure a social openness: opportunities for the residents to leave the facility and have access to a city or village.

Technical features

  • Space organization in EHPAD should provide the residents with private, intimate spaces as well as with community spaces.
  • Specific features of the accommodations should allow a customisation of individual living quarters (mobile walls, Internet connections etc.)

Organisational features

  • Security and health norms should be intelligently adapted in order to provide the residents with all necessary services and care while infringing as little as possible upon their liberty.
  • A provision of diversified services should allow the residents to be provided with any needed service (medical and non-medical).

 

Dual Policy Challenge:
Services Synergy & Balanced  Geographical Distribution

The overall financing need over the 2006-2025 period is estimated at a total between 14-29 billion €. This would represent around 1.1% of GDP in 2010, 1.2% in 2015 and 1.5% in 2025.  This financial effort is considered not to be insurmountable, on two conditions: that savings are made in other domains in order to alleviate the burden on the social security resources and that an efficient redistribution is conducted between the hospital sector and the dedicated elderly care system.

Ensuring Sufficient Care Personnel

Professional Staff

A specific effort will have to be made to make medical, paramedical and social professions in the elderly care sector more attractive than they are today and to ensure an efficient balance between childcare, hospital care and elderly care staff.

Support to Involved Relatives

Several European states provide financial and fiscal incentives to relatives who reduce their working hours or even suspend their own careers to take care of a parent. In particular, France could follow the example of the German system where the social security system comes up for the social security contributions of people who have stopped working to take care of an elderly person.

Rethinking Programming and Efficiency

Proposing diversified care services while maintaining a fair geographical and cost distribution implies two levels of action:

  • Evaluating and programming at the national level in order to take inventory of the global needs and appreciate the relative financial burdens that have to be assumed locally. The team suggests that all involved actors adopt a unified evaluation methodology, which means rethinking the whole current social aid system. The state would have to shoulder a share of necessary start-up investments to ensure that the restructuring is initiated not only in the wealthier regions but rather equitably throughout the whole territory
  • Transferring a larger share of responsibilities (if not all of them) for elderly care to the French départements (sub-regional administrative level). As local administrations, they would be in a better position to adapt the services offered to local needs and specificities. In this respect, the report team suggests that a better synergy between all types of services be organized, for instance, by allowing EHPADs to manage, through new regulatory rules, the coordination between private and public, medical, paramedical and social services.

The Follow-up

The report was made public in late June 2006 at the same time as the government’s ‘Solidarité Grand Age’ plan, which it heavily draws upon. The plan concerns the 2007-2012 period and is projected to cost the French social security system 2.7 billion €. While most of sector’s representatives have overall welcomed this plan, the related financial allocation was viewed as underestimated.

Authors: Hugo Thenint – Louis Lengrand et Associés (LL&A)                hugo@ll-a.fr
Sponsors: French minister of social security, elderly, disability and family affairs
Type: National – but includes case studies on other countries
Organizer: The Strategic Analysis Centre (former Commissariat au plan)
Duration: 2005-2006
Budget: n.a.
Time Horizon: 2025
Date of Brief: April 2008

Download: EFMN Brief No. 139_ Elderly Care in France

Sources and References

Strategic analysis centre: http://www.strategie.gouv.fr/article.php3?id_article=277
La documentation française (first report): http://www.ladocumentationfrancaise.fr/rapports-publics/054000490/index.shtml

EFP Brief No. 138: Results of Lab on ‘Old and New Energy’

Saturday, May 21st, 2011

The Club of Amsterdam set up an ‘Old and New Energy Lab’ designed to generate novel and potentially viable plans of action for dealing with energy issues by leveraging brainstorming methods to produce innovative thinking and bypass preconceived ideas and assumptions. The process tapped into the expertise of ‘thought leaders’ chosen for their diversity so as to maximise the fertility of discussions.

Lab Challenges to Think Outside the Box

Diminishing reserves of fossil fuels, climate change, geopo-litical factors and a wave of technological advances are bring-ing complex pressures to bear on the landscape of energy gen-eration and consumption. Change seems inevitable, but react-ing appropriately is a challenge. This is especially so when limited modes of supply and consumption have been en-trenched for extensive periods, as is the case with the energy landscape. This can make it very hard for people to think ‘out-side the box’ – arguably much needed at the moment.Thus the challenge addressed at ‘The Lab’ was to bypass pre-conceptions and traditional ways of thinking. Participants were called upon to brainstorm possibilities and then validate the resulting ideas with some tangible, realistic scenarios.

Conceiving Future Scenarios – the Methodology

Principal approaches employed were Socratic discourse and a future scenario method. Participants were asked to identify a set of driving ‘values’ deemed desirable (e.g. equal access to resources, freedom, quality of life, stability etc.). Socratic dis-course and other techniques were applied to open up discus-sion to the broadest possible level. The outcome was the ob-servation of numerous facts, trends, constraints etc.
The resulting ‘facts’ were then fed into an analysis based on the future scenario method. The values identified earlier were used to drive the scenarios, which were to envision a positive future ten years hence (the goal being to identify possible so-lutions).
Four scenarios were created by choosing two drivers of change: governance and economy. Note that there is nothing absolute about the choice of drivers or even the number of drivers con-sidered, but these were the ones considered most important.
These drivers define the axes of a graph depicting four different environments (symbolized by the numbered circles in the diagram)derived from the possible combinations of extreme cases of both drivers. These environments provided the basis for the scenarios.

138_bild1

Keep in mind that these scenarios are not predictions but simply tools to guide discussion from exploration to identification of potential solutions and analysis of important trends and factors (political, cultural, technological, etc.) and their interactions.

Participants

Four ‘thought leaders’ brought expertise to help keep discussion realistic, whether on technological, economic, political or social levels. Their backgrounds included

  • analysis of new technologies and their commercial and social impact;
  • understanding corruption and conflict resulting from exploitation of natural resources and international trade systems;
  • energy resource analysis and prediction in the context of the International Energy Agency;
  • nuclear policy and law.

Energy Futures – the Four Scenarios

Observations on trends and forces will be split into socioeconomic and cultural, and technological and sectoral. The four scenarios based on these trends and forces will then be outlined before looking at identified opportunities and challenges, which are in turn fed by the scenarios.

Scarcity of Supply, Potential for Conflict, and Environmental Concern – Socio-economic and Cultural Trends/Trend Breaks
  • Rising energy production costs.
  • Concern about climate change (global warming).
  • Increasing sensitivity to energy supply disruption.
  • Concerns over energy dependence and vulnerability.
  • Impending scarcity of fossil fuels with increasing demand from rapidly advancing nations such as China and India.
  • Increasing global tension relating to energy supplies and the possibility of resulting conflict.
  • Environmental concerns about nuclear energy.
  • Increasing interest in alternative energy sources.
  • Increasing interest and efforts in energy conservation.
  • Development of carbon trading schemes.
More Choices and Technological Advances –  Technological and Sectoral Trends/Trend Breaks
  • Capability (in some markets) for energy purchasers to also sell to the grid.
  • Choice (in some markets) over source of energy bought.
  • The nanotechnology ‘revolution’ impacting multiple, interacting energy-related technologies.
  • Multiple parallel and rapid advances in solar technologies promising greater efficiency and/or lower cost.
  • Advances in fuel cells (in many sectors).
  • Advances in batteries and ultracapacitors.
  • Developments in thermoelectrics offering promise for waste heat reclamation and geothermal energy.
  • Availability of smart energy-saving materials (electrochromic or anti-IR window coatings etc.).
  • Lighter/ stronger metals, ceramics and composites.
  • Efficient lighting (especially nanostructured LEDs).
  • Improvements in coal/gas/biomass-to-liquid processes, often driven by improved technology (e.g. nanocatalysis).
  • Advances in hydrogen production and storage.
  • Potential developments in artificial photosynthesis.
  • Potential for low-loss electrical transmission.
  • New CO2 separation technologies.
  • Improved nuclear fission technologies.
The Four Scenarios

Four scenarios were framed assuming environments as described in the methodology section. Remember that they are designed to be optimistic views of a situation ten years hence. Their creation allowed disparate ideas to be brought together in a framework where interactions and socio-economic and political realities could be considered.

Not all the scenarios were recorded in the same degree of detail. Different groups of participants chose different styles of presentation.

 Scenario 1 – ‘Harvesting Energy’ (emerging economy, minimal governance)

The environment envisaged was a poor, sub-Saharan country with village communities as the dominant settlement pattern, poor access to resources and minimal infrastructure. The village in this scenario was assumed to be remote but not overly far from a principal city.

The one plentiful resource is sunshine. New cheap photovoltaics and microloans allow the village to produce electricity. This gives rise to increased productivity and enables more flexibility in trading of staples such as vegetable and meat produce through refrigeration.

The small economic boost and decreasing costs of photovoltaics allow expansion of generating capacity. Direct energy sales become attractive in a future where fossil fuel is expensive and supplies unreliable and the village becomes a supplier of power from solar energy. Improved battery technologies and high fuel prices lead to more electric or hybrid vehicles. Households in and outside the village increasingly use batteries and pay for recharging.

The village has effectively shifted from subsistence agriculture to ‘farming’ sunlight, with batteries as the means of distribution.  The availability of power for transport attracts more vehicles and infrastructure improves. Then cables are laid to directly supply electricity to the nearby city. After all, the village now has the generating capacity, the expertise, and plentiful lowvalue land for expansion. Infrastructure experiences another boost, including communications. The village buys computers and the community now has Internet access. Educational opportunities increase dramatically. Over time the community becomes generally well-educated and thus capable of engaging in even more diverse and complex commercial activities.

Some time in the future (although maybe not in the ten-year frame), solar energy could be captured in a fuel created by artificial photosynthesis, allowing wider export of energy and opening up the solar farming model to more remote communities. This would require importing water (limiting displacement of battery use), but importing water is certainly preferable to importing oil in this (future) day and age.

Scenario 2 – ‘Central Energy Planning’ (emerging economy, strong central governance)

This scenario assumed a top-down, centrally-organised society with an emerging economy. China was offered as an example, on the assumption that much of the traditional communist philosophy still permeates the government, which regulates the allocation of resources. Short-term (business) thinking is constrained for the benefit of the collective when it comes to something as fundamental as national energy supply.

The immediate need for more energy to support growth is urgent. Coal is abundant and coal-fired power stations proliferate, with little thought given to environmental concerns. But this is only the first, quick fix, part of the plan, which is also influenced by oil imports for vehicles, the need to transport energy over great distances and the fact that even coal resources have limits.

Coal-to-liquid processes are used to produce clean diesel to help ease the dependence on oil imports, while a massive research effort creates low-loss electrical transmission based on high-temperature superconductors (doubly important because of the chosen alternative to coal – photovoltaics).

Huge solar ‘plains’ grow in the country’s remote, arid and impoverished west, bringing employment and commerce. Ultimately, the technology becomes simple plastic sheets that can be rolled out and clipped together. They contain nano-engineered structures that exploit the highly-efficient initial step of photosynthesis but feed the liberated electrons into the superconducting transmission lines and on to the energy-hungry coast. China soon becomes a major exporter of these technologies.

In the cities of the East, electric and hybrid cars are encouraged and manufactured. Coal is increasingly used only to produce diesel and dependence on foreign oil now rapidly disappears.

 Scenario 3 – ‘Energy Caps and Taxes’ (strong economy, strong central governance)

Sweden, which aims to become oil-free by 2021, might be an example.

A progressively increasing carbon tax is introduced for individuals and corporations. A flexible power supply network allows individuals to avoid a carbon tax by purchasing energy from sustainable sources. This encourages development of such sources – from the logging and papermaking industries using waste to produce electricity, heat and biofuels, down to individual households generating energy and selling any surplus to the grid.

Central support and legislation for energy-saving technologies in housing and transport increases their uptake through various means. The carbon tax imposes a cost on manufacturers for the lifetime emissions of their products.  The tax alone triggers substantial change, but more comes through governmentdriven, large-scale geothermal, hydroelectric and combined heat and power schemes.

 Scenario 4 – ‘Communicating Energy’ (strong economy, minimal governance, individual action)

This scenario is one of change through popular movements. Analogies might be seen in the growth in the popularity of ‘organic’ produce or that of ‘fair trade’ products, both of which evolved out of grass roots concern. For instance, we can help the environment by buying local produce rather than that shipped great distances, or eating less meat (such unlikely action probably highlights limits to this approach). Other individual contributions are switching lights off, car-pooling, capturing rainwater to water one’s garden or carbon offsetting schemes.

The key is understanding what can be done and creating a culture of willingness and responsibility. Communication is key and the Internet makes this possible as never before.

To some extent this scenario is happening now, but there are clearly limits to how much it can achieve without some topdown initiatives (or economic imperatives) added to the mix.

Top-down Action and Technological Advances are Critical for Seizing Opportunities

The fact that all but one of the scenarios could conceivably address all the main energy issues points to much opportunity. Exploiting this rapidly enough is a major challenge. Another obvious challenge is highlighted by Scenario 4, which suggests that, at least in the developed world, ‘people power’ is not enough and top-down governmental action may well be necessary. Economic and practical pressures would achieve the necessary changes eventually, but it is probably not advisable to wait for the hurricane to prove that you should not have made your house of straw. As for opportunities, the scenarios explored highlight those best. Scenario 1, ‘Harvesting Energy’,
perhaps best illustrates the dramatic achievement that might be had given only certain technological advances. Many other scenarios are possible, of course, and those developed were deliberately positive. But the consensus at The Lab was that all the scenarios were credible, so they probably do represent real opportunities.

Diverse Solutions, Proactive  Government and Advances  in Technology Are Key

In view of policy implications, the full two days of discussion and debate might be briefly summarized in the following manner.1

Oil dependence is a danger that needs addressing

Despite much disagreement about how close ‘peak oil’ is, all seemed to agree that action is needed now to reduce the developed world’s dependence on oil.

Solutions to the problems being faced will be diverse

Different environments are likely to beg different solutions and the diversity of technological developments that bear on the issues prevent simple answers and argue for multiple alternatives to be investigated.

The variation across the scenarios developed suggests that multiple approaches will be needed in parallel, covering conservation, alternative forms of generation, and storage and transmission technologies. The best solution or combination of solutions for a given region will vary with external factors (climate, population density, access to water, etc.) and with developments in numerous interacting technologies. The appropriate focus can vary dramatically depending on the existing situation. For example, a focus on coal in the short-term is sensible for China, if the aim is energy independence, while France might see nuclear in a similar light. In lower latitudes, solar energy will be more quickly economically viable than in higher latitudes, where geothermal may be a better choice. In all cases, conservation makes sense as a priority and gives the most rapid return on investment.

Given this diversity and uncertainty, it seems sensible to recommend broad investment in energy-related R&D and a systematic, inclusive, and iterative analysis of the energy situation at regional scales.

It is worth noting that only two currently achievable sources of energy are sufficient for global needs in the long-term and truly sustainable. They are solar and geothermal energy.

Areas of technological focus to be considered are just as diverse – see section 2 on technological and sectoral trends.

In the developed world government action is probably essential

The ramifications of energy supply disruption and the time needed to change our infrastructure suggest that appropriate change cannot be expected to arise from market and social forces. Accordingly, governments need to be a key player in developed countries. Proactive action from government is almost certainly necessary to avoid the risk of severe economic disruption.

Much of the rest is down to technological developments and their impacts on the economic competitiveness of certain technologies. Though solar emerged from the Lab as the winner in terms of chief long-term global energy sources, the means of capturing it, transporting it and using it produced no clear favourites. The range of possibilities from domestic to industrial to automotive applications in a diverse range of environments suggests that all avenues of research should be actively explored. Since solutions will likely be more complex than the current rather monolithic systems, flexibility, interoperability and rapid adaptability are critical success factors.

In the under-developed world, small changes or actions may have a large and lasting positive effect

When tackling the issue of poverty on a global scale, there may be a possibility of achieving much with little (Scenario 1), given certain technological shifts.

 

Authors: Paul Holister                  paul9@holisters.net
Sponsors: Club of Amsterdam
Type: Field/sector specific
Organizer: Humberto Schwab, humberto@clubofamsterdam.com, Felix Bopp, felix@clubofamsterdam.com
Duration: April 2007
Budget: n.a.
Time Horizon: 2017
Date of Brief: April 2008

Download: EFMN Brief No. 138_ Energy Lab

Sources and References

Club of Amsterdam, Lab on Old and New Energy, April 17 and 18, 2007, in Girona, Spain.

http://www.clubofamsterdam.com/content_list.asp?contentid= 655&contenttypeid=9 

The participating thought leaders were:

  • Nathalie Horbach – Centre for Energy, Petroleum and Mineral Law and Policy, University of Dundee;
  • Simon Taylor – director and co-founder, Global Witness;
  • Christof van Agt – independent participant, formerly at the International Energy Agency;
  • Paul Holister – technology impact consultant.

Humberto Schwab, director of the Club of Amsterdam and innovation philosopher, led the process.

EFP Brief No. 134: Future Challenge for Europe: Providing Security and Safety to Citizens

Saturday, May 21st, 2011

As stated in the recent EC Communication on ‘Reforming the budget, changing Europe’ (SEC (2007) 1188), the European Union has a key role to play in ‘providing security and safety to citizens’. Especially in the aftermath of 11th Sept. 2001 security related issues are becoming an increasingly important facet of global society and have an increasing impact on economy and science. The issues are manifold and include protecting citizens and state from organized crime, preventing terrorist acts, and responding to natural and manmade disasters. Civil security issues are becoming more and more important to governments and national economies across the globe, and the EU is no exception. The EC sees security research as an important policy objective, which started in 2001 with a Preparatory Action on Security Research (PASR) and is now the tenth theme of the FP7 Cooperation programme. Security and safety technologies are seen to have applications in many sectors including transport, civil protection, energy, environment, health and financial systems.

Analysing EFMN Documents: TextAnalyst

A selection of 160 foresight and futures studies was taken from the EFMN database. These were studies with different backgrounds, scopes, themes, horizons and on different scales. The semantic data-mining tool ‘TextAnalyst’ was employed to analyse the texts. First, out of the 160 studies, a small number of relevant studies was selected that had titles strongly related to the researched topic. TextAnalyst analysed these texts and found the most relevant keywords and semantic relations between the most important words. These terms were compiled into a keyword list for the researched topic. This list of keywords was used to analyse all 160 selected studies. The TextAnalyst
yielded all sentences containing any of the keywords, with an additional hyperlink in the text file allowing to view
the context in which the sentence occurred. The TextAnalyst also gave a semantic relation between the searched keywords and other words. The related terms thus identified were added to the list of keywords. The summary of sentences that contained one or more words from the list of keywords was manually read in the original context and if the sentence or the section where the sentence occurred was regarded as providing new or additional information, this section was copied into a text file. In order to avoid any extreme out-of-context copying of sentences, statements that were part of a scenario description were not added to the file. After this analysis of the 160 studies, a text file was created containing sections of the original studies with information related to the selected topic
and the reference to the original document. The dictionary for the analysis presented here consisted of the
following terms: anticipation, crisis, defence, defence, emergency, enemy, intelligence, military, NBC, NRBC, prevention, protection, risk, safety, secure, security, surveillance, terrorism, terrorist, threat and weapon. This analysis is exclusively based on the review of 36 foresights and future-oriented studies completed between 2000 and 2007 – most of them in 2004-2005. While most studies were carried out at a national level in Europe, the pool of sources also included seven studies conducted at the EU-level, eight Japanese national studies, the
global study AC-UNU Millennium project, the supranational study on information and communication technology (ICT) in the Nordic countries, and one Finnish study of regional scope.

Limitations of the Analysis

Attention should be paid to the fact that, while all 36 studies address certain safety and security issues, they are not all equally detailed. In particular, whereas some foresights (e.g. the UK Foresight) provide an in-depth analysis of the state-of-theart of technology, as well as a detailed forward look, the significance of some one-sentence statements, as they are typically made in Delphi studies such as the 8th Japanese National Foresight, may be more limited. Such statements have been considered very carefully so as not to bias the analysis. From the above, it follows that the following analysis – based on a restricted number of foresights – neither intends to be exhaustive nor to provide an overview of security and safety-related issues weighted according to their importance for future EU policies. However, it might provide some interesting insights about future safety and security threats – as predicted in foresights – as well as how future technological, societal or economic developments and policies might help to combat them. Since some of the analysed foresights are quite old, this means that some of the proposed actions could already have been implemented.

Safety & Security:  A Crosscutting Issue

Safety and security issues are generally related to all kinds of natural and human-induced (intentional and non-intentional) disasters or risks, which can affect individuals, societies or nations. Important technological and political tasks in the context of the protection of citizens and vital infrastructures have addressed a broad spectrum of issues such as future threats and vulnerabilities of critical infrastructures in key sectors (e.g. information systems, financial systems, industrial plants, public buildings, transport systems and infrastructures, communication networks, energy infrastructures, food distribution systems, etc) or the impact of terrorism and organized crime on the development of civil societies.

From the selected studies two major areas were identified bearing future risks for society: civil security and IT security. The area of civil security can be divided into subsections as follows:

  • terrorism and crime prevention,
  • ensuring the safety and security of critical infrastructures,
  • food and chemicals safety, and
  • threats from climate change and natural disasters.

Civil Security

Terrorism and Crime Prevention

Terrorism is expected to become a growing threat to all parts of society in the future mainly for two reasons. Firstly, due to the NRBC (nuclear, radiological, biological and chemical) weapons, the proliferation of ballistic, tactical and cruise missiles, and, on another level, the proliferation of small arms, the use of technological objects (e.g. civilian aircraft) as weapons and the transfer of technical know-how have multiplied risk factors for our societies. Also terrorist activities are becoming networked and are increasingly seeking points of entry into international business and, through corruption, into public administration.

The threat from terrorism must be counteracted by increased international cooperation on all levels and increased spending for security.

Another aspect raised by the study by the Finnish Committee for the Future is that because of continued synergy among, and miniaturization of, everything from chemistry sets and pharmaceutical manufacturing to genetic and nanotech engineering terrorist attacks will be much simpler to conduct in the future. Eventually an individual (single individual being massively destructive, SIMAD), acting alone, will be able to create and deploy a weapon of mass destruction.

In the broader context of terrorism, general crime prevention is an important aspect. The Japanese studies suggest that the security provided by governments will deteriorate in the future; thus people must provide for their own protection. Means like physical access control and burglary alarm systems for private homes are seen to be possible substitutes. The British study ‘Strategic Futures Thinking’ concludes that new technologies, such as DNA profiling, will prove increasingly vital in criminal trials as will more sophisticated detection, surveillance and monitoring devices in the wider field of crime prevention.

Safety and Security of Critical Infrastructures

Energy and transport infrastructures (so-called ‘critical infrastructures’) are crucial to economy and society. Therefore, it is hardly surprising that their safety and security is addressed in different foresights – at a national and supranational level. The Finnish foresight ‘Finnsight 2015’, for instance, stresses the fact that modern societies have increasingly become vulnerable in the sense that any malfunctioning or failure of critical infrastructures may paralyse the whole society. The foresights identify several threats to critical infrastructures:

  • Critical infrastructures increasingly rely on ICT applications and they more and more depend on the reliability of broad and complex ICT networks. Protecting critical infrastructures is therefore closely related to protecting the ICT networks they are based on. In this regard, ICT liability has to be ensured; it will also be particularly important to prevent criminal intrusion and the misuse of networked-based infrastructures.
  • Of course, on a global scale, terrorism is expected to remain one of the main threats in the future. Several foresights such as the Fistera study and the UK Foresight therematching them with the personal identification provided at the point of embarkation). Indeed, the terrorism threat is expected to give further momentum to the development of specific markets such as imaging technologies (allowing for instance the detection of suicide bombers in case remote identification and containment become reality).
  • Transport safety for citizens also implies reducing the risk of accidents. Thanks to the diffusion and increasing affordability of ICT, use of intelligent transport systems based on telematics as well as video-surveillance systems are expected to become more widespread to improve transport safety, for instance, by reacting in case fatigue, recreational drug use or medication impair the performance of the driver of a car or the pilot of a plane. Intelligent transport systems may also help maximise transport and logistics efficiency leading to benefits in terms of increased productivity and economic growth.

Food and Chemical Safety

Quite surprisingly, and despite their relevance for everyday life and everyone’s health, issues related to food safety is rarely addressed by the foresights screened. Some, however, do highlight that ensuring food safety requires assessing the long-term impact of harmful chemicals (e.g. heavy metals) on human beings, crops, as well as livestock. Food safety is therefore closely related to preventing damage to the environment due to chemicals in general. Standardized and socially approved tools for the risk assessment of chemicals should hence be developed. In this regard, chemical analysis is expected to be facilitated in the future through the use of miniature chemical analysis systems. Regarding functional foods, the monitoring of the long-term consequences of their use is underscored as essential. The EU may have a role to play in assessing health claims and the safety of new functional food products entering the market. Providing transparent information on health issues, safe threshold limits for specific functional food products, as well as on storage requirements will also contribute to promoting food safety for the consumer.

Threats from Climate Change  and Natural Disasters

Some studies emphasize the risk from climate change and natural disasters. Particularly in Japan the risk from natural disasters such as volcano eruptions, avalanches and earthquakes is addressed. The development of new predictive systems is proposed. Systems to observe disasters such as communications satellites, GPS, unmanned aircraft, and so on should be implemented in order to better understand situations after disasters have occurred and to be able to respond more swiftly.

Nearly all studies addressing climate change raise the issue of flooding – often in connection with the expected rise of the sea level. For instance the UK Foresight study claims that climate change will have a high impact under every scenario due to two threats. Firstly, the coasts are expected to be especially at risk: relative sea-level rise could increase the risk of coastal flooding by four to ten times. Secondly, precipitation is expected to increase flood risks across the country by two to four times. Flooding in towns and cities will be one of the greatest challenges in the future. Building in areas at risk from flooding should be avoided or, if inevitable, space should be provided to accommodate flooding in river and coastal areas. In this context, the development of effective modelling capabilities to predict flooding and manage flood routes in intra-urban areas should be pursued.

The study by the Finnish Committee for the Future also expects that change in precipitation will result in water tables falling on all continents. Droughts in areas where 40% of the population depends on watersheds controlled by two or more countries call for new water management strategies that can mitigate the effects of migration, conflicts, etc.  The threat of storm surges in coastal areas will increase due to rising sea levels combined with changes in the number, location, and strength of storms.

Although flooding is seen as one of the main challenges of the future, at the same time, it is also acknowledged that predictions in this area are steeped in uncertainty, as in the case of climate change or demographic and socio-economic trends. Thus, one has to develop robust water management strategies that will yield satisfactory living conditions for a wide range of possible scenarios.

IT Security

IT security in general is seen as a major topic of the future. Society depends on vulnerable, complex information technology systems, which need to be protected.

One major issue is the protection of privacy in the sense of protection against loss of control over one’s personal data. Already nowadays, Wikis and mostly blogs may contain data and information about an individual that could easily be disclosed to unauthorised others, given the low levels of security and privacy protection implemented so far. This risk will be enhanced in the future because of the widespread use of ambient intelligence (AmI) with its heterogeneity (in contrast to closed, codesigned systems), its complexity of hardware and software (introducing the dependability challenge), its distribution of knowledge and resources (co-operation and interconnection), as well as the foreseen mobility needs (which introduces more vulnerability than in a static world). Radio frequency identification (RFID) implants in people can also cause a threat to privacy, since they permit easy and instantaneous identification and authentication of individuals. On the other hand, they can increase security, for example, by enabling parents to easily track down their children in case of abduction.

The major challenge is to balance privacy and security needs. There are various ways to protect privacy in the future. Legislation to protect data of a personal nature is one of them. Another is by implementing new security measures. The level of privacy and security will be defined more by the location from where data are accessed than by the place where they are actually physically stored.

Another fast-growing area will be the provision of trust and guarantee services in the payments markets. A suggested new measure is establishing a clearinghouse where banks can anonymously share information about security breaches. Also, telecommunication companies are increasingly offering payment services. The introduction of m-payment systems will require new risk management systems and co-operation between different providers. It also calls for improved protection of confidential data provided by customers. Although wireless networks already provide a more secure network than the ones offered in fixed-line markets, there is need for further measures. Among those suggested are enhanced use of digital signatures (a kind of unique electronic stamp), authentication and encryption. One study suggests replacing binary network security (access or not) by more complex security mechanisms thereby granting differential access to different actors.

Three Prevailing Issues

Taking the limits of the applied methodology into account, the analysis of 36 foresights and future-oriented studies, which were completed between 2000 and 2007, yielded three major security and safety issues: terrorism, IT security and natural disaster protection in the context of the global climate change. Concerning terrorism, studies seem to perceive growing future threats to all parts of society mainly because of modern societies’ increasing dependence on computer networks and critical infrastructures and also because of the growing proliferation of NRBC agents, ballistic missiles and small arms. In the broader context of terrorism general crime prevention is also an important aspect.
IT security in general is seen as a major concern of the future. Important issues in this field are related to the protection of privacy in terms of protecting against the loss of control over personal data and to the containment of future risks connected with the widespread use of ambient intelligence (AmI), RFID chips or wireless networks. The studies addressing natural disaster protection predict rising global threats of climate change causing flooding, storms and other weather anomalies in the future. Such studies also expect that the change in precipitation will result in water tables falling on all continents, which calls for new water management strategies capable of mitigating the effects of migration, conflicts, etc.

Authors: Anette Braun (braun_a@vdi.de),   Nils Elsner (elsner@vdi.de), Andreas Hoffknecht (hoffknecht@vdi.de),  Sabine Korte (korte@vdi.de), Sylvie Rijkers-Defrasne (rijkers@vdi.de), Olav Teichert (teichert@vdi.de) – Future Technologies Division at VDI TZ
Type: Overview
Date of Brief: February 2008

 

Sources and References

  • ‘Reforming the budget, changing Europe – A public consultation paper in view of the 2008/2009 budget review’, Commission of the European Communities, SEC(2007)1188 final, Brussels, 12.9.2007.
  • ‘Meeting the challenge: the European security research agenda’, report of the European Security Research Advisory Board, September 2006.
  • 8th Japanese Foresight – Agriculture, forestry, fisheries and foods (2005)
  • 8th Japanese Foresight – Electronics (2005)
  • 8th Japanese Foresight – Environment (2005)
  • 8th Japanese Foresight – Frontier (2005)
  • 8th Japanese Foresight – Information and Communications (2005)
  • 8th Japanese Foresight – Manufacturing (2005)
  • 8th Japanese Foresight – Social Technology (2005)
  • AC-UNU Millenium Project – Antiterrorism Scenarios (2005)
  • Austrian BMVIT Safety and Security Research 2011 – EFMN Brief 33 (2005)
  • Dutch NRLO – Functional Foods Position and Future Perspectives (2001)
  • EC Ambient Intelligence in Everyday Life (AmI@Life) (2003)
  • EC High Level Expert Group (HLEG) – Foresighting the New Technology Wave

– Converging Technologies – Shaping the Future of European Societies (2004)

  • EC IPTS – D1gital Territ0ries (2007)
  • EC IPTS – The Future of M-payments (2001)
  • EC IPTS-ESTO – Future Bottlenecks in the Information Society (2001)
  • EC IPTS-ESTO Roadmapping Project – Healthcare Technologies Roadmapping – The Effective Delivery of Healthcare (2003)
  • Finnish Committee for the Future – Democracy and Futures (2006)
  • Finnish ESF – Uusimaa 2035 Scenario Project (2004)
  • Finnish TEKES – FinnSight 2015 (whole exercise) (2006)
  • FISTERA – Key European Technology Trajectories – 2nd Report (2004)
  • French FutuRIS (2004)
  • French Ministry of Defence – PP30 – Prospective Plan of the French Defense Policy in 30 Years (2004)
  • Turning the Water Wheel Inside Out. Foresight Study on Hydrological Science in The Netherlands (2005)
  • UK DEFRA – Climate Change Scenarios for the United Kingdom (2002)
  • Greek National Technological Foresight (Whole Exercise) (2005)
  • Ireland Marine Foresight (2005)
  • Japanese Optoelectronic Industry and Technology Development Association – Optical Technology Roadmap (2003)
  • Nordic Innovation Centre – ICT Foresight – Nordic foresight and visions on ICT in healthcare, security, the experience economy and production systems (2005-2007)
  • Strategic Futures Thinking – meta-analysis on published material on drivers and trends (2001)
  • UK National Foresight – Cyber Trust and Crime Prevention (2004)
  • UK National Foresight – Exploiting the Electromagnetic Spectrum (2004)
  • UK National Foresight – Flood and Coastal Defence (2004)
  • UK National Technology Foresight Programme – Foresight IT 2000 (2000)
  • UK National Technology Foresight Programme – Foresight Financial Services (2000)
  • UK National Technology Foresight Programme – Crime Prevention Panel

(2000)

 

Download: EFMN Brief No. 134_Safety_and_Security

EFP Brief No. 132: Target 2020: a Quantitative Scenario on Greenhouse Gas Emission Reductions for the EU 25

Saturday, May 21st, 2011

An integrated quantitative scenario analysis was conducted to elaborate, describe and evaluate strategies and paths for the European Union to achieve significant reductions in domestic greenhouse gas emissions by 2020. The objective of the foresight exercise was to support EU wide consensus formation, to assist in priority-setting, and to help raise awareness with regard to policy, industry or society as a whole.

How to Reach EU Targets on Green House Gas Emissions?

The EU has committed itself to limiting global warming to a maximum of 2°C average temperature increase above preindustrial temperatures (Council 2005). According to most recent research, keeping within this threshold requires that global green house gas (GHG) emissions be cut approximately in half by 2050 (Hare & Meinshausen 2004). In fact, global emissions will have to peak and decline in the next one to two decades for temperatures to stay below the 2°C threshold. This consequently indicates that industrialized countries will have to reduce their GHG emissions by approximately 60-80% by 2050 in order to leave room for legitimate economic growth and ensuing higher emissions in developing countries (European Commission 2004). In addition, some developing countries will also need to commit to taking steps toward a less carbon intensive development strategy. To achieve this challenging goal, rapid action is needed. Future commitment periods under the Kyoto Protocol with a likely time horizon of 2013 to 2017 and 2018 to 2022 will thus need to see substantial reduction targets by developed countries. This will be a precursor of further action and commitments on part of developing countries. In January 2005, the European Parliament emphasized “the necessity of significantly enhanced reduction efforts by all developed countries in the medium term to be able to meet the long-term emission reduction challenge”, which it quantified for industrial countries “of the order of 30% by 2020” and “of 60-80% by 2050”. It also called on the EU “to adopt reduction targets at the 2005 Spring European Council which are in line” with these objectives (European Parliament 2005). The European Commission in its communication ”Winning the Battle Against Global Climate Change” supported the necessity to limit temperature increases to a maximum of 2°C worldwide compared with pre-industrial levels and confirmed its will to take international leadership towards combating climate change (European Commission 2005). It also documented the relatively low economic costs to do so without even calculating the expected benefits from emissions reductions. Against this background, WWF commissioned the Wuppertal Institute to conduct an integrated scenario analysis of GHG emission reduction potentials of the EU 25 for the year 2020. For this purpose, the Wuppertal Institute developed a strategy scenario called the “policies and measures (P&M) scenario”.

This scenario relies on a baseline derived from the energy and transport projections for Europe (Mantzos et al. 2003). Its strategies and assumptions are based on evaluation and extrapolation of detailed analyses in all sectors, for many countries, and for important energy-using goods and appliances. The most relevant studies were selected for this purpose.

Integrated Scenario Analysis: Business as Usual vs. Active Energy Policy

An integrated scenario analysis of the EU 25 was carried out in order to determine whether and how a reduction of GHG emissions in the order of about 30% below 1990 levels by 2020 could be achieved. The analysis consisted of two scenarios:

The Business-as-usual (BAU) scenario assumed policies with no special emphasis on climate protection and energy issues, neither with regard to additional policies since 2003 specifically designed to meet the Kyoto Protocol targets nor to rising energy prices and increasing concern about limited resources. The BAU scenario is mainly based on the data and assumptions made in the most recent energy projections for Europe (Mantzos et al. 2003).

In the P&M scenario, existing cost-effective potential for increasing energy efficiency is exploited and ambitious targets for market penetration of renewable energies are actively pursued. In addition, a switch to less carbon-intensive fossil fuels, such as natural gas, and effective policies and measures to mitigate the exploding demand in the transport sector are assumed under the P&M scenario. The P&M scenario includes a moratorium on new nuclear power plants and compliance with the nuclear phase-out schemes in the respective countries concerned.

Quantification and combination of potential, strategies, policies and measures, and the calculation of scenarios were conducted using the Wuppertal scenario modelling approach.

  • The modelling technique uses a technology-oriented, sectoral bottom-up approach. Reflecting its relevance for GHG emissions, the energy sector is modelled in greatest detail, using appliance or end-use specific sub-models for each demand sector (households, tertiary, industry, transport) and a purpose-oriented model of the transformation sector (cp. Fischedick, Hanke and Lechtenböhmer 2002). GHG emissions in the energy sector are calculated based on the final and primary energy balance. CH4 and N2O emissions in the energy sector are calculated by subsector, using a simplified approach based on current sector-specific emission factors.
  • Other sectors and greenhouse gases are covered by specific sub-models, which are adapted to the currently limited information available for these sectors.
  • The modelling technique applies a heuristic (i.e. expertbased) approach in order to identify potential, to formulate strategies, and to estimate market penetration rates of new technologies, market shares of fuels, etc.

The Business as Usual Scenario

Although the BAU includes considerable energy-efficiency improvements in all energy-consuming sectors, increasing renewable energy shares and a decoupling of gross energy consumption growth (+0.7% p.a.) from GDP growth (+2.4% p.a.), no reduction of GHG emissions from energy use can be achieved by 2020 under BAU conditions. On the contrary, CO2 emissions from fuel combustion are expected to increase by 10% compared to 2000 levels.

These results highlight the fact that with the existing EU climate policies the Kyoto targets for the first commitment period (ranging from 2008 to 2012), which aim at a reducing emissions of six gases by 8 % compared to 1990 for the EU 15 and slightly lower reductions for the new member states, will not be met even if further greenhouse gas emission reductions in other sectors and gases are taken into account. Tougher long-term targets for the following periods up to 2020, which are crucial for mitigating climate change, seem to be even more out of reach with BAU policies.

The Policies & Measures Scenario

To explore how the BAU development could be redirected toward a more sustainable course, a sectorally disaggregated high efficiency scenario was developed for the EU 25. The P&M scenario includes policies and measures specifically geared toward enhancing emissions reductions. Supplementary to the high efficiency strategy, a renewable strategy is outlined which is based on the medium-term potential for renewable energy within the EC (European Commission 2004) and can be expected to produce substantial additional emissions reductions.

The P&M scenario describes an ambitious energy efficiency strategy, which covers all demand sectors and is projected to lead to final energy savings of about 22% versus BAU by 2020. This would mean stabilising final energy demand at about current levels.

132_bild1

 

Combined with a similar strategy to boost the use of renewable energies, their share could be increased to 21 % of total primary energy supply and about 37 % of electricity production in the EU 25 until 2020 (BAU: 7.15 % / 7.32 %).

These two effects – stabilising energy consumption through energy efficiency at all levels and maintaining domestic production by increased production of renewable energies – will not only allow to reduce domestic GHG emissions by more than 30% but at the same time will enable to bring the trend toward increasing import dependency to a halt. Domestic energy production would be able to deliver about half of European energy consumption.

132_bild2

This means that economic and ecological risk minimization can be achieved. As compared to BAU, the P&M scenario will reduce risks and potential costs of climate change as far as possible as well as other environmental damages incurred as external costs of energy supply.

Towards a Comprehensive Policy Package

In order to change the course from BAU trends, which lead to increased energy demand, greater dependency on foreign resources, and accumulating risks, towards a sustainable energy strategy, a comprehensive policy package is needed.

Combining the EU emission trading system with a comprehensive set of sector- and technology-specific policies and measures for energy end-use and supply efficiency, such as combined heat and power (CHP), and electricity generation from renewable energies has to play a leading role, as the emission trading scheme covers sectors that are expected to account for about 60 % of total emission reductions in our P&M scenario. Consequently, national caps have to be set to ensure an overall 2.8 % per year decrease in emissions. Strong policies and measures for transport, for energy efficiency, in support of thermal uses of renewable energies, CHP heating and housing renovation.

Making Active Climate  Protection Feasible

The study concludes that an integrated and active climate protection strategy for the EU is not only necessary in order to mitigate impending global climate change but is also feasible, as such a strategy would spur the EU economy to accelerate improvement of energy efficiency and to adapt power systems to renewable energy supply. Furthermore, it represents an approach suited for minimizing risks, not only of global warming but also of disruptions in energy supply and of increasing energy prices.

  • Our analyses show that there is huge and cost-effective potential for improved energy efficiency in all sectors to stabilise EU energy consumption at or below current levels (about 22 % below BAU) and that a share of more than 20 % of renewable energy supply can be achieved under an active strategy. Overall these results show that a 30 % target for 2020, as envisaged by the European Parliament on the on the 13th of January 2005 (European Parliament
    2005), is achievable when actively employing the available strategies.
  • This makes clear that the necessary reductions of greenhouse gas emissions can be achieved by exploiting the potential for cost-efficient energy savings and expanded use of renewable energy sources.
  • Another important result is that an active climate protection strategy yields further benefits in form of massively reduced risks of energy shortages and energy price peaks. It relieves the European economy from the burden of high energy costs and also reduces other environmental strains. The results show that the strategy described by the P&M scenario is superior to a “muddling through”, business as usual development with regard to quite a number of important economic and ecological variables. EU policy makers are well advised to further intensify and accelerate their efforts to speed up energy efficiency improvements in all sectors, to support further expansion of CHP, and to prioritise renewable energy sources in the necessary replacement of a large proportion of the European power plant stock.

Translating Results into Policy

The study, published in summer 2005, was probably the first to draw a complete, though rough, scenario for the EU 25 in line with the target indicated by the European Parliament: a domestic reduction of GHG emissions by more than 30 % by 2020. In the P&M scenario, the study briefly sketched the general feasibility, the sectoral distribution, as well as the technology and the policy requirements for achieving more than 20% final energy savings versus BAU and expanding renewable energies to deliver more than 20% of EU primary energy supply.

In so doing, the study already anticipated the key targets of the “triple 20” climate policy package adopted by the EU Spring Council in 2007. Moreover, it also gives evidence for the fact that energy savings of 20% compared to BAU and a share of 20% renewable energies have the potential to reduce EU 25 GHG emissions by about 30%, which is substantially more than the 20% the EU has so far decided upon.

Authors: Stefan Lechtenböhmer stefan.lechtenboehmer@wupperinst.org
Sponsors: WWF European Policy Offices, Brussels WWF Germany, Berlin
Type: Single issue
Organizer: Wuppertal Institute for Climate Energy Environment, Doeppersberg 19, D-42103 Wuppertal, Germany; info@www.wupperinst.org
Duration: 2004-2005
Budget: n.a.
Time Horizon: 2020
Date of Brief: February 2008

Sources and References

Council of the European Union (2005): European Council Brussels, 22 and 23 March 2005, Presidency Conclusions, 7619/05. Brussels: European Union.

http://ue.eu.int/ueDocs/cms_Data/docs/pressData/en/ec/84 335.pdf.

European Commission (2004): Action on Climate Change Post 2012: A Stakeholder Consultation on the EU’s Contribution to Shaping the Future Global Climate Change Regime, available at:

http://europa.eu.int/comm/environment/climat/future_acti on.htm.

European Commission (2005): Winning the Battle Against Global Climate Change. Communication from the Commission to the Council, the European Parliament etc. Brussels.

European Parliament (2005): European Parliament resolution on the outcome of the Buenos Aires Conference on Climate Change, P6_TA-PROV(2005)005.

Fischedick, M., Hanke, T. & Lechtenböhmer, S. (2002): Wuppertal Modellinstrumentarium, in: Forum für Energiemodelle und Energiewirtschaftliche Systemanalysen in Deutschland (Hrsg.): Energiemodelle zum Kernenergieausstieg in Deutschland, Heidelberg, p. 348 – 377.

Hare, B. & Meinshausen, M. (2004): How much warming are we committed to and how much can be avoided?, submitted to EU’s stakeholder consultation on Action on Climate Change Post 2012.

Lechtenböhmer, S., Grimm, V., Mitze, D., Wissner, M. (2005a), Energy efficiency as a key element of the EU’s post-Kyoto strategy: results of an integrated scenario analysis. In: Energy savings: what works & who delivers, ECEEE 2005 Summer Study Proceedings; volume 1. Stockholm: Europ. Council for an Energy-Efficient Economy, 2005, p. 203-212.

Lechtenböhmer, S., Grimm, V., Mitze, D., Thomas, S., Wissner, M. (2005b) Target 2020, Policies and Measures to reduce Greenhouse gas emissions in the EU, Scenario analysis on behalf of WWF-European Policy Office, Wuppertal, Brussels, 90p.

Mantzos, L. et al. (2003): European energy and transport trends to 2030, published by DG TREN, Brussels.

Download: EFMN Brief No. 132_Target_2020

EFP Brief No. 129: Rural Areas: One of the Most Important Challenges for Europe

Saturday, May 21st, 2011

This brief presents an overview of major trends and policy options for rural areas. A number of social, technological, economic, environmental and political trends as well as strengths, weaknesses, opportunities and threats will be highlighted, followed by ten major policy options in view of two traditional and conflicting objectives: rural socio-economic development and countryside protection.

EFMN Brief No. 129_Rural_Areas

EFP Brief No. 123: Scenarios 2026 for the South West of England

Saturday, May 21st, 2011

This study (which took place in 2004) presents four ‘socio-economic-political scenarios’ designed to stimulate, guide and inform strategic thinking about the future of one of nine English regions, namely the South West. The scenarios portray distinct pictures of the social, political and economic background against which the strategies for the South West can be reviewed and developed. They provide a consistent approach and serve as practical thinking tools. The scenarios are also intended to help organisations in the South West to assess their vulnerability to forces of change and to plan appropriate adaptation strategies.

EFMN Brief No. 123_South_West_England