Posts Tagged ‘agriculture’

EPF Brief No. 243: Towards Gender-transformative Climate Change Adaptation Policies

Friday, December 21st, 2012

This climate policy research demonstrates that in India’s agriculture-dominated and gender-biased economy, the future of India’s adaptation strategy hinges on how well gender is integrated into agriculture-related policies and programmes. India’s National Action Plan on Climate Change, which lays out India’s strategy for mitigation and adaptation, recognises that women suffer more from climate change impacts than men. However, it fails to recognise that women are also integral to climate solutions. The research concludes with a set of policy recommendations for policy-makers and other actors.

Why Should India Focus on Gender-Responsive Adaptation?

There is growing scientific and anecdotal evidence in India that climate vagaries are affecting the life and work of its people, especially the 72% of its populations that lives off climate-sensitive agriculture and related activities. An overwhelming 60% of India’s agriculture is rain-fed and prone to recurring natural disasters like floods, droughts and cyclones which, according to climate scientists, will become more frequent, intense and unpredictable. These rain fed areas are also home to majority of the poor and marginalised farmers. India’s 11th Five-year Plan (2007-2012) notes the increasing ‘feminisation’ of Indian agriculture and a dominance of women workers in livestock rearing and collection of minor products from forests.

While India is the world’s 5th largest greenhouse gasses emitter and the 6th largest carbon emitter, these constitute just 4% and 3% of the global emissions respectively; also, India’s per capita emissions are 70% below the world’s average. Following a low-carbon growth strategy is important, and India has already embarked upon one, but there is far less policy focus on adaptation. As the Stern Review (2006) notes: ‘adaptation policy is crucial for dealing with the unavoidable impacts of climate but it has been underemphasised in many countries. Adaptation is the only response available for the impacts that will occur over the next several decades before mitigation measures can have an effect.’

Overcoming Gender-specific Disparities

Without an effective adaptation policy, India cannot achieve its Millennium Development Goals (MDGs) or its MDG-based National Development Goals as set out by the Indian Planning Commission. Climate change impacts often threaten to erode or inhibit development gains. Women are typically responsible for providing their household with climate-sensitive resources like water, food crops, fodder and firewood; they are also less likely to have the education, opportunities, authority and productive resources to adapt to climate change impacts. Without gender-specific disparities being addressed by adaptation policies, climate change will add another layer of gender inequality, especially in the farming sector.

The fourth assessment report of the Inter-governmental Panel on Climate Change (IPCC) notes that gender differences affect the vulnerability and adaptive capacity of women and men. After decades of gender-blind climate negotiation texts under the UN Framework on Climate Change Convention (UNFCCC), women and gender concerns were mentioned in the December 2010 Conference of Parties (COP 16) Cancun text.

Understanding Gender-specific Impacts of Climate Change

Using a gender lens, the research (a) analysed adaptation policies and programmes as laid out in the NAPCC and (b) gathered evidence from four disaster-prone rain fed agro-climatic zones in four states (India consists of 28 states and 7 Union Territories) for evidence-based policy recommendations. The four agro-climatic zones were:

  • The Himalayan eco-system in Himachal Pradesh (HP).
  • The flood plains of Eastern Uttar Pradesh (UP).
  • The Sunderbans coastal area in West Bengal (WB).
  • The drought region of Andhra Pradesh (AP).

The research objectives were:

  • Understanding some of the socio-economic impacts of climate change at the local level where gender-specific disparities are most intense.
  • Identifying some of the gender-responsive policy gaps in the national adaptation missions and in specific state-level climate change plans, and suggesting possible corrections.
  • Identifying some areas where women and men can both participate in, influence and benefit from scientific work on adaptation
  • Assessing how gender-responsive the work of grassroots NGOs working on adaptation is and how this can be up-scaled in a gender-responsive manner by the Central and State government’s climate-related policies and plans.

The research employed a range of tools and techniques. These included:

  • Literature Review
  • Participatory collection of field-data by four grassroots NGOs, each in one of the above agro-climatic zones.
  • Consultations with gender/climate experts
  • Policy analysis
  • A Delphi exercise

How Women and Men are Impacted Differently by Climate Change

There is little evidence to show the different impacts of climate change on men and women. The need to identify and study these differences is critical for making gender-responsive adaptation policies and programmes.

This research gathered data from the four agro-climatic zones and used a gender lens to show how the same climate change impact affected women and men differently. The research revealed that men’s primary way to adapt was to migrate from farms which meant that women were left behind to both till the unproductive land and to continue their care roles. This put an additional burden on women because they had to till the unproductive land or labour in other fields, while continuing to shoulder their care-giver responsibilities with no support from the spouse. The table below captures this gender difference from the four zones.

Gendered Impacts of Climate Change
Climate Change Impacts on women Impacts on Men
Lower food production Least to eat; sleep on an empty stomach

Need to take on additional work as wage labour which also led to more feminisation of agricultural labour (WB, UP, AP)

They get first priority to available food in the family
More natural disasters – cyclones, floods, water-logging and droughts; infrequent rains; intense rains Longer distances to walk to get water and fuel-wood

Loss of fodder and livestock

Drought/infrequent spells of rains – harder ground to do agricultural work on

Intense rains – more weeds and weeding is a woman’s job

Distress migration
Higher summer temperatures; longer summers Lower milk production among animals

More tiring work in fields even in April (HP)

Longer waking hours to work in the field early morning and late evening to beat the heat (AP, HP, UP)

Lesser tasks in the field.

Distress migration

Effect on regeneration of species and upward shift of the forest tree-line Medicinal herbs and fodder unavailable in forests now (HP) No effect
Social impacts

 

 

Higher indebtedness – women go to take loans and have the responsibility to pay off loans!

Increased male migration results in more women and child trafficking and HIV/AIDS spread

Greater poverty and frustration among men leads to increase in domestic abuse/violence

Distress migration

 

Adaptation Interventions Involve Women more but also Affect them Differently

Most grassroots development organisation working on farm-based livelihoods with rural men and women have willy-nilly adopted techniques that help small and marginalised farmers adapt to climate vagaries. Adaptation can be understood to be ‘development-plus;’ or development measures that take into account climate-proofing; or climate change adaptation interventions that help in also achieving development gains. According to a World Resources Institute study (2007), ‘adaptation uses the same toolbox as development measures, is more integrated than development interventions and factors in the dimension of ‘additionality’ on account of climate variability.’

Most NGOs this research study examined have similar approaches to integrating adaptation measures into farming practices. They build on traditional knowledge, adopt a diversified livelihoods basket, and add value through applied scientific and technological interventions. All this is done by first mobilising groups of farmers – both men and women but more women farmers. The reason for making women active players is because NGOs acknowledge that women farmers are more responsive than men farmers and achieve greater success. So women, more than men, are the main mobilizers of peer groups, recipients of knowledge and skills and risk-takers. Yet, these roles are hardly acknowledged by NGOs in documents, meetings and advocacy initiatives.

Working with women also does not usually translate into women owning more productive assets or accessing more government schemes or participating more in government or community-level decision-making bodies. While women do reap some benefits and are also more empowered than earlier in some respects, many adaptive interventions put more time and labour burden on women as compared to men. The table below illustrates a few of the differential impacts of on-the-ground adaptation interventions on men and women and some of the policy gaps that need to be addressed.

Gender Analysis of Adaptation Interventions
Adaptive Interventions Gender Analysis Policy & Programme Imperatives
Organic/low chemical input agriculture with diversified products Improved food security for both women and men

Women put in more labour and time to prepare bio-fertilizer and bio-pesticide

Higher fodder and fuel-wood yields for women

Less information/ knowledge/ inputs accessed by women

Less participation in decision-making bodies

Incentives to promote availability of bio-inputs

Incentives to promote joint farm land titles to spouses and leasing public land to women farmers groups.

Development of women-friendly technology to reduce drudgery

Availability of local weather-related information to women farmers.

Increased use of traditional saline/ drought/ flood resistant seeds and local livestock varieties More food security for both women and men

Gives women fodder/ fuel-wood

Enables women to store and exchange seed, not buy from seed markets

Opportunity for women to reclaim traditional knowledge

Promote farm-to-lab, in addition to the current lab-to-farm approach

Make local varieties available

Popularize seed banks, grain banks and fodder banks

Recruit women and men farmer trainers in extension work

Rain-water harvesting Benefits women more because it ensures improved food security and availability of water for livestock and homes Promote water harvesting structures for kitchen gardens, roof rainwater harvesting and for small farms;

Revive traditional ponds and wells.

Empowerment of Women

Women need to be at the core of planning and implementation of adaptation interventions. This includes collection of gender-disaggregated data at all levels, gender-based monitoring and evaluation and gender-budgeting. The four-C framework given below sums up the main policy recommendations.

  • Counting women in at planning, designing, implementing, resourcing and evaluating stages of all programmes and schemes. Currently, there is a huge deficit on gender-disaggregated data for policy making.
  • Converging programmes and schemes at the planning and design stage through multi-sectoral and multi-ministerial bodies and at the implementation stage through local government agencies and local elected bodies. A specific need is to mandate gender-responsive ‘Local Action Plans on Adaptation,’ (or LAPAs) integrated with the Village Development Plans made by local elected bodies.
  • Capacity building and empowering women and men at the level of local elected bodies, local government agencies, within scientific institutions working on adaptation and within relevant NGOs and community-based organizations. Gender-responsive decision-making institutions are basic building blocks for egalitarian adaptation policies.
  • Collaborating with key stakeholders – adaptation science researchers, government agencies and departments, local elected bodies, user groups, civil society groups and legislators – to build resilience among the most vulnerable people through participatory innovation, utilization of traditional and local knowledge, adding value through scientific and technological interventions and converging all resources.

Within this framework, the research identifies policy-level recommendations for specific actors – legislators, government planning bodies, government officers, local elected bodies, adaptation research scientists, civil society organizations and community-based groups.

These policy recommendations form a blueprint of what India’s approach and policies must be in the coming decades to ensure that both men and women are able to reap the benefits of a climate-resilient path to development.

Authors: Aditi Kapoor, Alternative Futures    email address: aditikapoor2@gmail.com  
Sponsors: Heinrich Böll Foundation, Germany and Christian Aid, U.K.  
Type: National foresight and policy advocacy research  
Organizer: Alternative Futures (Rakesh Kapoor) afmailbox@gmail.com  
Duration: 08/2010 – 05/2011 Budget: 20,000 € Time Horizon: 2030-2050 Date of Brief: July 2012

Download EPF Brief No. 243_Gender-transformative Climate Change Adaptation.

 

Sources and References

Ministry of Environment and Forests (November 2010), Indian Network for Climate Change Assessment (INCCA) Report 2, Government of India, New Delhi

Stern, N. (2006). The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge

Adger, W. N., et al. (2007). Assessment of adaptation practices, options, constraints and capacity. In Parry, M. L., et al. (Eds). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,   Cambridge University Press, Cambridge, UK, 717-743.

Agarwal, Bina. (1994). A Field of One’s Own: Gender and land rights in South Asia. Cambridge University Press, New York.

——- (2010). Gender and Green Governance: The political economy of women’s presence within and beyond community forestry. Oxford University Press, New Delhi.

Dankelman, I. (2002). Climate Change: Learning from gender analysis and women’s experience of organising for sustainable development. Gender and Development 10(2), 21–29.

Food and Agriculture Organization (FAO). (2003). Gender: Key to Sustainability and Food Security; Gender and Development Plan of Action (2002-07).

Government of India. (2008). Eleventh Five Year Plan Vol I-III (2007-2012). Planning Commission. Oxford University Press, New Delhi.

IWRAW Asia Pacific. (2009). Occasional Papers Series No. 14, Equity or Equality for Women? Understanding CEDAW’s Equality Principles, International Women’s Rights Action Watch Asia Pacific, Malaysia.

Krishna, Sumi, ed. (2004). Livelihood and Gender: Equity in Community Resource Management. Centre for Women’s Development Studies. Sage Publications, New Delhi.

EFP Brief No. 229: Taiwan Agricultural Technology Foresight 2025

Friday, November 23rd, 2012

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach. The goal was to identify research topics relevant to shaping the future of agriculture in Taiwan. Applying roadmapping, the project presented policy suggestions at the end of 2011. The suggestions have been incorporated into the Taiwanese govern-ment’s Council of Agriculture (COA) research agenda as evidenced by COA’s call-for-projects announcement.

The Role of Agriculture in Taiwan

Taiwan was one of the leading countries in subtropical agriculture several decades ago, but now agriculture has lost its importance in job creation, domestic production and international trade. However, agriculture is still at the root of the economy and has many functions beyond production – it provides the food we eat, conserves the environment we live in, and is a force for social stability.

Taiwan, with nominal GDP $427 billion US dollars and GDP (PPP) per capita $35 thousand US dollars in 2010, is known for its manufacturing capabilities today, but it used to be exporting a lot of agricultural products and technologies to many countries long time ago. Since 1959, more than 100 agricultural missions have been dispatched to more than 60 countries, among which about half missions are currently at work in Africa, the Middle East, Latin America, and the Asia-Pacific.

In fact, Taiwan’s total land area is about 36,000 square kilometers, most of which is mountainous or sloped. Therefore, agriculture is practiced mainly in the plains, which comprise 29 percent of the country. As a subtropical island characterized by high temperatures and heavy rainfall, Taiwan offers bio-diversities for agriculture, but also lends itself to the breeding of insects and disease. Particularly, there are frequently typhoons causing natural disasters in the summer and autumn every year.

There have been significant changes in Taiwan’s agricultural exports over the years however. Years ago, Taiwan exported sugar cane, rice, and canned mushrooms or asparagus. Now Taiwan’s main exports are aquaculture products (e.g. tuna, eel, tilapia), leather and feathers, and its main agricultural imports include corn, soybeans, wine, tobacco, cotton, lumber, beef and wheat. In 1953, the average value of agricultural production increased 7.3 percent annually and exports increased at a rate of 9.3 percent, but beginning in 1970, agricultural exports fell behind agricultural imports. In 2010, imports were USD 12.8 billion and exports were USD 4 billion. The production value based on agriculture is estimated approximately 11.2 percent of GDP, while primary production accounts for only 1.5 percent of GDP in Taiwan.

The Revitalization of Agriculture in Taiwan

In order to revitalize the agriculture sector to meet the challenges of trade liberalization, globalization, the knowledge- based economy and particularly, climate change, the Taiwanese Government’s Council of Agriculture (COA) commissioned a project- Taiwan Agricultural Technology Foresight 2025 – to the Taiwan Institute of Economic Research (TIER). This four-year project (2008–2011), with an annual budget of USD 350 000, conducted foresight-related activities including demand surveys, trend and policy analyses, horizon scanning, visioning, essay contests, training workshops, two-round Delphi surveys, road mapping and development of policy suggestions (short-, mid- and long-term development plans and priorities) (see Figure 1).

The project aimed to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Environmentally-Freindly Farming for Taiwan’s Future

In 2008, TIER set up a task force with six researchers and two assistants to learn the foresight techniques, mainly from Japan. It built up a data-base of social needs, technological trends, research resources, critical issues and agricultural policies nationwide and worldwide.

Under the support and approval of COA, the project set up the Planning Committee, including government officers, agricultural experts, senior research fellows, social scientists and an economist. The Planning Committee decided that the project’s target year was 2025, and that the purpose of the foresight was to identify R&D priorities to meet the long-term objectives for agriculture in Taiwan such as to improve farmers’ productivity and livelihoods, to develop resource-efficient and environmentally-friendly ways to do farming, and to ensure food safety by instituting a traceability system, which were embedded in a vision of making a better living in Taiwan in terms of industrial development, environmental protection and life quality respectively.

Visioning for Research Topics

In order to link the foresight and policy, the project set up the Strategy Formation Committee, with ten subcommittees corresponding to the ten research areas of COA, each of which was comprised of agricultural experts and senior scientists. The members of the Strategy Formation Committee were nominated by the Planning Committee and then approved by COA. The duty of the Strategy Formation Committee was to depict 2025 visioning in each research area and to figure out the research topics to meet the needs for shaping the future agriculture in Taiwan identified by the Planning Committee.

In 2009, the Strategy Formation Committee proposed more than 100 research topics for the project. The TIER task force tried to consolidate some of them and organize them in a uniform format. Then, the Planning Committee identified the final 74 research topics and the related key questions for the Delphi questionnaire.

In 2010, the TIER task force built up an on-line survey platform and carried out two rounds of Delphi survey. There were 675 experts and scientists on the list of the first round, 546 of which participated in Delphi survey (response rate of 80 percent), and 512 of which questionnaire were effective. Then there were 546 experts and scientists on the list of the second round, 413 of which participated in Delphi survey (response rate of 76 percent), and 407 of which questionnaire were effective.

Based on the survey responses to 74 research topics, the project compiled the indices of industrial development, environmental protection, life quality, national priority and government support respectively to measure the research topics in different aspects. The standard deviations of all indices at the second round became smaller than those at the first round, so it implies that the Delphi survey of the project did converge for reaching consensus.

The survey shows that the government should support those research topics with higher ratings in environmental protection as well as in life quality particularly due to agricultural multi-function (externality). It is, however, slightly correlated between industrial development and government support to be needed for those research topics because some of them could be developed by the private sector. These research topics have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

Attracting the Young Generation

Besides, in order to attract the young generation to think about the future of agriculture, the project invited young people to participate in the Taiwan Agricultural Technology Foresight 2025 contest (see Figure 2).

Foresight for Policy and as Policy

This was the first time that Taiwan conducted a large-scale expert opinion survey using the Delphi approach, in order to identify the research topics to meet the needs for shaping the future agriculture in Taiwan. The project made policy suggestions by road mapping at the end of 2011, and these have been incorporated into COA’s research agenda as evidenced by COA’s R&D system call-for-projects announcement.

The major contribution of the project has been the government’s support for the research topics of ‘national priority’ in terms of industrial development, environmental protection and life quality, with equal weights embedded in the vision of making a better living in Taiwan. The project is expected to improve farmers’ productivity and livelihoods, particularly for smallholders; to develop resource-efficient and environmentally-friendly ways to do farming in Taiwan’s limited land area; to reinforce the links between production and consumption of agricultural products by implementing a traceability system.

Authors: Julie C. L. Sun           juliesun@tier.org.tw

 

Sponsors: Council of Agriculture, Taiwan

 

Type: National foresight exercise
Organizer: Taiwan Institute of Economic Research, Julie C. L. Sun      juliesun@tier.org.tw
Duration: 2008–2011 Budget: 1 Mill USD Time Horizon: 2025 Date of Brief: July 2012  

Download: EFP Brief No. 229_Taiwan Agricultural Technology Foresight 2025.

References

The website of Taiwan Agricultural Technology Foresight 2025, http://agritech-foresight.coa.gov.tw

COA R&D project management system, http://project.coa.gov.tw

EFP Brief No. 228: Visions for Horizon 2020 from Copenhagen Research Forum

Friday, November 23rd, 2012

In January 2012, the Copenhagen Research Forum (CRF) gathered 80 European scientists to discuss the societal chal-lenges to be addressed by Horizon 2020, the next framework programme for European research and innovation, and consider how research could contribute the best solutions. This EFP brief explains the process behind the CRF and gives a summary of recommendations. It ends with a discussion on cross-disciplinarity and strategic partnerships as tools for organising research in order to solve complex societal challenges.

Visions for Horizon 2020 – from Copenhagen Research Forum

The EU Commission’s proposal for a new framework programme, Horizon 2020, is devoted to strengthening the strategic organisation of European research and innovation. The ambition is to mobilise excellent scientists across various branches of knowledge in order to provide solutions for complex societal challenges.

The Copenhagen Research Forum (CRF) set out to assemble a broad spectrum of leading European scientists to give their view on the Commission’s choice of societal challenges and possible ways of implementing Horizon 2020 as a means of tackling them. Approximately 600 scientists contributed throughout the process.

The CRF recommendations clearly affirm the EU Commission’s selection of societal challenges as well as the idea of supporting cross-disciplinary collaboration as a means to address crosscutting problems within and across challenges. The recommendations also send a strong signal of support for a framework where excellence, cross-disciplinarity and simplicity in administrative processes are key components.

The following pages provide an overview of the process behind the CRF, the main recommendations as well as a discussion of new instruments to be implemented to support cross-disciplinarity.

The CRF Process

The main idea behind CRF was to involve a broad spectrum of Europe’s top-level researchers in the making of Horizon 2020 since part of its preparation would take place during the Danish EU presidency in the first half of 2012.

The University of Copenhagen, Technical University of Denmark and the Capital Region of Denmark wanted the scientific community to provide unbiased input to Horizon 2020, with the aim of making Horizon 2020 as attractive as possible to researchers working in the areas covered by the six societal challenges. Professor Liselotte Højgaard was appointed as Chair of CRF.

The concept was finalised in the summer of 2011. The key issue was that CRF should convey ideas, visions and comments from outstanding researchers, all of whom were invited personally to join CRF. A full list of names of conference participants may be found in the CRF report (see link on the last page).

The process comprised several steps and organisational roles:

Chairship – This involved contacting researchers for the six groups and establishing a chairship comprised of one Dane and one European researcher for each challenge:

  • Health: Professor Liselotte Højgaard MD, DMSc and Professor Deborah Smith.
  • Food & Agriculture: Professor Peter Olesen and Director Kees de Gooijer.
  • Energy: Dr. Jørgen Kjems and Professor Kjell Hugo Bendiksen.
  • Transport: Head of Dept. Niels Buus Kristensen and Programme Director Dr. Christian Piehler.
  • Climate & Resources: Professor Katherine Richardson and Professor Johan Rockström.
  • Society: Professor Ole Wæver and Professor Loet Leydesdorff.

The six panel chairships were asked to invite up to 100 researchers to offer their views in a virtual discussion forum. Out of the invitees, 15 researchers from each group were also asked to meet at a workshop conference in Copenhagen on 16 January 2012 shortly after the Danish EU presidency began.

Virtual discussion forum – Divided equally between the six societal challenges, the 600 researchers were invited to comment on the draft text of Horizon 2020. The researchers were asked to contribute personal visions for the future as well as point out needs and possible solutions. They were also asked to suggest and comment on the technologies and the priorities within the given challenge as well as consider the instruments and implementation needed to ensure success as seen from a scientific perspective. Lastly, they were requested to contribute their ideas on how to secure the link between research and the innovation perspective stressed in Horizon 2020. All of the input was collected in a draft report that formed the basis of the aforementioned conference in Copenhagen.

Conference – On 16 January 2012, the six panels met and discussed the draft report, offering comments and adding new ideas inspired by the input collected in the virtual discussion forum. The aim was to reach agreement on (1) the views and recommendations in each of the six panels, (2) a joint statement during plenary sessions expressing the view on scientific issues cutting across all six challenges and (3) recommendations for the implementation of a challenge-oriented framework as a basis for excellent research and far-reaching solutions.

The Danish Minister of Science, Innovation and Higher Education, Morten Østergaard, attended the conference.

Outcome – The conference resulted in a condensed report offering ideas and solutions that could help form Horizon 2020 from a scientific point of view. The conclusions were presented to the European community in an open dialogue as explained in the following.

Dissemination – The CRF recommendations were presented to the EU Council of Ministers’ meeting in Copenhagen on 1 February 2012 and subsequently to the European Commission, the European Parliament as well as directly to Director General for DG Research and Innovation, Robert Jan Smits. The dissemination activities were closely connected to the Danish EU presidency.

In the following section, we provide key statements from the CRF panels’ recommendations. A full version can be found in the report.

Key CRF Recommendations for Each Societal Challenge

Health, Demographic Change and Wellbeing
  • Biomedical research and its implementation in clinical practice must be supported and accelerated. This requires a paradigm shift towards personalised medicine.
  • The global revolution in biomedicine is providing new technologies. Utilising those technologies requires vast efforts to expand and implement them.
  • A European platform engaging all key stakeholders to ensure discovery and delivery of these technologies will be crucial.
  • Establishment of a European Strategic Action for Healthier Citizens is also recommended to assist in strategic long-term healthcare research and planning, including preventive measures and the spread of best practice across Europe.

Food Security, Sustainable Agriculture, Marine and Maritime Research and the Bio-economy

  • Overriding challenges of increasing demand, competition for land use and other resource scarcities create massive pressure to produce significantly more per unit of a given resource.
  • Food, agriculture and land use must be seen in a complex and multi-directional value chain encompassing climate, available resources, environmental sustainability, transport, energy and health perspectives, not to mention social and economic requirements.
  • Key objectives are reductions in food waste and water consumption, valorisation of all bio-resources, including municipal bio-waste and agro- and bio-industrial side streams as well as the recycling of sufficient amounts of carbon and phosphor to maintain soil vitality.
  • Increasing prevalence of diet-related diseases and disorders calls for a balanced healthcare concept more geared towards prevention.
  • There is a need to create a collaborative innovation culture linking researchers, companies (especially SMEs), university education, NGOs and governments.
Secure, Clean and Efficient Energy
  • Horizon 2020 priorities should build on (1) a revised Strategic Energy Technology Plan (SET Plan), including a critical update of technology road maps and (2) a new, complementary systemic approach to combine technological, economical, political, social and cultural research to facilitate the transformation of the energy system as a whole.
  • Collaboration of social sciences and humanities with ‘hard sciences’ must be recognised as necessary and organised and funded accordingly to meet the challenges at the system level.
  • Coupling of educational efforts with research and innovation is critical for realising the ambitious plans for technology implementation and the overall system transition agenda.
  • Direct mobilisation of universities in addressing systemic challenges should be given high priority.
Smart, Green and Integrated Transport
  • The complexity of transport challenges requires closer cooperation across scientific domains and integration across universities, research institutions and industry than in the past.
  • Meeting the challenge of developing smart and green transport systems requires not only technological solutions but also a better understanding of transport behaviour and the use of innovative and effective policy instruments.
  • This calls for a more pronounced role for the social sciences than in previous framework programmes as well as for strengthening the integration of scientific domains.
  • Technological innovation will still be of paramount importance, including cleaner and safer vehicles for all transportation modes, cost-effective alternative fuels, advanced ICT for personalised real-time travel information with modal integration, metropolitan traffic management and smart payment systems.


Climate Action,Resource Efficiency and Raw Materials
  • Climate change constitutes one of the most urgent global resource challenges facing society, where the resource in question is our atmosphere as a receptacle for greenhouse gas wastes.
  • Development of actions and strategies for dealing with this challenge can potentially provide models for dealing with resource scarcity issues (biodiversity, ecosystem services, water, phosphorous, ores and metals etc.).
  • A general paradigm for dealing with resource scarcity is reducing the need for – and more efficient use of – the resource, combined with the adaptation of human activities to changed conditions and/or the recognition of resource scarcity.
  • In dealing with resource scarcity in general and the climate in particular, a major challenge is to channel the knowledge gained on the mechanisms of the Earth’s system into political and societal action. This requires cross-disciplinary approaches that integrate natural sciences with other disciplines.
  • The focus of Horizon 2020 should thus be to underpin societal responses to climate challenges by including research on systemic interaction, collecting baseline information and establishing monitoring activities of different mitigation and adaptation approaches.
Inclusive, Innovative and Secure Societies
  • The focus on ‘inclusive, innovative and secure societies’ provides a highly welcome challenge to the social sciences and humanities (SSH).
  • The Horizon 2020 proposal tends to focus on ‘hard’ technologies, especially statistics, assessments and measures of efficiency (evidence-based lessons), with a corresponding tendency to employ a technocratic definition of the nature of the challenges (e.g. in the security part, critical infrastructure protection is prioritised over international politics).
  • This represents a limited political and social vision that underestimates the power of citizens and communities to contribute to the realisation of inclusion, innovation and security.
  • Corresponding to a vision comprising a broader mobilisation of societal energies are forms of research that employ a wider selection of methodologies and theories to study the dynamics of society as productive and generative, rather than as the site of problems to be solved.
  • SSH can play key roles in the other societal challenges as well. It is important that researchers in the SSH engage scholars in the hard sciences in a joint effort to cultivate research-based innovation regarding the way expertise and democracy interact.

Excellence,Cross-disciplinarity and Simplicity

The ambition of using societal challenges as a means to organise European research requires new approaches. The message from CRF is to pursue this through a combination of excellence, cross-disciplinarity and administrative simplicity.

The CRF report signals a strong will among scientists to enter into cross-disciplinary collaborations in order to address complex challenges for which no single discipline has the solution. But this must not violate an equally strong need for administrative simplification and a continued effort to support excellence in all research activities. Without excellence as a fundamental requirement in all programmes, the cross-disciplinary ambition may become a hollow and strange add-on to ‘real’ science. Whenever a problem calls for a disciplinary approach, this should not be substituted with cross-disciplinarity. Timely application of new approaches must be a key priority.

Strategic Partnerships as Tools for Organising Cross-disciplinary Collaboration?

One of the ways in which cross-disciplinarity may enter the Horizon 2020 programme could be by establishing strategic partnerships devoted to delivering solutions to complex challenges. Strategic partnerships could be a way for the Horizon 2020 programme to nurture new constellations of fields of expertise without establishing very detailed road maps or other guidelines ‘from above’. It would be important to involve industrial and civil society actors in the formulation of strategic objectives in order to ensure that strategic partnerships become platforms for linking strategic priorities from science, policy, industry and other actors and that these partnerships organise collaboration accordingly.

A key feature of implementing strategic partnerships should be to provide them with sufficient operational freedom so as to secure flexibility and entrepreneurship in how partnerships pursue their goals at the project level.

Strategic partnerships should be an invitation and challenge to European research to explore new models of collaboration. This corresponds also with a clear recommendation from the CRF advocating the setup of strategic platforms connecting long-term visions with mid- and short-term investments in a dynamic way.

The advantage of a partnership-based organisation of strategic research is that it allows coordinating a variety of fields and actors while creatively linking actors who would otherwise not establish collaborative ties. Coordination and connection are thus key aspects of well-functioning strategic partnerships – but only if the model builds on principles that afford strategic partnerships sufficient degrees of freedom in organising collaboration projects. Otherwise, the risk of reproducing fragmentation and the resulting problems known from FP7 cooperation will be substantial.

The CRF epitomises an interest among scientists to engage in shaping the framework conditions of research and innovation. Beyond the scope of specific recommendations, the CRF may serve as a source of inspiration for how to establish a direct dialogue between the scientific community and policymakers.

The CRF report was followed up by a ‘CRF II’ process during which the chairship of CRF put together a set of recommendations for the implementation of Horizon 2020 in light of the CRF report. The resulting paper (Højgaard, L. et al. [2012a]) focuses on recommendations for implementing measures to promote excellence, cross-disciplinarity, simplicity and impact. The recommendations for implementation along with the CRF report can be found at the CRF homepage (crf2012.org).

Authors: Brenneche, Nicolaj Tofte                   ntb.lpf@cbs.dk

Højgaard, Liselotte      liselotte.hoejgaard@regionh.dk

Sponsors: Capital Region of Denmark

Technical University of Denmark

University of Copenhagen

Type: European research and innovation policy, Horizon 2020
Organizer: Capital Region of Denmark, Technical University of Denmark, University of Copenhagen

Contact: Anne Line Mikkelsen, amik@adm.dtu.dk

Duration: 2011 – 2012
Budget: n.a.
Time Horizon: 2020
Date of Brief: November 2012

Download: EFP Brief No. 228_Visions for Horizon 2020.

Sources and References

Højgaard, L. et al (2012): Visions for Horizon 2020 – from Copenhagen Research Forum.

Højgaard, L. et al (2012a): Copenhagen Research Forum II. Recommendations for an optimized implementation of Horizon 2020.

Both are available at www.crf2012.org.

EFP Brief No. 208: Forecasting of Long-term Innovation Development in Russian Economic Sectors: Results, Lessons and Policy Conclusions

Saturday, March 17th, 2012

The exercise presented includes scenarios of key Russian economic sectors and determines necessary technologies in accordance with such scenarios. As key sectors, the foresight team investigated the energy, iron and nonferrous-metals industry, agriculture, the chemical industry and pharmaceutics, the aircraft industry, commercial shipbuilding and the information sector.

Intensifying Foresight Efforts to Modernise the Russian Economy

Over the last years, we have seen increasing activity of federal and regional authorities in innovation and industrial policy in Russia. This activity has led to a series of documents and commissions concerned with the long-term development of the Russian economy. Among them are industry strategies (in more than 15 sectors), a conception of long-term socio-economic development for the Russian Federation (RF), priority directions for the development of science and technologies, and the Commission for Modernization and Technological Development of Russia’s Economy under the RF’s President.

The year 2006 marked the first “Concept for Long-Term Russian S&T Forecast till 2025” in the country’s modern history. This was developed and approved in cooperation with key ministries and science and business representatives. In 2006, practical steps toward implementing some of the foresight and forecast projects were launched (by 2012 we will have more than 50 key projects at different levels, including the national, regional and corporate level).

The first serious attempt to organise a foresight project at the national level was conducted more than 30 years ago within the Complex Program of S&T Development for the USSR. It aimed at S&T forecasting for a period of 20 years and can be considered a project of the first foresight generation (according to the definition by Georghiou et al., 2008). For the next 10-15 years, there was an absence of foresight and forecast exercises. In recent years, a number of initiatives have been launched to overcome this deficiency (for more information, see Sokolov & Poznyak, 2011).

Modern foresight projects in Russia today are very much in line with the current fifth generation of foresight exercises in developed countries, which includes a focus on social context and a strong policy-advisory orientation. Thus, we can say that Russian foresight development has taken a shortcut in these years and “leapfrogged” directly to what is currently considered the state of the art in foresight methodology.

The main challenges that these projects address are:

  • the need for diversification and a decreasing energy-output ratio of national GDP,
  • the increasing role of modernisation,
  • the transition to the innovation path proposed by the government,
  • threats from emerging countries (China, India) to Russia’s traditional markets,
  • changes in the global value chain, and the need to find new niches and markets,
  • opportunities to cooperate with foreign countries.

The key objectives of these projects are to:

  • identify key drivers and trends for the Russian economy,
  • identify the most critical technologies,
  • elaborate scenarios for key sectors and S&T fields,
  • develop policy recommendations at the federal and regional levels,
  • identify research priorities,
  • build expert networks around research organisations,
  • create pilot technology roadmaps for S&T fields and key sectors.

Methodology and Database for Foresight of Russian Economic Sectors

To achieve our aim, the database was based on two pillars. The first included information and relevant data from foreign and Russian forecasts, foresights at the country, industry and corporate level, and key Russian documents on S&T and industry development. The second pillar comprised data from various industry experts, representatives of key industries and consulting companies.

To construct various sector scenarios, we used elaborated qualitative models, which included sector analysis (characteristics of the technological base, organisation structure, role in exports, etc.), the identification of basic strategic alternatives for future sector development (e.g. technological and institutional), the construction of models of sector development, future visions, and the identification of priorities for S&T development in the sector in question for each vision.

This resulted in four to eight prospective scenarios for each key sector. To discuss the preliminary visions and present a final set of scenarios, we held a series of round tables and conferences. We also formed a multi-level pool of experts: the core included so-called “system experts” – high level professionals who were able to provide a comprehensive evaluation of the vision for the sector in question (2-3 persons for each sector); the next level included sector analysts who could contribute in-depth knowledge of different aspects relevant to the particular scenario (e.g., on markets and technologies; 7-12 persons for each sector); the last level was public relations experts and experts familiar with governmental and administrative processes and included representatives of industry journals, key federal and regional authorities (about 10-15 persons for each sector). We conducted focus groups, in-depth interviews and surveys to gain information from the experts participating in the project.

The beneficiaries of the project results are business (large, small and medium enterprises, business associations, industry institutions), government (state institutes for innovation development, federal and regional authorities), science (the system of Russian academies, research institutes), universities (leading institutes and labs in the Russian higher education system), and experts in the fields under consideration.

Project Results: Sectoral Models and Critical Paths

Some of the main sectoral results indicated that key sector development scenarios took institutional and technologic alternatives into account while identifying the main technologies necessary for implementing the scenarios. The results for the various sectors were highly diverse due to different sectoral structures and the number of sectors (ten). The table and illustration below briefly show some results for two sectors.

Medical Equipment and Pharmaceutics

After the sector analysis, we elaborated seven alternative paths of development for the pharmaceutics and medical equipment sector based on a literature review along the criteria mode of regulation, position in value-added chain, degree of modernisation and management. Then we verified alternatives by consulting industry experts and developed the five most probable models.

Information and Communication Technology

In case of the ICT sector, most experts agreed that a transition to the most preferable scenarios (“niche leader” or “technological leader”) cannot be accomplished directly. The only way to achieve them is to establish bridgeheads and use the competitive advantages gained to further advance toward the goal. Each scenario in Figure 1 contains a description of a future vision, possible barriers and risks, pros and cons, and recommendations for a shift in policy.

The exercise led to the following three policy-oriented results: (1) alternative “preferable” visions for the development of key sectors that are not limited only to the simple dichotomy of “bad” or “good” as in major government S&T documents; (2) recommendations for integrating long-term S&T forecasting as a basic instrument for strategic policymaking; (3) formation of a multi-level expert pool to serve as a communication network for discussing and constructing Russian S&T policy.

Foresight Culture Still Underdeveloped in Russia

We believe that the lessons and experience obtained during this project are representative of the whole field of foresight and forecast initiatives in modern Russian history. One of the key success factors in foresight is participation of key stakeholders and experts involved in shaping the future. In the case of Russia (at least 3-4 years ago), a lack of foresight culture has resulted in an “a priori”, indiscriminately negative perception of foresight initiatives. This can be explained historically by the fact that there have been some serious gaps between science and business and, as a result, in the supply of and demand for innovation. Mutual complaints are voiced to that effect. Business shows little interest in projects oriented toward long-term outcomes, lacks receptivity to innovations and displays low levels of global competition. We can say that the key actors (government and business) responsible for shaping the future are not fully up to the task. They have lost the “habit” of planning for a time span of more than 2-3 years.

One of the repercussions of the Soviet heritage is a lack of experts capable of acting as so-called “integrators”: experts able to devise strategies based on combining market pull with technological push. As a result, we have to first nurture a new generation of experts, typically to be recruited from representatives from the “technology” side, with the skills required to adopt a more comprehensive perspective of the sector as a whole.

Apart from qualification, a lack of expert commitment poses another problem in that experts show low interest in collaborative work and are more intent on lobbying and pushing their own individual interests.

Another serious drawback in foresight culture in Russia is an insufficient commitment to the processes required to formulate visions and scenarios on part of federal and regional authorities: they usually want to see “ready-to-use” results instead of participating in the process from the beginning.

We believe that a serious obstacle to the development of foresight culture in Russia is the lack of actually working, sustainable, systematic communication platforms for discussing different foresight results. Only in the past 2-3 years have they grown in number, particularly platforms launched by national research universities, technology platforms, etc. (for further information see Simachev, 2011).

Development of a common “cure” for deficiencies in foresight culture in Russia is complicated by the fact that Russian economic sectors are of a multi-structural nature, technologically and institutionally: some basic technologies are 100-150 years old and modernisation processes have not yet been completed in most industries. As a result, we observe a low level of innovation receptivity among Russian companies. Taking this into account, government policy should switch from “one-size-fits-all” instruments towards an innovation policy tailored to the specific situation in each sector or sub-sector.

Authors: Alexander Chulok, National Research University Higher School of Economics                                                       achulok@hse.ru
Sponsors: Ministry of Education and Science (Russian Federation)
Type: National foresight exercise
Organizer: Interdepartmental Analytical Center (www.iacenter.ru), Alexander Chulok, achulok@hse.ru
Duration: 2009-2010 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011  

 

EFP Brief No. 208_Forecasting Innovation in Russian Economic Sectors

Sources and References

Georghiou, L., Cassingena Harper, J., Keenan, M.; Miles, I. & Pooper, R. (eds.) (2008): The Handbook of Technology Foresight: Concepts and Practice. Cheltenham: Edward Elgar Publishing.

Sokolov A. & Poznyak A. (2011): Building Foresight Capacities for the Modernisation of the Russian Economy, EFP Brief No. 193, available for download at http://www.foresight-platform.eu.

Simachev Y. (2011): Technology Platforms as a New Instrument of the Russian Innovation Policy. available for download at http://www.iacenter.ru/publication-files/157/133.pdf

EFP Brief No. 190: Agriculture and the Challenges of Energy

Wednesday, August 10th, 2011

Energy in agriculture is all too often seen as a purely cyclical issue whereas it brings more complex challenges in terms of economic stability for agricultural holdings, impacts on the environment and climate, on food supply chains and spatial planning. The present brief describes the main results of a prospective study led by the Centre for Studies and Strategic Foresight (at the French Ministry of Agriculture). A group of experts used the scenario method to imagine possible futures of the agriculture-energy system in 2030 and help identify priorities and options for public action.

Energy at the Heart of French Agriculture

Energy is of major importance for the future of agriculture in France although it receives relatively little analytical attention. Control of energy consumption is an economic issue for agricultural holdings, which consume energy both directly (fuel oil, electricity and natural gas) and indirectly (energy for the manufacture and shipment of farm inputs). All in all, French farming consumes around 11 Mtoe (million tonnes of oil equivalent) a year: 5.3 Mtoe directly and an estimated 5.4 Mtoe indirectly. Taking all French holdings together, expenditure on fuel and lubricants represents 8.3% of intermediate consumption, 13.1% of the costs of fertilisers and 21.6% of livestock feed. The share of energy consumption in production costs varies widely according to the type of production: 23% of intermediate consumption relates to fertilisers and soil improvement for cereal and protein crops; 67% results from feed purchased for granivorous livestock holdings between 2005 and 2008. For an identical output, there are wide variations in energy costs at the farm level depending on production systems and practices. The prices for these inputs may also vary widely, reflecting those of fossil fuels. A high oil price may therefore have major consequences for the economic balance of holdings: the double burden of low farm prices and high energy prices may cause unavoidable and difficult situations. The issue of energy also involves logistics, the organisation of agricultural supply chains and the distribution pattern of farming activities across regions. This is so because the distances separating production areas, consumption areas and sources of input supply are reflected in energy consumption.

Moreover, energy and climate are intertwined issues. Agriculture could contribute to national targets for containing global warming by cutting its emissions, producing renewable energy and sequestering carbon in soil. On the other hand, ambitious climate and environment policies may increase fossil fuel prices.

A Collective and Systemic Approach for the Scenario Method

Since the interaction between agriculture and energy is complex, this subject was addressed using a collective approach based on the scenario method.

The ‘Agriculture Energy 2030’ group involved around forty participants with a wide range of skills and backgrounds from concerned ministries (Agriculture and Fisheries, Sustainable Development), public agencies (ANR, ADEME, FranceAgriMer), technical institutes (CTIFL, IFIP, Institut de l’élevage), the farming world (FNCIVAM, FNCUMA, SAF), research bodies (CEMAGREF, INRA), civil society (FNE) and the private sector (Total, ANIA).

This foresight exercise is centred on agriculture. It leaves out both fisheries and forestry, and the agrifood and retail distribution industries are only marginally considered in the exercise. In addition, climate change is only considered for its direct link with energy, that is, greenhouse gas (GHG) emissions caused by direct and indirect energy consumption and renewable energy production. Issues relating to biomaterial and bioproduct production have also been considered in the core analysis. Finally, the analysis restricts itself to mainland France because the French overseas territories have very specific agricultural and energy features of their own.

The choice of time frame to 2030 is a trade-off between the desire to capture cyclical effects and the necessity of working with a manageable, not too distant time scale. Within this basic framework, the Agriculture Energy 2030 group identified five components made up of 33 variables relevant to explaining the possible futures of the agriculture-energy system.

A study card was created for each variable to set a number of hypotheses as to its future development. This exploratory work was based on the identification of past trends, emerging trends and the main areas of uncertainty to be considered when looking forward into the future. Proceeding very conventionally, these hypotheses were combined for each component to produce micro-scenarios, which were then combined to generate global scenarios. For greater consistency and to cast a more informative light on the issues surrounding agriculture and energy, the global scenarios were quantified using a model (Climagri) to estimate French farming production, energy consumption and GHG emissions by 2030. These scenarios are not predictions of the future and reflect even less the preferences of the expert group or the French Ministry of Agriculture. They were used as conjectures to alert actors and decision-makers.

A Set of Four Scenarios to Highlight Energy Challenges in Agriculture

Scenario 1: Regionalisation and frugality to confront the crisis

A profound energy crisis undermines conventional business models. The international context is tense and focused on protection of domestic markets. Around 2020, the management of public policies is entrusted to a greater extent to regional authorities, which are seen to be closer to the development issues of their territories. By 2030, the agricultural world has changed profoundly and faces a number of external constraints: energy prices at sustained high levels, a budget crisis and loss of legitimacy of the central government, a withdrawal to home regions and a contraction in international trade. Agriculture adapts as a matter of urgency, employing a strategy focused on the local level, accompanied by major institutional reform.

The growing self-sufficiency of production systems inevitably involves input reduction, more extensive livestock farming and diversification. The search for complementarity between crops and livestock or between types of crops across holdings and regions becomes a general reality. By 2030, this transformation is not harmonised across the French territory and there are major regional disparities. Lower levels of specialisation and production lead to a limited export capacity. French farming makes major cuts in its energy consumption (down by 32%). Renewable energy produced on the farm supplies additional income, but its development depends on local potential and dynamics. Extensive use is made of biomethanation and wood-for-energy, but expansion of biofuels is held back by high agricultural prices.

Scenario 2: Twin-track agriculture and energy realism

Against a backdrop of high energy price volatility and further trade liberalisation, public support for agriculture declines with a refocusing on remuneration for the public goods provided by agriculture. These changes have very different impacts on holdings depending on whether or not they meet local demand for the local supply and provision of public amenities. Two forms of agriculture exist side by side in 2030:

– “Business Farming” (mainly on the plains of the Northern , Western and Central France): these farms manage to be competitive and to position themselves on export markets. Intensification and restructuring result in a high-precision, high-input farming system. Energy use is optimised on these farms as a response to economic drivers. Energy optimisation is benefited by private-sector market supply of technology and counselling services.

– “Multifunctional agriculture”: these farms diversify their activity and are remunerated for the environmental services they provide (water, biodiversity, landscape, carbon storage). Their main activities are extensive livestock, organic and mixed crop-livestock farming. Such holdings adopt strategies focused on self-sufficiency and low energy use close to those in Scenario 1.

Overall, there is little change in energy consumption. Renewable energy production expands moderately, with investments being held back by price volatility. Biofuel production is more strongly developed in integrated and innovative industrial sectors.

Scenario 3: Health-centred agriculture with no major energy constraints

In 2030, urban consumers are more numerous and more influential. With the backing of the large retail chains, they have succeeded in imposing a major reduction in the use of pesticides by agriculture on grounds of the protection of human health rather than protection of the environment. In the absence of major energy constraints and strong environmental policies, urban sprawl continues to expand. Agricultural supply chains are shaped by their downstream components, with quality schemes and mandatory specifications becoming highly prescriptive with regard to reduced pesticide use. Producers adjust more or less. Some sectors are negatively affected by this new constraint. The most isolated rural regions experience significant abandonment of agriculture. Conversely, the major cities invest in periurban farming to meet the demand for open spaces and local food supply. A specialised and technically sophisticated agricultural model involving integrated pest management has developed. It aims at high production levels and at abating pesticide use at the same time. In parallel, organic farming develops significantly. The absence of any major constraint in terms of policy or energy pricing results in a slight fall in overall energy consumption since production inputs are partially substituted by efficiency gains in machinery. The production of biofuels expands strongly, driven by the early arrival of second generation technologies.

Scenario 4: Ecological agriculture and energy savings

Approaching 2015, the need to make sharp reductions in the environmental impact of human activity leads to a consensus both in the developed world and slowly in the emerging countries. European households adapt their consumption patterns out of concern for preservation of the environment and in response to prices that now include the environmental cost of products. The implementation in 2016 of a common EU-US CO2 market with border adjustment mechanisms triggers a massive shift towards ecological modernisation. In this context, agriculture evolves toward new production models with smaller environmental impacts; the trend is supported by a reformed agricultural policy. This change, however, is both difficult and gradual. The initial resistance of the farming world delays the behavioural changes. Major mutations in the whole agri-food system are also required. From 2020 on, French agriculture becomes ‘ecologically intensive’ on the wide cereal-growing plains of the country: for example, crop diversification, general use of nitrogen-fixing crops at the beginning of rotation sequences and no-tillage become common. In hilly and mountainous lands, farmers are paid for environmental services and are encouraged to meet self-sufficiency at the farm (diversified systems based on mixed crop-livestock farming) or across whole regions (complementarity between farms). Biomethanation and renewable energy production are strongly developed.

Future Requirements for Policy

The expert group sketched out ‘come what may’ strategies that can be expected to remain valid in any future context. The use of fertilisers is a core element of energy balance, and the technical means for reducing nitrogen inputs are well known (long crop rotation sequences and diversified crop choices, use of green manure, organic sources of nitrogen and so on). Their general adoption requires awareness-raising and educational efforts directed at the farmers along with networking to support farmers in exchanging experiences. The need for changes may call for the use of strong normative or economic instruments.

The Agriculture Energy 2030 group has highlighted the advantages of biomethanation, on condition that the digestates are correctly recycled. The structuring and development of the relevant sector supply chains are major issues. Digestate centrifugation is one of the most promising avenues because it allows an easily transported solid phase rich in nutrients (ammonia, phosphate, potassium) to be isolated, along with a liquid phase that is rich in nitrogen but which must be used in nearby areas (spreading). Official approval for the products obtained in this way could provide a major boost.

Another advantage of biomethanation is the production of renewable energy (electricity and heat). The existing support schemes for the installation of digesters on farms should be accompanied by biogas purchase prices to offer greater incentives and forward visibility to investors.

Preference for local supply of protein for animal feed was seen as an advantageous strategy. The goal is to reduce the transportation of these inputs through on-farm production or local supply and to give preference to protein sources requiring low levels of inputs for their production. Grass-based livestock farming particularly deserves to be encouraged given its self-sufficiency and the numerous amenities it provides. Strategies aimed at expanding the use of grass in livestock farming and introducing legumes into pastures are of interest and should receive appropriate technical assistance.

Agricultural machinery constitutes a major area for fuel savings and a lever for change, which could be easily used. Investment in proper adjustment and maintenance of tractors, replacement of machinery and reductions in engine power should receive financial support while giving priority to pooled uses. Elimination of the need to till the soil (notably by means of zero-tillage) could be explored for the reduction of fuel consumption. Extensive effort on training and research is, however, required.

Innovation in the organisation of the agricultural sector to improve energy balances across production regions is needed. The group recommends that production systems should be diversified and products traded between holdings. Support would be appropriate for farmers committing to innovative modes of production (e.g., crop-livestock complementarity, organic farming, high environmental value) through proactive policies on land and installations, especially in the most specialised regions. In addition, the provision of technical and financial support for the development of on-farm primary processing of water-rich products could help reduce transport-related energy consumption while at the same time diversifying farmers’ income sources.

There is nevertheless a need to study case by case the energy efficiency and economic viability of this kind of development, which requires major investments and increases farm workload. The development of on-farm storage facilities and conservation technologies helps reduce wastage and thus provides another tool for action. Lastly, there are avenues to be explored for the improvement of the energy performance of short supply chains: delivery pooling, modal transfer, avoidance of empty return trips and so on.

  • The development of renewable energy production must be supported and channelled. Renewable energy, other than biomass can provide additional income, depending on farmers’ investment capacity and local potential. Moderate purchase prices should help avoid excessive speculation and the risk of unbridled development of installations on agricultural land. Where biofuels are concerned, public support should favour the most competitive and best environmentally performing sectors. Such targeting of support would help ensure that budget leeway can be found to increase R&D efforts and assist investment in second-generation technologies. Support of this kind should be made conditional on compliance with demanding sustainability criteria. The rising importance of ligno-cellulosic biofuels will also require sustainable management and the mobilisation of large quantities of biomass. Farm fuel taxation might also be revised in order to offer greater incentives for fuel economy.
  • Reduction of the energy consumption of buildings is a necessity for the high direct energy consuming sectors. Large-scale investment should, for instance, be provided for the modification and effective insulation of buildings, the installation of heat economisers or biomass boilers and for lighting optimisation. Financial support in the form of grants or loans could be provided on condition of complying with thermal standards for buildings. A wide-ranging scheme could be implemented along the same lines as the PMPOA (French programme for the control of pollution of agricultural origin). Lastly, priorities for agronomic research and the dissemination of innovation in agriculture were highlighted. Indeed, considerable uncertainty remains and more knowledge should be gained on indirect energy consumption (especially for animal feedstuffs), end-to-end energy balances in agricultural supply chains, the logistics of agricultural and food products and the energy content of those logistics. In particular, current work on the development of short marketing chains for agricultural products should not neglect this aspect. Generally speaking, comparisons of the energy balances of different agricultural holdings must be continued and improved to help understand discrepan-cies in levels of consumption and energy efficiency in different production systems.

Varietal improvement should focus on the development of high-yield protein crops and less nitrogen-dependant cereals and oilseeds. Alongside this, research into production systems should address low-energy systems (e.g., integrated production, grass-based systems) and alternatives to tillage. Support for organic farming should go hand in hand with research into increased yields and methods for reducing direct energy consumption.

Innovation transfer is the keystone of any successful strategy. Governance of R&D should be broadened, for example, by involving practitioners in the R&D organisations. Developing a network of experimental farms is also essential for the definition and transfer of innovative techniques and technical benchmarks. Lastly, several factors are holding back useful initiatives to sustainably improve the energy efficiency of agricultural holdings and supply chains: energy price volatility, low taxation on energy products in agriculture and lack of knowledge. Efforts to communicate, raise awareness and provide training must accompany any action.

Authors: Thuriane Mahé                               thuriane.mahe@agriculture.gouv.fr

Julien Vert                                      julien.vert@agriculture.gouv.fr

Fabienne Portet                              fabienne.portet@agriculture.gouv.fr

Sponsors: Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning
Type: National foresight exercise
Organizer: Centre for Studies and Strategic Foresight (CEP)
Duration: Jun 09-Dec10 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011

 

Download EFP Brief No 190_Agriculture and Energy_2030

Sources and References

Vert J., Portet F., (coord.), Prospective Agriculture Énergie 2030. L’agriculture face aux défis énergétiques, Centre d’Études et de Prospective, SSP, Ministère de l’Agriculture, de l’Alimentation, de la Pêche, de la Ruralité et de l’Aménagement du Territoire, 2010 (in French).

Prospective analysis Agriculture Energy 2030 (in English), see http://agriculture.gouv.fr/IMG/pdf/CEP_Agriculture_Energy_2030_Synthesis_English.pdf.

For further information on this project, see http://agriculture.gouv.fr/agriculture-energie-2030,1440.

EFP Brief No. 181: Technologies for EU Minerals Supply

Thursday, May 26th, 2011

This exercise was part of an EU FP7 Blue Skies Project aimed at piloting, developing and testing in real situations a foresight methodology designed to bring together key stakeholders for the purpose of exploring longer term challenges and building a shared vision that could guide the development of the relevant European research agenda. This approach was applied to the theme of “Breakthrough technologies for the security of supply of critical minerals and metals in the EU economy”.

The Minerals Challenge

Minerals and metals are essential to almost every aspect of modern life and every economic sector. Aerospace, agriculture, culture, defence, energy, environmental protection, health, housing, transport and water supply are all highly dependent upon them. Plans for economic recovery and the development of new industries also depend on their availability – for example “green” energy production from solar cells and wind turbines, the green car of tomorrow and many more all require a range of rare minerals and metals for their production.

Although essential to our economies, development of this sector has been neglected in Western Europe during the past 25 years. This was mainly because of the very low price of these commodities – a consequence of abundant reserves discovered in the 1970s. As a result, the mining and metallurgical industry as well as related research and education almost disappeared from the present European Union, making our economies totally dependent upon imports.

Demand for these minerals and metals is likely to increase dramatically. Much of this new demand will come from rapidly growing, highly populated emerging countries, such as China, which have attracted large parts of the world industrial production due to cheap labour, regardless of raw minerals and energy issues. Already strong competition for access to natural resources, including mineral resources vital to any economy, is likely to accelerate further in the coming years with possible severe environmental and social impacts. The EU economy is more than any other exposed to these developments, as it produces very little of the minerals it consumes and almost none of the critical minerals it needs to develop its green technologies.

Against this background, the creation of a new research and innovation context in Europe has become essential, not only to reduce the EU’s dependence on imported minerals and metals but also to chart the road ahead, to develop a win-win cooperation with developing countries and to stimulate the competitiveness of EU technology, products and service providers to the global economy.

However, these solutions can take a long time to be implemented, and it is important to identify today’s priorities for knowledge generation and innovation so that action can begin. This in turn creates a need for a foresight approach that brings together the knowledge and interests of the main stakeholders. It is in this context that the FarHorizon project invited leading experts in the area from government agencies, industry and academia to take part in a success scenario workshop. The aims of the exercise were

  • to identify the key challenges for raw materials supply in Europe;
  • to identify breakthrough technologies or other innovations that could transform the picture, including substitution, new sources, ways to change demand and new applications; and
  • to define in broad terms the research and innovation strategies needed to develop and make use of such technologies.

Success Scenario Approach

The “Success Scenario Approach” is an action-based approach where senior stakeholders develop a shared vision of what success in the area would look like, together with appropriate goals and indicators, which provide the starting point for developing a roadmap to get there. The purpose of having such a vision of success is to set a ‘stretch target’ for all the stakeholders. The discussion and debate forming an integral part of the process leads to developing a mutual understanding and a common platform of knowledge that helps to align the actors for action.

Important outcomes of these workshops are the insights they provide in terms of the level of maturity in policy design and development and the viability and robustness of long-term policy scenarios to guide policy-making. The workshops also provide indications on whether there is a need for further discussion to refine thinking and policy design and/or to bring additional stakeholders into the discussion.

The theme was developed in partnership with the French geosciences institution BRGM. The workshop brought together twenty representatives of scientific organisations, industry and government agencies to identify the role of technology in addressing the socioeconomic and political challenges facing Europe in this sector. Briefs on key issues were prepared before the workshop, and participants took part in an exercise to identify key drivers using the STEEPV framework (social, technological, environmental, economic, political and values). Common themes were increasing demand and growing sustainability requirements. Geopolitical themes were also touched upon.

The basic structure was to identify the key challenges facing the sector and then to explore the potential role of breakthrough technologies in addressing those challenges. A third main session examined the key elements needed for a sectoral strategy for innovation.

The figure below gives an outline of the methodology:

Challenges in Three Dimensions

Informed by the drivers, participants were tasked to identify the key challenges for raw materials supply in Europe and to prioritise these. If these challenges can be met, we can expect to achieve a situation as defined by the successful vision for the sector in 2030 and realise its benefits to Europe. Three dimensions of the challenge were addressed:

Geology and Minerals Intelligence

  1. Access to data on mining, production and geology
  2. Knowledge of deeper resources
  3. Better knowledge due to improved models of how deposits are produced
  4. Better exploration
  5. Systematic data sharing
  6. Exploitation of ‘exhausted’ mines

Mining, Ore Processing and Metallurgy

  1. Exploiting deeper deposits
  2. Accessing seabed deposits
  3. Better health and safety; prediction of seismic events and natural or man-made hazards
  4. Using less water and energy
  5. Reducing CO2 footprint
  6. By-product handling
  7. Social and business organisation

Sustainable Use, Efficiency, Recycling and Re-use

  1. Downstream resource efficiency
  2. Better citizens’ understanding/attitude
  3. Building capabilities and providing training
  4. Transforming waste into mines/urban mining
  5. More systemic view of different critical minerals
  6. Better use of other resources, e.g. water and energy
  7. Global governance of new extractive activities

Against these challenges, breakthroughs were sought in four areas: new applications, substitution, new sources of materials and rare metals, and changes in demand.

Four Key Actions toward a Comprehensive Policy for Securing Raw Materials Supply

Policy recommendations geared toward securing the supply of raw materials in Europe were summarised in terms of four necessary key actions:

Key Action 1: Establish an integrated strategy for raw materials supply and support it by providing continuous funding.

Research in the area of raw materials supply needs to be clearly linked to creating the right conditions for successful innovation. There is some concern that the European Commission has no competence in minerals as such but rather in matters of environmental protection, trade or economic competitiveness. This limits the development of a holistic, complementary approach needed to tackle the various issues related to securing Europe’s mineral resources supply within the sustainable development context. The sector needs a more horizontal approach – otherwise we may do research, but there is no innovation behind it. An innovation-friendly market can be created by developing stringent environmental and recycling regulations. Europe is at the forefront of a number of technologies in these areas. Regulators need to understand that part of their job is to stimulate innovation if not for today at least for tomorrow. Engaging them in foresight, along with technologists and users, is important for developing this horizon. There is a 7-8 year challenge to develop a new lead market.

Key Action 2: Move from stop and go to a lasting approach with three central aspects for a research, technology and innovation programme.

Support up to now has been project-based and provided only to a limited extent on a stop and go basis while continuous policies and knowledge development would be necessary.

2.1 There are three broad research priorities:

  • Research dealing with mineral resources intelligence. This is research of a totally different kind, i.e. mainly interdisciplinary. It is needed to keep up with a dynamic situation where even what minerals and metals are critical changes over time.
  • Research leading to new or better technologies with a focus upon whatever is needed by industry. The large scale South Korean national initiatives provide a good example of speed, scale and pragmatism and also represent the competition that Europe has to face. The US investment on rare earths in the Ames laboratory is another example.
  • Research on mitigation and understanding of environmental impacts.

2.2 Adopt a holistic approach to the innovation cycle. Support for research should be long-term and structured so that most publicly funded research is open and shared internationally. The full range of mechanisms is needed: basic R&D, integrated projects or their equivalent and joint technology initiatives. However, 80% of the effort should be in large applied projects and the rest focused on longer term work. Partnership with the US, Japan and possibly South Korea could be meaningful in a number of areas.

2.3 Adopt a joint programming approach. Currently there is little or no coordination between European-level and national research. Some governments are in a position to take the initiative in this area – notably Germany, the United Kingdom, France, Finland and Poland.

Key Action 3: Increase the flow of trained people.

A supply of trained people is a significant constraint. The lack of investment in research and teaching in this area over the past 20 years has depleted the availability of expertise to undertake the necessary research and teaching. Training initiatives are needed and within the European framework a pool of excellence should be developed – a platform that coordinates the supply and demand for education and training in the area with some elements being in competition and some complementary. There is also a need to attract interest from researchers outside the area; many of those doing research in this field have a background in the minerals sector, but breakthroughs may be more likely to come from people currently working in other fields.

Key Action 4: Governance issues are critical.

Securing raw materials is a task that goes beyond the competence and capability of the individual member states and is inherently European. Even current European initiatives in other fields are dependent on action in this sector – rare metals are behind all the EU’s proposed Innovation Partnerships. Collaboration beyond Europe is also necessary, but a collective voice for Europe is more likely to be heard in the international arena. There are also opportunities to exert a positive influence to halt environmentally damaging or politically dangerous approaches in other parts of the world, notably in Africa and parts of the CIS. The momentum from the current EU Raw Materials Initiative, aiming to foster and secure supplies and to promote resource efficiency and recycling, needs to be carried forward into the EU’s Eighth Framework Programme, its innovation policies and also its wider policies including those concerning interaction with the African, Caribbean and Pacific States.

Authors: Luke Georghiou luke.georghiou@mbs.ac.uk, Jacques Varet j.varet@brgm.fr, Philippe Larédo philippe.laredo@enpc.fr
Sponsors: EU Commission
Type: EU-level single issue foresight exercise
Organizer: FP7 FarHorizon Project Coordinator: MIOIR, Luke Georghiou Luke.georghiou@mbs.ac.uk
Duration: Sept 08-Feb11 Budget: N/A Time Horizon: 2030 Date of Brief: Apr 2011

 

Download EFP Brief No. 181_Technologies for EU Minerals Supply

Sources and References

Georghiou, L., Varet, J. and Larédo P. (2011), Breakthrough technologies: For the security of supply of critical minerals and metals in the EU, March 2011, http://farhorizon.portals.mbs.ac.uk

European Commission (2010), “Critical Raw Materials for the EU”, Report of the RMSG Ad Hoc Working Group on defining critical raw materials, June 2010

European Commission (2011), Tackling the Challenges in Commodity Markets and on Raw Materials, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Brussels, 02/02/2011 COM(2011) 0025 final