Archive for the ‘until 2050’ Category

EFP Brief No. 257: Creating Prospective Value Chains for Renewable Road Transport Energy Sources

Tuesday, September 16th, 2014

If the Nordic energy and transport sectors are to meet the 2050 energy and climate policy targets, major systemic chang-es are necessary. The transition requires cooperation between public and private actors. The approach outlined in the paper combines elements from the fields of system level changes (transitions), value chain analysis and forward looking policy design. It presents a novel, policy relevant application with a set of practical tools to support development of im-plementation strategies and policy programmes in the fields of energy and transport.

A Major Transition is Necessary

Sustainable energy technologies are driven especially by the climate change challenge, which necessitates paradigm shift also in global energy production and consumption structures. Currently, about 20 % of the Nordic CO2 emissions are due to transport sector. If the Nordic energy and transport systems are to meet the 2050 energy and climate policy goals, a major transition is necessary. Along with new technologies, changes are required also in other societal sectors such as business models and consumer habits. The transition requires cooperation between public and private actors. Political decisions should create potential to enterprises which can provide renewable energy solutions in a way that they attract also consumers and transporters of goods.

In order to be able to make wise political decisions we need foresight actions to get an idea about the future trends and needs, and possible ways of shaping the future. We believe that, for the most part, actors create the future and therefore the state of the transport system is a result of the measures and actions carried out by the producers, operators and users of the system. Therefore we need knowledge and understanding about the actors who are important in the processes. In our understanding actors are outlined in value chains.

A new Approach to Value Chains

The focus in this brief is on developing tools to understand, create and analyse prospective value chains up to the year 2050. With ‘value chain’ we mean a chain of activities needed in order to deliver a specific valuable product and service for the market, incl. activities related to energy sources or feedstock production; energy production; distribution and transportation; retail; consumption; regulation and governance; and research and development. In our case the value chains arise from three alternative, but partly overlapping technology platforms, namely electricity, biofuels and hydrogen.

The motivation for this foresight exercise is to produce knowledge for future decision making and policy support in order to create enabling ground for sustainable energy solutions for the future transport sector. Traditionally value chains are considered in rather short term business opportunity analyses. In our case, we need to outline the value chains in the far future.

The brief is based on the preliminary results of the TOP-NEST project WP4. The task of WP4 is to identify prospective value chains in order to outline roadmap and policy recommendations in the later phases of the project.

Functions of Foresight and Policy-making

The impact of foresight on policy-making has been discussed among foresight experts practitioners (e.g. Georghiou & Keenan 2006, Da Costa et. al. 2008, Weber et.al. 2009, Könnölä e.al. 2009, 2011). One aspect of this discussion is to consider the functions of foresight in policy-making. The functions of foresight can be summarized into three major functions, which are 1) informing, 2) facilitation, and 3) guiding.

The informing function of foresight is generation of insights regarding the dynamics of change, future challenges and policy options, along with new ideas, and transmitting them to policymakers as an input to policy conceptualisation and design.

Facilitation of policy implementation gets it motivation from the changing nature of policy-making. There has been a shift from linear models of policy-making, consisting of successive phases such as formulation, implementation and evaluation phases, into cyclic models, where evaluations are supposed to feed back into the policy formation and implementation phases (Weber et. al 2009; Da Costa et. al 2008). This kind of thinking puts more emphasis on interactions, learning, and decentralised and networked characters of political decision-making and implementation.

The effectiveness of policy depends also on the involvement of a broader range of actors, and therefore also, the role of government shifts from being a central steering entity to that of a moderator of collective decision-making processes. To meet the requirements of the new mode of operation one needs foresight instrument.

Policy guiding refers to the capacities of foresight to support strategy formation or policy definition. In its best foresight exercises may bring to light the inadequacy of the current policy system to address the major challenges that society is facing (Da Costa et al. 2008).

Our approach combines analysis of system level changes (transitions) and value chain analysis with foresight approach. We apply multilevel perspective model (Geels 2005) to define the prerequisites of the transfer of the complex transport system, and value chain analysis in order to concretise the changes needed. With these elements we try to inform, facilitate and guide policy-making.

Multi-level Perspectives of the Energy and Transport Systems

Figure 1 presents the three basic components of the transport system: users, vehicles and transport infrastructure. The use of vehicles involves behavioural and business models, and different types of solutions are available concerning issues such as vehicle ownership (adapted from Auvinen and Tuominen, 2012). The illustration presents also the main elements of the energy system (primary energy sources, production and storage), which are linked to the transport system mainly through energy and transport infrastructures and are crucial for transport operations.

The state of the transport system is a result of the measures and actions carried out by the producers, operators and users of the system. Producers and operators are organisations or companies, which can be categorised according to their main duties, such as: policy formulation, infrastructure construction and maintenance, production and operation of services for the transport system, and production of transport-related services (e.g. vehicle manufacturing and fuels). Individual people, actually the whole population, are the users of the passenger transport system. In freight transport, users are companies and organisations in the fields of industry, transport and commerce (Tuominen et al. 2007). Value chains are composed from these different actors.

257_bild1

Figure 1. Transport and energy systems in multi-level perspective model. The transfer process requires changes in all levels heading to the same direction.

From Future Wheel to Technology Platforms and Prospective Value Chains

The foresight procedure consists of three stages (see Figure 2):

257_bild2

Figure 2. A procedure for prospective value chain analysis.

The starting point of the process (Step 1) is to create an idea of the context were the prospective value chains will operate. For this pourpose, various foresight methods, such as Futures Wheel, and scenario methodology can be used. We formulated four different scenarios for 2050, which are described briefly below (Figure 3).

257_bild3

Figure3. The principle of scenario creation and the four transport scenarios formulated for 2050.

The goal of the second step is to identify the value network actors and analyse their individual interests, and connections between different actors, if possible, in all different scenarios. The analysis covers value chain activities from energy sources and feedstock production to energy production, distribution and transport, retail and consumption. Also regulation, governance and R&D actors are included in the analysis.

All possible actors are listed and their opportunities and advantages, as well as supportive needs are analysed. Opportunities refer to the possibilities to make profit in the value network (How the actor benefits from the value network?), and advantage refers to created value by the actor (What is the added value the actor produces to its customer or in the network?). The analysis of the supportive activities is needed to recognize the connection between different actors. Figure 4 gives an example of the value network illustration.

257_bild4

Figure 4. Value network of a biodiesel example based on tall oil.

The third step includes outlining of the prospective value chains. In this stage, couple of aspects need to be taken into consideration. Different technology platforms will co-exist in the future and different futures create different opportunities and development possibilities for different technology platforms. Therefore, one needs to describe the level of technological development of the given technology platform in the outline of the value chain. In other words, the outline of the value chain works only in selected scenario, and the level of technological development of a single technology platform is different in different scenarios.

Participative Workshops Informing, Facilitating and Guiding Policy-making

Future value chains and future actors within have to be recognised in order to find out prerequisites of the future actions. The proposed approach may act as a checklist for the key issues to be covered in outlining prospective value chains in the road transport context.

The process integrates methods from different theoretical starting points: foresight, multi-level perspective and value chain theories. It also integrates energy and transport systems, and expands the context far to the future. The process is not yet complete but the work will continue in the TOP-NEST project up to the 2014.

To outline future actors is a challenging task. At this stage of the process development we have noticed that the most challenging part is to be able to imagine potential new actors and to create potential new relationships between the actors in a strongly path dependent situation, as is a biodiesel case. We assume that for instance in testing this procedure in hydrogen technology system the challenge may be slightly easier, because path-dependency is not strong.

Another challenge is to get relevant stakeholders to either participate the workshops or give interviews. The workshops or interviews shall include stakeholders at least from the industry, ministries, NGO’s e.g. nature protection organisations, vehicle industry and associations as well as researchers. The issue to be discussed is so large including energy, transport and transition policies, that the discussion would take time. There may also be confidentiality problems concerning new emerging technologies.

We believe that the prospective value chain analysis helps us to figure out landscape level constraints, like values and global trends, niche level options, as well as the needs which guide us to change or maintain the existing regime. Value chain analysis gives us views about the future and about the potential paths and constraints to help making wise political decisions.

 

Authors: Nina Wessberg, nina.wessberg@vtt.fi, Anna Leinonen, anna.leinonen@vtt.fi, Anu Tuominen, anu.tuominen@vtt.fi, Annele Eerola, annele.eerola@vtt.fi ,Simon Bolwig, sibo@dtu.dk
Sponsors: NER (TOP-NEST project http://www.topnest.no/ )
Type: Nordic foresight exercise
Organizer: VTT, nina.wessberg@vtt.fi
Duration: 2011-2015
Budget: € 402,000
Time Horizon: 2050
Date of Brief: July 2014

Download EFP Brief No. 257_Prospective Value Chains

Sources and References

Auvinen, H. & Tuominen, A. 2012, Safe and secure transport system 2100. Vision. VTT Technology 5 (2012).

Da Costa, O., Warnke, P., Cagnin, C., Scapolo, F. (2008) The impact of foresight on policy-making: insights from the FORLEARN mutual learning process. Technology analysis & Strategic Management, vol. 20, No. 3, pp. 369-387.

Geels, F.W. 2005, “Processes and patterns in transitions and system innovations: Refining the co

evolutionary multi-level perspective”, Technological Forecasting and Social Change, vol. 72, no. 6, pp. 681-696.

Georghiou, L., Keenan, M. (2006) Evaluation of national foresight activities: Assessing rationale, process and impact. Technological Forecasting & Social Change, vol. 73, pp. 761-777.

Könnölä, T., Scapolo, F., Desruelle, P., Mu, R. (2011) Foresight tackling societal challenges: Impacts and implications on policy-making. Futures vol. 43. pp. 252-264.

Tuominen, A., Järvi, T., Räsänen, J., Sirkiä, A. and Himanen, V. (2007) Common preferences of different

user segments as basis for intelligent transport system: case study – Finland. IET Intell. Transp. Syst.,

2007, 1, (2), pp. 59–68.

Tuominen, A., Wessberg, N., Leinonen, A., Eerola, A. and Bolwig, S. (2014). Creating prospective value chains for renewable road transport energy sources up to 2050 in Nordic Countries. Transport Research Arena 2014, Paris.

Weber, M., Kubeczko, K., Kaufmann, A., Grunewald, B. (2009) Trade-offs between policy impacts of future-oriented analysis: experiences from the innovation policy foresight and strategy process of the city of Vienna. Technology analysis & Strategic Management, vol. 21, No. 8. pp. 953-969.

Wessberg, N., Leinonen, A., Tuominen, A., Eerola, A. and Bolwig, S. (2013) Creating prospective value chains for renewable road trasport energy sources up to 2050 in Nordic Countries. International Foresight Academic Seminar in Switzerland, Sept 16-18, 2013.

EFP Brief No. 248: Drivers, Trends and Grand Challenges in Security

Tuesday, January 29th, 2013

This brief gives an overview of the recent trends, drivers and ‘grand challenges’ in the area of security as they were iden-tified in the mapping and analysis of the 2nd EFP Mapping Report on Security Futures (Amanatidou et al., 2012). These findings were compiled from 16 different forward-looking activities (FLA), representing four types of FLA, namely: fore-sight, impact assessment, horizon scanning and forecasting. The selected FLA offer an interesting and complementary mix of national views and European perspectives.

Key global and European Security Issues

The concept of security has changed fundamentally over the last 25 years. The end of the cold war accompanied by a shift in global power distribution, failing states due to corruption, crime and religious fanaticism, risk of climate change and the interconnectedness of global hotspots giving rise to cyber-crime make the range of security challenges we are facing today and in the near future.

However, there is no clear separation between drivers, trends and ‘grand challenges’. The analysis of the original sources is not of a generic type but focuses on the security perspective. Some issues are mentioned in more than one group (as both trend and challenge, for instance) while some clustering would also make sense. This is attempted in this brief.

Globalisation is a major driver of evolutions with significant implications for security. Globalisation is likely to raise the level of interdependence between states and individuals within the globalised economy. Resources, trade, capital and intellectual property rely on complex networks of physical and virtual infrastructure that are likely to be vulnerable to physical disruption or cyber-attacks by multiple actors. Consequently, increasing dependency on this infrastructure, and the global supply chains that underpin globalisation, will leave the global economy vulnerable to disruption (DCDC 2010).

One of the main trends mentioned in the security FLAs is the emergence of new centres of power and the consequent redistribution of global power (EU-GRASP, NIC 2008). Associated to this is the shift of power to Asia as a major trend. In particular, the world of 2030 will be diffusely multipolar and polycentric. Polycentrism will be accompanied by an economic power shift toward Asia where over half of the world’s population will be concentrated by 2030. China is projected to be the largest economic power, and India will continue to rise. Both countries will face major structural challenges, however. Brazil may become a successful example of sustainable development during the next two decades. Russia and Japan will lose the great power status they enjoyed in the twentieth century (ESPAS 2012).

A constellation of rising middle powers, including Indonesia, Turkey and South Africa, will become ever more prominent (NIC 2008). The international system that is likely to emerge as a result of all these shifts will probably mix balance-of-power politics and multilateralism, with states making issue-by-issue shifts and alliances. This will generate a higher level of unpredictability in international relations and make it harder to attain a broad consensus even on matters requiring urgent global action (ESPAS 2012). This shift of global power is likely to result in a period of instability in international relations, accompanied by the possibility of intense competition between major powers as there will be several states and institutions competing for regional and global influence, cooperating and competing within the international community (DCDC 2010).

The grand challenges addressed in the security FLAs are climate change, scarcities, global inequalities, changing demographics and migration.

Climate change has a central position in the analysis of trends and challenges. Temperature increases are likely to lead to significant environmental change that may, for example, include desertification in the Saharan margins and changes to rainfall distribution patterns within the monsoon belt of the Arabian Sea and South Asia. The frequency and intensity of extreme weather events will change, possibly with severe impact on low-lying coastal regions. Rapid glacial melt, particularly in the Himalayas, may exacerbate water management problems in China, India, Pakistan and Bangladesh. Disease carriers, such as malarial mosquitoes, are likely to spread into previously temperate zones (DCDC 2010).

Special reference is being made to the consequences of climate change affecting living standards and public safety by exacerbating water and food scarcity with environmental degradation expected to continue to provoke humanitarian disasters, including desertification and floods of increasing magnitude. The severest impact will be felt in China, South Asia and the Sahel where millions of people will be displaced; but no region of the world will be spared (ESPAS 2012).

Scarcity in energy, food and fresh water resources is also separately addressed in relation to the social unrest and conflicts they may cause. The frequency, scale and duration of humanitarian crises are likely to increase. Many states, including China and India, are likely to become more dependent on food imports to feed their large and increasingly affluent populations. A shift in agricultural patterns and the distribution of grain growing areas, coupled with the rise in animal and plant diseases, is likely to disrupt food production, resulting in increased migration. However, improvements and efficiencies in agricultural production are likely to meet much of the increased demand, given likely scientific advances that develop high-yield, disease resistant crop strains, combined with better land usage and improved irrigation. Humanitarian crises due to water scarcity and related food and health emergencies may become recurrent, particularly in some parts of Africa. Competition for resources is likely to exacerbate tensions and trigger conflicts. Energy crises will heighten the sense that the world is entering an ‘age of scarcity’, putting the prevailing model of development into question (ESPAS 2012).

Inequalities of opportunities is another grand challenge due to globalisation and increased access to more readily and cheaply available telecommunications. This type of inequality is likely to be a significant source of grievance, possibly resulting in an increased incidence of conflict. However, states that experience lower birth rates and increased longevity are likely to benefit from a growing workforce and a falling dependency ratio. The result is a ‘demographic dividend’, which can produce a virtuous cycle of growth (DCDC 2010).

Demographic trends are also mentioned among the grand challenges as possible causes of tensions. Demographic trends may fuel instability especially in the Middle East, Central Asia and sub-Saharan Africa. The developing world will account for most of the growth, remaining relatively youthful, in contrast to the developed world and China, which will experience little population growth and undergo significant increases in median age. In the West, however, ageing is likely to lead to policies to employ the ‘younger old’. This cultural shift may yield a second demographic dividend leading to a lower demand for migrant workers and decreasing the social welfare burden. (DCDC 2010) The populations of several youth-bulge states are projected to remain on rapid growth trajectories. Unless employment conditions change dramatically in parlous youth-bulge states, such as Afghanistan, Nigeria, Pakistan and Yemen, these countries will remain ripe for continued instability and state failure (NIC 2008).

Nevertheless, populations in many affluent societies are likely to decline, encouraging economic migration from less wealthy regions. Environmental pressures, economic incentives and political instability will continue to drive population movement from afflicted regions. Conflict and crises will also continue to displace large numbers of people. Such movement is likely to occur in regions of sub-Saharan Africa and Asia (DCDC 2010).

In terms of responses to humanitarian crises, we will witness a world characterised by the diffusion of power. Meeting the challenges of human development will depend increasingly on non-state actors, be they private companies, non-governmental organisations (NGOs), or philanthropic institutions. Non-state actors, in particular national and transnational civil society networks and private corporations, will play a critical role in the coming decades. Their power and influence will be greater than that of many states and may lead to new forms of governance and civic action. But not all contributions by private actors will be positive: extremist non-state actors are likely to present a threat to the well-being of human communities (ESPAS 2012).

The rising power of non-state actors vis-à-vis the state is a central theme examined from several perspectives. Concurrent with the shift in power among nation-states, the relative power of various non-state actors—including businesses, tribes, religious organisations and criminal networks—is increasing. The global political coalition of non-state actors plays a crucial role in securing a new worldwide climate change agreement. In this new connected world of digital communications, growing middle classes and transnational interest groups, politics is no longer local and domestic, and international agendas become increasingly interchangeable (NIC 2008).

The impacts from the empowerment of individual and non-state actors are addressed. In democratic societies, new forms of protest and anti-establishment politics may emerge in response to a growing expectations gap, deepening income disparities and the power shifts that are limiting the action of countries that have been used to acting as major global players. From the security perspective, it is expected that over the next two decades the cyber sphere is likely to become an arena of conflict and tension between states of all political stripes and also between individuals or private companies.

The examination of the role of the individual in future societies goes even further, indicating that the citizens of 2030 will be much more aware of being part of a single human community in a highly interconnected world. This may signal the rise of a new ‘age of convergence.’ Democratic aspirations will tend to be perceived as compatible with, even as facilitating, a greater awareness of national and sub-national cultural identities (ESPAS 2012).

The role of women is also examined. Over the next 20 years, the increased entry and retention of women in the workplace may continue to mitigate the economic impacts of global aging. Examples as disparate as Sweden and Rwanda indicate that countries with relatively large numbers of politically active women place greater importance on societal issues such as healthcare, the environment and economic development. If this trend continues over the next 15-20 years, as is likely, an increasing number of countries could favour social programs over military ones. Better governance also could be a spinoff benefit, as a high number of women in parliament or senior government positions correlates with lower corruption (NIC 2008).

The current economic crisis is referred to as a driver that may reverse the trend of decreasing inequalities due to the emergence of a middle class in Asia, Latin America and also Africa. Overall, however, inequality will tend to increase and poverty and social exclusion will still affect a significant proportion of the world population (DCDC 2010). At the same time, increasing social and economic pressures may undermine liberal institutions and the long-term prospects for greater democratisation (NIC 2008).

The proliferation of modern weapons’ technologies will generate instability and shift the military balance of power in various regions. Nuclear weapons are likely to proliferate. Terrorist groups are likely to acquire and use chemical, biological and radiological or nuclear (CBRN) weapons possibly through organised crime groups (DCDC 2010), but a major conflagration involving CBRN weapons is not likely to happen over the next two decades (ESPAS 2012, NIC 2008).

The possibility of inter-state conflict cannot be discounted entirely. Looking ahead to 2030, the border tensions between China and India over water resources have the greatest potential to disrupt international peace. Conflicts are also foreseen due to current tensions between Algeria and Morocco over the Western Sahara, the problems emerging as a result of the possible collapse of North Korea, and unresolved conflicts in Eastern Europe. Tensions over raw materials may also cause conflict and require new forms of crisis management. Intra-African and trans-regional forced migration due to economic factors, conflicts and environmental degradation will tend to grow. Wars fuelled by nationalism and extremist identity politics, and the associated dangers of mass murder and genocide, will be among the core security challenges of the coming decades (ESPAS 2012).

Despite the emergence of a possible ‘age of convergence’, ideologically driven conflicts are another form that continues to exist. The social tensions caused by intrusive global culture are likely to be most acute amongst those who seek to maintain their indigenous and traditional customs and beliefs, and feel threatened by changes. This is likely to lead to an increasing number of individuals and groups forming around single issues that differentiate them from wider society and becoming marginalised and possibly radicalised. When such conditions exist, particularly when exacerbated by high levels of marginalisation and social exclusion, sections of the populace will develop grievances that may lead to extremism (DCDC 2010).

Urbanisation is also seen as an important trend. By 2040, around 65%, or 6 billion, of the world’s population will live in urban areas, attracted by access to jobs, resources and security. The greatest increases in urbanisation will occur in Africa and Asia. As up to 2 billion people may live in slums, these areas are likely to become centres of criminality and disaffection and may also be focal points for extremist ideologies. Rapid urbanisation is likely to lead to an increased probability of urban, rather than rural, insurgency (DCDC 2010).

In addition, megacities are also highlighted as possible sources of conflicts as well as important future players. By 2030, the fifty greatest megacities in the world will concentrate more resources than most small and middle-income states, and they will demand more autonomy and exert greater power, even taking on a more prominent international role. Preserving humane living conditions in the world’s megacities will be the major challenge facing some states. Cities will also absorb most national security resources (ESPAS 2012).

Trends in innovation and technology are also being examined especially for solutions to the major trends and challenges mentioned above. Technology will provide partial solutions for both adapting to and mitigating the effects of climate change. However, it is unlikely that, by 2040, technology will have produced low emission energy sources capable of providing the majority of the energy demanded. Nevertheless, advances in carbon capture technology are likely to be significant, allowing fossil fuel usage to continue in a limited emission regime using more coal. Despite this, resource competition, carbon pricing, increased energy demand and the limitations imposed by climate change are likely to increase the cost of fossil fuels, stimulating the development of cleaner, renewable energy solutions and nuclear power (DCDC 2010).

However, from a security perspective, technology will also facilitate the organisation of protests and high impact terrorist attacks. The future global environment will be defined by physical, social and virtual networks. The physical system will consist of complex interconnections, including extensive resource pipelines, communication cables, satellites and travel routes. The virtual networks will consist of communications servers linking individuals and objects, many of which will be networked through individual Internet Protocol (IP) addresses. Avenues for protest and opportunities for new and old forms of crime will emerge and may allow hostile groups to form and rapidly create effect (DCDC 2010).

In terms of defence technologies, many states are likely to develop ballistic and cruise missiles capable of delivering CBRN weapons as well as conventional payloads (DCDC 2010). The majority of the technological breakthroughs are likely to be driven by the commercial sector, although technological adaptation in defence will continue at a rapid pace. Nonlethal, directed energy weapons (DEW), space and cyber technologies will be available to a wide variety of actors, both state and non-state (DCDC 2010).

Finally, there is growing demand for multilateral policies in the global and regional arenas for an increasing number of issues from the fight against climate change to disease control. There is, therefore, need for more multilateralism and, arguably, for a larger European role (EU-GRASP).

The Way Forward in European Security Research

In several studies, recommendations address a number of grand challenges from a security perspective, for instance, in the field of energy, the environment or migration. FORESEC, for example, recommends developing a common EU energy security strategy – energy policy is still driven by national-level approaches. FORESEC also recommends a dialogue with the security and intelligence services across the EU as useful input in formulating counter-terrorism legislation at the EU level.

EU-GRASP places special emphasis on the role of the EU in a multi-polar world and recommends that the EU adapt to changing global multilateralism. The EU must be steady in promoting multilateralism as an ideal but extremely flexible in its multilateral practice; it must find ways to engage with legitimate sub-national, multinational and transnational non-state actors and their networks.

In its recommendations, the NATO Security Jam study (Dowdall 2012) focuses on security issues of global concern, managing relations with emerging powers such as establishing a NATO-China Council (NCC) similar to the NATO-Russia Council.

SANDERA produced a long list of suggestions for further research. One suggestion regards the analysis of the portfolio of policy instruments at the EU level in view of defining the potential for strengthening European synergy in defence research.

FORESEC repeats the importance of researching certain definitional and analytical aspects of security (i.e. on societal aspects of security, unintentional threats, external dimension of security and its link to internal security, cultural aspects of terrorism, societal resilience and cultural and social identity). In addition, it suggests assessing impacts of certain challenges on security, i.e. vulnerability of societies in the EU, migration and demographic shifts and security, climate change and security, urbanisation and security.

EFP Mapping Results represent a major step forward in the successful implementation of a new mapping framework (SMART Futures Jigsaw) capable of providing customised forward-looking research and innovation policy intelligence on a wide range of sectors, such as security. Both the Mapping Environment (a web-based platform available online at www.mappingforesight.eu) and our mapping work (1st, 2nd and 3rd EFP Mapping Reports) demonstrate the commitment of EFP to the mapping of FLA practices, players and outcomes. Thus, our FLA mapping work will almost certainly continue beyond EFP.

Authors: Effie Amanatidou         effie.amanatidou@mbs.ac.uk                   Rafael Popper             rafael.popper@mbs.ac.uk                         Thomas Teichler thomas.teichler@technopolis-group.com
Sponsors: n.a.
Type: Thematic overview on security
Organizer: MIoIR/MBS, University of Manchester
Duration: n.a.
Budget: n.a.
Time Horizon: 2020-2050
Date of Brief: December 2012

Download EPF Brief No. 248_Drivers, Trends and Grand Challenges in Security

Sources and References

Amanatidou et al. (2012): 2nd EFP Mapping Report on Security Futures. Towards a Fully-Fledged Futures Mapping: Results of Mapping 16 FLA on Security, available for download at http://www.foresight-platform.eu/wp-content/uploads/2011/01/Deliverable_2-4_2nd_EFP_Mapping_Report_Security_Futures.pdf

DCDC – Development, Concepts and Doctrine Centre (2010): Global Strategic Trends – Out to 2040, available for download at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/33717/GST4_v9_Feb10.pdf

Dowdall, Jonathan (2012): The new global security landscape. 10 Recommendations from the 2012 Security Jam, available for download at http://www.securitydefenceagenda.org

ESPAS – European Strategy and Policy Analysis System (2012): Global Trends 2030 – Citizens in an interconnected and polycentric world, available for download at http://www.espas.europa.eu/home/

EU-GRASP, http://www.eugrasp.eu/, last access 15 January 2013

NIC – National Intelligence Council (2008): Global Trends 2025: A Transformed World, available for download at http://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/2025_Global_Trends_Final_Report.pdf

EFP Brief No. 245: Trend Database Design for Effectively Managing Foresight Knowledge

Tuesday, January 29th, 2013

In 2010, the German Federal Government launched one of its largest research initiatives in the area of logistics and supply chain management with the central aim to secure tomorrow’s individuality, in the sense of mobility and distribution, with 75% of today’s resources. One of the projects, the ‘Competitiveness Monitor’ (CoMo) develops an innovative, webbased foresight platform, which supports strategic decision-making and contingency planning as well as competitive and environmental intelligence.

Sophisticated Architecture to Support Foresight Processes

The development of an innovative Trend Database (TDB) is part of an extensive cluster initiative that was launched by the German Federal Ministry of Education and Research in June 2010. The ‘Effizienz­Cluster LogistikRuhr’, synonym for leading-edge cluster in logistics and mobility in the German Ruhr area, aims to boost innovation and economic growth in Germany by bridging the gap between science and industry (BMBF 2010). The cluster involves 130 companies and research institutes that cooperate in a strategic partnership in order to shape a sustainable future for the region and beyond. The determined challenges of future logistics (e.g., urban supply) are currently being addressed in more than 30 joint research projects. In this way, the cluster contributes to finding new ways to growth and employment that gear not only Germany’s but the European Union’s economy towards greater sustainability (see, e.g., Schütte 2010).

One of the joint research projects is developing an innovative foresight tool, the Competitiveness Monitor (CoMo), which will contribute to the validity and robustness of foresight activities by digitally combining quantitative and qualitative forecasting methods. The CoMo aims to enhance cooperation in multi-stakeholder environments through a fully integrated web-based software solution that utilises existing knowledge and users’ conceptions. The tool links several applications for forward-looking activities as well as the development, processing and storage of foresight knowledge. The goal is to provide decision-makers from business, academia and government institutions with a valid knowledge base for future-robust decision-making.

 

The CoMo consists of three innovative foresight tools – Trend Database, Prediction Market app and a Future Workshop (“Zukunftswerkstatt”) app – which are implemented in an IT-based Futures Platform (Figure 1). The Futures Platform will serve as login portal in form of a dashboard and can be adapted by each user according to his or her individual interest. Within the TDB, future-oriented numbers, data, and facts on specific logistics-related topics or technologies can be stored or collaboratively developed by its users. Furthermore, the TDB shall not only include trend-related data but also handle weak signals, wildcards and disruptive events. The high practicability of the Trend Database is planned to ensure filtering of the query results through an intelligent algorithm.
245_bild1
Figure 1: Conceptual framework of the Competitiveness Monitor

Development of Trend Database Requirements

In the beginning of the TDB development process, we analysed and evaluated eight relevant TDBs in order to identify the state of the art. After that, we conducted several creative workshops and interviews with more than 40 interdisciplinary cluster partners and futures researchers to identify further requirements.

First of all, we compiled an extensive list of requirements and constraints in several participatory workshop sessions, which are considered relevant to our TDB. After conducting a requirement analysis according to the ‘Volere Requirements Specification Template’ (Robertson and Robertson 2006), we derived four categories and adapted them to the CoMo project concerns: (1) functional requirements, (2) non-functional requirements, (3) design requirements and (4) constraints. Whereas functional requirements describe the fundamental functions and processing actions a product needs to have, non-functional requirements are the properties that they must have, such as performance and usability. We clustered the final long list of 160 collected requirements in 9 categories as presented in the following:
245_bild2

In the next step of the TDB development process, we conducted a stakeholder analysis in order to generate possible use cases. Different use cases were defined according to the specific needs and organisational structures of the CoMo project partners and members of the EffizienzCluster involved. In doing so, we were able to conceptually test and complement the identi-fied requirements and constraints.
Finally, we revised the results of the trend database analysis and specification analysis and summarised our research results in a specification sheet, which now provides a clear and structured collection of TDB features for the programming process of a prototype.

Challenges and Differentiators

For the identification of the key challenges, we evaluated best practices and innovative features of existing TDB concepts regarding their applicability and efficiency. For this purpose, we focused on the surrounding conditions and primary objectives of the presented TDB, determined by its purpose within the CoMo and the cross-project objectives of the leading-edge cluster. We identified four main challenges of utilising a TDB, which we will discuss in the following: (1) extent and quality of trend information, (2) cooperation within the TDB community, (3) linking mechanisms and (4) creating incentives for users.

Extensiveness and Quality of Trend Information

Most of the TDBs analysed provide an extensive set of opportunities to describe and evaluate a certain trend or future signal. Since it is hardly possible to decide without further knowledge about the user’s purpose or what the right amount of information is, we continued to compare the ways in which future knowledge is contributed to the TDB. We see two main strategies within the examined sample of TDBs: (1) input from experts and futures researchers or (2) active participation of the user community. In the latter strategy, information is revised and complemented by the community, which more accurately meets the CoMo objectives of realising cluster potentials. However, in case of low interest in a certain trend, the information may remain fragmentary and lack reliability.

The combination of both strategies seems to be promising since it ensures certain quality standards as the information provided is subject to scrutiny from two sides: an expert review process, on the one hand, and user participation, on the other. Against the background of all our analyses, we propose that providing a certain amount of trend specifications (e.g., short description, key words, time horizon etc.) should be obligatory when entering a trend into the TDB. In addition, the CoMo TDB is planned to offer a regulator for the ‘level of aggregation’, which will enable users to constrain the trend search results regarding time, geography, economic scale and further aspects.

Cooperation within the TDB community

The so-called “wisdom of the crowds” is based on the logic that many people (a “crowd”) know more than single individuals (Surowiecki 2004). Consequently, the sharing of knowledge can improve the knowledge basis of different stakeholders as well. Therefore, it is useful – particularly in dealing with future-relevant knowledge – to motivate users to co-operate and to develop their knowledge further.

Regarding our TDB architecture, users shall therefore evaluate trends in terms of impact or likelihood, participate in surveys or add further evidence or aspects to existing future-oriented knowledge (Kane and Fichman 2009). Especially the stakeholders of the leading-edge cluster, who are aiming to improve their competitive situation through collaboration, are interested in sustaining topicality, validity and relevance of future-relevant knowledge in the trend database. Our TDB is expected to contribute to an improved quality of data and provide a more accurate basis for decision-making processes.

Linking Mechanisms

The CoMo TDB will be linked in three dimensions. First, the trends within the TDB will be linked among each other. This supports users by providing a more comprehensive causal picture of the future and allows decision-makers to identify early warnings and weak signals. Second, the trend database is linked to two other CoMo apps: the Prediction Market and the Future Workshop. Both apps require raw data from the TDB for purposes of evaluation (i.e. prediction markets) or analysis (i.e. future workshops). Furthermore, they define data sources by providing new or evolved future-oriented knowledge, which needs to be re-imported into the TDB. Third, the trend database will be linked to external data pools. Facilitating the idea of linked data, relevant external information can be included, increasing the basis to be drawn on in making future-relevant decisions (Auer and Lehmann 2010). Thereby, we aim to link our dataset intelligently by attaching metadata using the Semantic Web approach. This not only facilitates the process of finding relevant and recent data but also enables identifying related topics.

Motivation of Users

In contrast to the traditional World Wide Web, the application of a Semantic Web offers information that can be sorted by relevance, topicality and quality (Berners-Lee, Hendler et al. 2001). However, the Semantic Web requires the linkage of datasets first. Therefore, users have to be encouraged to tag, for instance, the trend information as good as possible, and the community needs to be motivated to edit and complete the tagging process.

In the process of developing the CoMo TDB, we discussed several concepts and ideas to address the challenges involved in motivating users. One concept that is planned to be applied in the CoMo is the lead users approach (Leimeister, Huber et al. 2009) in which users are incentivized by an awareness of the measurability of their contributions. Considering that most of the existing trend databases use an expert-based concept instead, we infer that this was thought to be the only efficient way of providing and processing future-oriented knowledge so far. However, current tendencies, such as the disclosure of previously protected data (i.e. open source/innovation) or the increasing activity in social networks, suggest that existing concepts need to be adapted to the new requirements forward-looking activities must meet.

Metadata Approach Using the Semantic Web

Future-oriented knowledge as a basis for decision-making is always critical due to its inherent uncertainty. Therefore, innovative concepts and tools need to be developed in order to provide users with the most valid, relevant and up-to-date information possible. With our new TDB concept, we try to acknowledge current challenges such as motivation and collaboration of users, usability of information and modern linkage methods. To meet these challenges, we aim to link our dataset intelligently by attaching metadata using the Semantic Web approach. This not only facilitates finding relevant and recent data but also enables identifying related topics. However, the linkage of the data has to be conducted manually. Thus, motivating users to share their knowledge within the community is essential to provide an accurate and comprehensive picture of the future reflecting the wisdom of the crowd. Finally, we will design our TDB to present future-oriented knowledge in a sufficiently comprehensive and detailed manner with an emphasis on clarity and thereby aim to contribute significantly to the robustness and quality of future decisions.

Authors: Christoph Markmann                christoph.markmann@ebs.edu

Stefanie Mauksch                     stefanie.mauksch@ebs.edu

Philipp Ecken                           philipp.ecken@ebs.edu

Dr. Heiko von der Gracht          heiko.vondergracht@ebs.edu

Gianluca De Lorenzis                G.DeLorenzis@dilotec.de

Eckard Foltin                           eckard.foltin@bayer.com

Michael Münnich                       M.Muennich@brainnet.com

Dr. Christopher Stillings                        christopher.stillings@bayer.com

Sponsors: German Federal Ministry of Education and Research
Type: National foresight project
Organizer: EBS Business School / Center for Futures Studies and Knowledge Management (CEFU)
Duration: 2010 – 2013
Budget: € 2,300,000
Time Horizon: Long-term
Date of Brief: October 2011

Download EFP Brief No. 245_Foresight Trend Database Design

Sources and References

Auer, S. and J. Lehmann (2010). “Creating Knowledge out of Interlinked Data.” Semantic Web Journal 1.

Berners-Lee, T., J. Hendler, et al. (2001). “The Semantic Web.” Scientific American 284(5): 34-43.

BMBF (2010). Germany’s Leading-Edge Clusters. Division for New Innovation Support Instruments and Programmes. Berlin, Bonn, Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research (BMBF).

Kane, G. and R. Fichman (2009). “The Shoemaker’s Children: Using Wikis for Information Systems Teaching, Research, and Publication.” Management Information Systems Quarterly 33(1): 1-22.

Leimeister, J. M., M. J. Huber, et al. (2009). “Leveraging Crowdsourcing: Activation-Supporting Components for IT-Based Ideas Competition.” Journal of Management Information Systems 26(10): 187-224.

Robertson, S. and J. Robertson (2006). Mastering the Requirements Process, second edition. Amsterdam, Addison-Wesley Professional

Schütte, G. (2010). Speech by. Germany’s Leading-Edge Cluster Competition – A contribution to raising Europe’s profile as a prime location for innovation. State Secretary at the Federal Ministry of Education and Research framework of the European Cluster Conference. European Cluster Conference. Brussels.

Surowiecki, J. (2004). The Wisdom of Crowds, Random House.

Note: The content of this publication is based on the joint research project “Competitiveness Monitor”, funded by the German Federal Ministry of Education and Research (project reference number: 01IC10L18 A). Joint research project partners are Bayer MaterialScience, BrainNet, dilotec, EBS Business School. Responsibility for the content is with the author(s).

EPF Brief No. 243: Towards Gender-transformative Climate Change Adaptation Policies

Friday, December 21st, 2012

This climate policy research demonstrates that in India’s agriculture-dominated and gender-biased economy, the future of India’s adaptation strategy hinges on how well gender is integrated into agriculture-related policies and programmes. India’s National Action Plan on Climate Change, which lays out India’s strategy for mitigation and adaptation, recognises that women suffer more from climate change impacts than men. However, it fails to recognise that women are also integral to climate solutions. The research concludes with a set of policy recommendations for policy-makers and other actors.

Why Should India Focus on Gender-Responsive Adaptation?

There is growing scientific and anecdotal evidence in India that climate vagaries are affecting the life and work of its people, especially the 72% of its populations that lives off climate-sensitive agriculture and related activities. An overwhelming 60% of India’s agriculture is rain-fed and prone to recurring natural disasters like floods, droughts and cyclones which, according to climate scientists, will become more frequent, intense and unpredictable. These rain fed areas are also home to majority of the poor and marginalised farmers. India’s 11th Five-year Plan (2007-2012) notes the increasing ‘feminisation’ of Indian agriculture and a dominance of women workers in livestock rearing and collection of minor products from forests.

While India is the world’s 5th largest greenhouse gasses emitter and the 6th largest carbon emitter, these constitute just 4% and 3% of the global emissions respectively; also, India’s per capita emissions are 70% below the world’s average. Following a low-carbon growth strategy is important, and India has already embarked upon one, but there is far less policy focus on adaptation. As the Stern Review (2006) notes: ‘adaptation policy is crucial for dealing with the unavoidable impacts of climate but it has been underemphasised in many countries. Adaptation is the only response available for the impacts that will occur over the next several decades before mitigation measures can have an effect.’

Overcoming Gender-specific Disparities

Without an effective adaptation policy, India cannot achieve its Millennium Development Goals (MDGs) or its MDG-based National Development Goals as set out by the Indian Planning Commission. Climate change impacts often threaten to erode or inhibit development gains. Women are typically responsible for providing their household with climate-sensitive resources like water, food crops, fodder and firewood; they are also less likely to have the education, opportunities, authority and productive resources to adapt to climate change impacts. Without gender-specific disparities being addressed by adaptation policies, climate change will add another layer of gender inequality, especially in the farming sector.

The fourth assessment report of the Inter-governmental Panel on Climate Change (IPCC) notes that gender differences affect the vulnerability and adaptive capacity of women and men. After decades of gender-blind climate negotiation texts under the UN Framework on Climate Change Convention (UNFCCC), women and gender concerns were mentioned in the December 2010 Conference of Parties (COP 16) Cancun text.

Understanding Gender-specific Impacts of Climate Change

Using a gender lens, the research (a) analysed adaptation policies and programmes as laid out in the NAPCC and (b) gathered evidence from four disaster-prone rain fed agro-climatic zones in four states (India consists of 28 states and 7 Union Territories) for evidence-based policy recommendations. The four agro-climatic zones were:

  • The Himalayan eco-system in Himachal Pradesh (HP).
  • The flood plains of Eastern Uttar Pradesh (UP).
  • The Sunderbans coastal area in West Bengal (WB).
  • The drought region of Andhra Pradesh (AP).

The research objectives were:

  • Understanding some of the socio-economic impacts of climate change at the local level where gender-specific disparities are most intense.
  • Identifying some of the gender-responsive policy gaps in the national adaptation missions and in specific state-level climate change plans, and suggesting possible corrections.
  • Identifying some areas where women and men can both participate in, influence and benefit from scientific work on adaptation
  • Assessing how gender-responsive the work of grassroots NGOs working on adaptation is and how this can be up-scaled in a gender-responsive manner by the Central and State government’s climate-related policies and plans.

The research employed a range of tools and techniques. These included:

  • Literature Review
  • Participatory collection of field-data by four grassroots NGOs, each in one of the above agro-climatic zones.
  • Consultations with gender/climate experts
  • Policy analysis
  • A Delphi exercise

How Women and Men are Impacted Differently by Climate Change

There is little evidence to show the different impacts of climate change on men and women. The need to identify and study these differences is critical for making gender-responsive adaptation policies and programmes.

This research gathered data from the four agro-climatic zones and used a gender lens to show how the same climate change impact affected women and men differently. The research revealed that men’s primary way to adapt was to migrate from farms which meant that women were left behind to both till the unproductive land and to continue their care roles. This put an additional burden on women because they had to till the unproductive land or labour in other fields, while continuing to shoulder their care-giver responsibilities with no support from the spouse. The table below captures this gender difference from the four zones.

Gendered Impacts of Climate Change
Climate Change Impacts on women Impacts on Men
Lower food production Least to eat; sleep on an empty stomach

Need to take on additional work as wage labour which also led to more feminisation of agricultural labour (WB, UP, AP)

They get first priority to available food in the family
More natural disasters – cyclones, floods, water-logging and droughts; infrequent rains; intense rains Longer distances to walk to get water and fuel-wood

Loss of fodder and livestock

Drought/infrequent spells of rains – harder ground to do agricultural work on

Intense rains – more weeds and weeding is a woman’s job

Distress migration
Higher summer temperatures; longer summers Lower milk production among animals

More tiring work in fields even in April (HP)

Longer waking hours to work in the field early morning and late evening to beat the heat (AP, HP, UP)

Lesser tasks in the field.

Distress migration

Effect on regeneration of species and upward shift of the forest tree-line Medicinal herbs and fodder unavailable in forests now (HP) No effect
Social impacts

 

 

Higher indebtedness – women go to take loans and have the responsibility to pay off loans!

Increased male migration results in more women and child trafficking and HIV/AIDS spread

Greater poverty and frustration among men leads to increase in domestic abuse/violence

Distress migration

 

Adaptation Interventions Involve Women more but also Affect them Differently

Most grassroots development organisation working on farm-based livelihoods with rural men and women have willy-nilly adopted techniques that help small and marginalised farmers adapt to climate vagaries. Adaptation can be understood to be ‘development-plus;’ or development measures that take into account climate-proofing; or climate change adaptation interventions that help in also achieving development gains. According to a World Resources Institute study (2007), ‘adaptation uses the same toolbox as development measures, is more integrated than development interventions and factors in the dimension of ‘additionality’ on account of climate variability.’

Most NGOs this research study examined have similar approaches to integrating adaptation measures into farming practices. They build on traditional knowledge, adopt a diversified livelihoods basket, and add value through applied scientific and technological interventions. All this is done by first mobilising groups of farmers – both men and women but more women farmers. The reason for making women active players is because NGOs acknowledge that women farmers are more responsive than men farmers and achieve greater success. So women, more than men, are the main mobilizers of peer groups, recipients of knowledge and skills and risk-takers. Yet, these roles are hardly acknowledged by NGOs in documents, meetings and advocacy initiatives.

Working with women also does not usually translate into women owning more productive assets or accessing more government schemes or participating more in government or community-level decision-making bodies. While women do reap some benefits and are also more empowered than earlier in some respects, many adaptive interventions put more time and labour burden on women as compared to men. The table below illustrates a few of the differential impacts of on-the-ground adaptation interventions on men and women and some of the policy gaps that need to be addressed.

Gender Analysis of Adaptation Interventions
Adaptive Interventions Gender Analysis Policy & Programme Imperatives
Organic/low chemical input agriculture with diversified products Improved food security for both women and men

Women put in more labour and time to prepare bio-fertilizer and bio-pesticide

Higher fodder and fuel-wood yields for women

Less information/ knowledge/ inputs accessed by women

Less participation in decision-making bodies

Incentives to promote availability of bio-inputs

Incentives to promote joint farm land titles to spouses and leasing public land to women farmers groups.

Development of women-friendly technology to reduce drudgery

Availability of local weather-related information to women farmers.

Increased use of traditional saline/ drought/ flood resistant seeds and local livestock varieties More food security for both women and men

Gives women fodder/ fuel-wood

Enables women to store and exchange seed, not buy from seed markets

Opportunity for women to reclaim traditional knowledge

Promote farm-to-lab, in addition to the current lab-to-farm approach

Make local varieties available

Popularize seed banks, grain banks and fodder banks

Recruit women and men farmer trainers in extension work

Rain-water harvesting Benefits women more because it ensures improved food security and availability of water for livestock and homes Promote water harvesting structures for kitchen gardens, roof rainwater harvesting and for small farms;

Revive traditional ponds and wells.

Empowerment of Women

Women need to be at the core of planning and implementation of adaptation interventions. This includes collection of gender-disaggregated data at all levels, gender-based monitoring and evaluation and gender-budgeting. The four-C framework given below sums up the main policy recommendations.

  • Counting women in at planning, designing, implementing, resourcing and evaluating stages of all programmes and schemes. Currently, there is a huge deficit on gender-disaggregated data for policy making.
  • Converging programmes and schemes at the planning and design stage through multi-sectoral and multi-ministerial bodies and at the implementation stage through local government agencies and local elected bodies. A specific need is to mandate gender-responsive ‘Local Action Plans on Adaptation,’ (or LAPAs) integrated with the Village Development Plans made by local elected bodies.
  • Capacity building and empowering women and men at the level of local elected bodies, local government agencies, within scientific institutions working on adaptation and within relevant NGOs and community-based organizations. Gender-responsive decision-making institutions are basic building blocks for egalitarian adaptation policies.
  • Collaborating with key stakeholders – adaptation science researchers, government agencies and departments, local elected bodies, user groups, civil society groups and legislators – to build resilience among the most vulnerable people through participatory innovation, utilization of traditional and local knowledge, adding value through scientific and technological interventions and converging all resources.

Within this framework, the research identifies policy-level recommendations for specific actors – legislators, government planning bodies, government officers, local elected bodies, adaptation research scientists, civil society organizations and community-based groups.

These policy recommendations form a blueprint of what India’s approach and policies must be in the coming decades to ensure that both men and women are able to reap the benefits of a climate-resilient path to development.

Authors: Aditi Kapoor, Alternative Futures    email address: aditikapoor2@gmail.com  
Sponsors: Heinrich Böll Foundation, Germany and Christian Aid, U.K.  
Type: National foresight and policy advocacy research  
Organizer: Alternative Futures (Rakesh Kapoor) afmailbox@gmail.com  
Duration: 08/2010 – 05/2011 Budget: 20,000 € Time Horizon: 2030-2050 Date of Brief: July 2012

Download EPF Brief No. 243_Gender-transformative Climate Change Adaptation.

 

Sources and References

Ministry of Environment and Forests (November 2010), Indian Network for Climate Change Assessment (INCCA) Report 2, Government of India, New Delhi

Stern, N. (2006). The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge

Adger, W. N., et al. (2007). Assessment of adaptation practices, options, constraints and capacity. In Parry, M. L., et al. (Eds). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,   Cambridge University Press, Cambridge, UK, 717-743.

Agarwal, Bina. (1994). A Field of One’s Own: Gender and land rights in South Asia. Cambridge University Press, New York.

——- (2010). Gender and Green Governance: The political economy of women’s presence within and beyond community forestry. Oxford University Press, New Delhi.

Dankelman, I. (2002). Climate Change: Learning from gender analysis and women’s experience of organising for sustainable development. Gender and Development 10(2), 21–29.

Food and Agriculture Organization (FAO). (2003). Gender: Key to Sustainability and Food Security; Gender and Development Plan of Action (2002-07).

Government of India. (2008). Eleventh Five Year Plan Vol I-III (2007-2012). Planning Commission. Oxford University Press, New Delhi.

IWRAW Asia Pacific. (2009). Occasional Papers Series No. 14, Equity or Equality for Women? Understanding CEDAW’s Equality Principles, International Women’s Rights Action Watch Asia Pacific, Malaysia.

Krishna, Sumi, ed. (2004). Livelihood and Gender: Equity in Community Resource Management. Centre for Women’s Development Studies. Sage Publications, New Delhi.

EFP Brief No. 234: Learning Effects of a Foresight Exercise: An Accompanying Social Research Study

Friday, December 21st, 2012

The purpose of the accompanying social research study to the Freightvision exercise (Brief No. 226) was twofold: First, we wanted to introduce a concept for accompanying social research of a large participatory foresight process in order to grasp immediate learning effects. Secondly, we analysed immediate learning effects in the course of a large participatory foresight process. The research questions guiding the empirical analysis were: How can we operationalise and measure learning in the context of a large foresight process? Learning thereby involves different levels of learning: individual learning, group learning, organisational learning, system-level learning etc. And how can we operationalise and measure networking, i.e. the establishment of personal ties that enable the exchange of information and hence learning in a large foresight process?

The Foresight Case Freightvision in Focus

The foresight case in focus intended to integrate new knowledge, perspectives and stakeholder groups into an established field. Creating channels for communication between participants from business, policy, civil society and R&D to overcome sectoral boundaries was an explicit goal from the beginning. Stakeholder participation in this case was defined as inviting representatives of research, business, policy and civil society explicitly as “experts” who take part in a strategic dialogue on long-term issues. The expertise of participants was sought as deliberative input and shaped the content and tangible results of the foresight process, leading to robust scenarios, recommended action plans, visions and background reports.
 
Given the large scale of the foresight exercise (up to 90 participants in four fora, budget >3 m EUR, duration > 3 years), deliberative participation was guaranteed through four large and highly interactive fora using large group intervention techniques derived from organisational development theory (world café, open chair discussion rounds, interactive poster sessions etc.). Methodologically, the Freightvision foresight assessed here relied on an overall architecture and methods of organisational development (OD) that focus particularly on changing the thinking and actions of stakeholders. The application of OD concepts and instruments throughout all phases of the foresight exercise was assumed to maximise interaction, collaboration and learning among stakeholders in this foresight system.

Methodologies of the Accompanying Social Research

Learning effects of foresight processes can occur in various dimensions, which we tried to capture in our accompanying social research study: i) the acquisition of social capital (e.g., establishing new contacts, building networks), ii) the acquisition of factual knowledge and understanding (new insights derived from discussions and multiple perspectives), and iii) the development of strategic alternatives (Amantidou & Guy, 2008). Following Lewin (1953), Schein (1995) and Grossman et. al. (2007), we distinguished and applied three different approaches of accompanying social research to analyse and assess the immediate learning effects of foresight. The three approaches were the practitioner model of field research, qualitative interviewing and content analysis.

Practitioner Model of Field Research

The accompanying research to evaluate the effects of the foresight process on participants and stakeholders was conducted by AIT – Foresight and Policy Development Department. The process involved 165 individual participants coming from private enterprises, interest groups representing the various transport modes, infrastructure providers, trade unions, environmental NGOs, research organisations and administration. Participation in Forum 1 to 4 was between 96 and 75 individuals.
 
In moderated workshops, we conducted a survey and several discussions as part of the foresight process. Within this foresight project group, organisational development (OD) researchers acted as counsellors trying to intervene in social systems in order to provoke change (Schein, 1995; Grossman, et al., 2007). In the context of these moderated workshops, the foresight counsellors and the foresight project group evaluated their roles during the stakeholder fora as well as other impacts by (1) reflecting on and adapting their own observations and patterns of intervention, (2) by evaluating the process as a whole and (3) by carrying out a qualitative survey of the project group in the moderated workshops after each stakeholder forum. The questions addressed mutual learning processes, short-term effects and the evaluation of the overall design and process of the stakeholder fora.
 

Participatory Ethnographic Research

According to Schein (1995) and Grossman et al. (2007), researchers participate in the day-to-day life of social systems yet try to minimise influence or set interventions. To capture various kinds of immediate impacts from the foresight case, telephone interviews were carried out after each of forum. Around 20% of the participants were interviewed by the research team, resulting in 71 interviews all in all (the interviews took 15-20 minutes each). Qualitative content analysis was applied to extract information from the interviews. The post-forum telephone interviews showed that participants were positive about the methodology. They were particularly positive about the high levels of interaction during the fora (working intensively in a productive atmosphere, using creative methods including wild cards and visualisation of the freight transport system in 2050), which helped the different stakeholder groups to better understand the motivations and backgrounds of various other stakeholder groups. The interviewees also mentioned that the project led to a systemic picture of the whole longdistance freight transport system across modes.
 

Experimental Social Research

In experimental social research, the observer implements a lab-like environment trying to minimise influence on the observed object. The research setting is designed to generate quantitative data that claims to describe “the reality of the observed object” apart from the observing researcher. In our case, a social network analysis (SNA) approach was applied, reducing the observed part of the complex communication and learning process to different categories of ties established between participants of the foresight fora. Assuming that actors are embedded in a web of social interrelations, SNA provides a set of methodologies and tools to understand internal communication, organisation and aspects of their formation (Heimeriks, Hörlesberger, & Besselaar, 2003; Coromina, Guia, Coenders, & Ferligoj, 2008). A questionnaire was designed and distributed both at the beginning and end of every forum, listing names of participants and asking each participant to quantify the level of acquaintance with all remaining ones. The difference in levels of acquaintance before and after every forum served as a proxy for the number and quality of ties established during the fora (qualitative and quantitative statistical network analysis was applied in order to extract information from the questionnaires).
 
The team of researchers conducting the accompanying social research were external observers. The network analysis based on pre- and post-forum questionnaires showed that the network of participants had already reached a high density after Forum II and that there were no signs of emerging closed clusters of unconnected sub-groups. New participants were integrated quickly (approximately one quarter were new in every forum), and the network density remained stable until Forum 4. Figure 1 shows a network of personal ties (or relationships) between participants based on personalised questionnaires returned a) before Forum I (March 2009, n = 41/96 questionnaires) and b) after Forum III (October 2009, n = 35/79 questionnaires). Stakeholders are coloured in black, all other project partners in grey. Geometric positions and distances are determined by the combined strength of a participant’s ties (participants are positioned closer if ties are stronger). The shape of a node is determined by the number of inward vs. outward ties and its volume by the total number of ties. Network “connectors” have more outgoing vs. incoming ties (ellipses pointed upward) and “authorities” vice versa (ellipses pointed sideward). All computations were performed using the software PAJEK (Chen, 2003).
 
 

Learning Effects

The immediate learning effect of a large-scale foresight project was analysed based on three methods of accompanying social research. First, the practitioner model was applied in an analysis of the foresight process in moderated workshops. Learning in this context mainly referred to the creation of cultural islands and increased the participants’ identification with the foresight process. Secondly, a qualitative analysis was conducted in an ex-postfacto analysis where individual learning resulting from the
foresight process in focus was captured in different questions.
 
The main result here is that the major achievement of a large participative foresight process with respect to learning is probably that details out of the social contexts and rationalities of various stakeholders add up to a multidimensional picture at the system level. This results in perceiving oneself as being part of a system and gives a clearer view of one’s own role in the system. Interdependencies between the various actors become more apparent, which on the whole results in a more comprehensive big picture at the system level. Thirdly, we tried to empirically grasp the increase of personal ties between participants of a large foresight process by means of a social network analysis. We assumed that these ties reflect some extent of exchange of information and hence can be expected to enable learning processes. Overall, the number of newly formed acquaintances more than tripled during the fora; the network diameter settled at a low size of three ties. A higher density, an average degree of centrality and a lower diameter reflect a higher flow of information. It becomes clearer how participants perceive their position within the network of stakeholders and their influence and future agendas (Schartinger et al., 2011).

Effects at European and National Level

A clearly discernible effect is the continued collaboration of the project team in the following FP7 calls, which can be attributed to the well-designed collaboration in the project team as active participants in the fora. In addition, the project team held briefing and debriefing sessions before and after the fora to discuss and optimise the networking process. Less can be said about the direct effect of the foresight in terms of relevance to policy documents, as the accompanying research ended shortly after the Freightvision project.

In Austria, the results were presented up to the highest ranks of the ministry of transport, which led to the ministry funding a follow-up project (Freightvision Austria, see EFP Brief No. 231) at the national level through the Transport Research Program IV2plus. Media coverage both at the sectoral level (some was very offensive even criticising the scientific evidence) the national level gives some indication of the relevance of the Freightvision process. After the final dissemination conference, DG TREN (MOVE) ordered extra copies of the last management summary for distribution throughout the directorate, which can be seen as a sign of the project’s relevance to internal discussion. In 2012, we conducted some additional interviews to find out whether Freightvision had any direct influence on the White Paper on Transport published in 2011.

Although some affirmative statements were made, it is not possible to verify such an influence. The Commission Staff Working Document on the White Paper shows no reference to Freightvision or other parallel FP7 Support Actions. However, several of the 36 measures from the project are mentioned in this document (e.g., CO2 labelling and integration into standards, e-freight, ecodriving training, liberalisation of cabotage, IST, ERTMCS/ETCS etc.).

Further Need for Follow-up Research

A further step in research on the effects of foresight would be to analyse in depth how participants of a foresight process deal with what they have learnt during the foresight process once they return to their usual surroundings and home environments. In principle, large participatory foresight processes induce participants to carry new impulses to their home organisations. Strategic dialogues and mutual learning processes during the foresight exercise can provide guidance in situations with high degrees of unpredictability and become effective in the organisations the participants originate from.

However, it is a great challenge to methodologically grasp the different kinds of effects over time and to isolate the contribution of foresight processes to complex and continuous processes like strategy finding and policy formulation. Determining the contribution of foresight exercises will always be achieved only in part.

Highly Controversial Stakeholder Responses

Although the process was built on a well-founded evidence base, including several models that are also cited in the recent White Paper, it was foreseeable that controversial positions would emerge in the normative phase of the foresight. For reasons of transparency, an effort was made to make dissent explicit and to document minority positions in working groups. Although it was clear that the project, financed through a FP7 support action, was no formal stakeholder consultation process in preparation of the White Paper, lobbying occurred to the extent that some participants at the final conference were on the verge of boycotting the event because of unfavourable conclusions for a specific interest group. Due to the explicit backing by many of the forum participants who attended the dissemination conference, it became clear that the overall results were valid and that the foresight process had been transparent and sound.
 
 

Sources and References

Amanatidou, E. and Guy, K. (2008), “Interpreting foresight process impacts: Steps towards the development of a framework conceptualising the dynamics of ‘foresight systems’”, Technological Forecasting and Social Change, Vol. 75, No. 4, pp. 539-557.
 
Chen, C. (2003), Mapping Scientific Frontiers. The Quest for Knowledge Visualization, Berlin: Springer.
 
Coromina, L., Guia, J., Coenders, G. and Ferligoj, A. (2008), “Doucentered networks”, Social Networks, Vol. 30, No. 1, pp. 45-59.
 
European Commission (2011), “Commission Staff Working Document – Accompanying the White Paper – Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system”, SEC(2011) 391 final.
 
Grossmann, R., Lobnig, H. and Scala, K (2007), Kooperationen im Public Management. Theorie und Praxis erfolgreicher Organisationsentwicklung in Leistungsverbünden, Netzwerken und Fusionen, Munich: Juventa Verlag.
 
Heimeriks, G., H., Hörlesberger, M. and Besselaar, P. van den (2003), “Mapping communication and collaboration in heterogeneous research networks“, Scientometrics, Vol. 58, No. 2, pp. 391-413.
 
Lewin, K. (1953), Die Lösung sozialer Konflikte. Ausgewählte Abhandlungen über Gruppendynamik, Bad Nauheim: Christian-Verlag.
 
Schartinger, D., D. Wilhelmer, D. Holste, K. Kubeczko (2011), Assessing immediate learning impacts of large foresight processes. Submitted to Foresight Journal.
 
Schein, E.H. (1995), “Kurt Lewin’s Change Theory in the Field and in the Classroom. Notes toward a Model of Managed Learning”, available at: http://www2.tech.purdue.edu/Ols/courses/ols582/SWP-3821-32871445.pdf (accessed 2 December 2012).

EFP Brief No. 231: FreightVision Austria 2050

Tuesday, December 4th, 2012

The project Freight Vision Austria 2050 (FVA2050) aimed at providing a foresight study of freight transport and logistics futures in Austria by 2050. The intention was to explore the future of freight transport and logistics in particular, looking at technological progress and future innovation opportunities. A second aim was to outline a shared vision of an Austrian freight transport system by 2050 that would achieve European as well as national environmental and transport policy targets. The project FVA2050 was structured similarly to the European project FreightVision Europe (FVE 2050). FVA2050 was commissioned by the innovation section of the Austrian Ministry of Transport, Innovation and Technology. The objective was to set priorities and give a synopsis of key technologies and future innovation opportunities.

Coping with Increasing Demand for Freight Transport

Similar to economic growth, demand for freight transport in Europe is expected to double by 2050. As integration of the European internal market progresses and Europe represents one of the most competitive economic regions of the world, export industries all over Europe are expected to grow. This will particularly concern small, export-oriented national economies at the centre of Europe, such as Austria, which are strongly affected by freight transportation. Experts estimate that freight transport will increase across all transport modes.

Rising pressure on infrastructure capacity, an increasing environmental burden and upcoming conflicts over failing to achieve CO2 emission and noise reduction targets are likely. However, from a regional perspective, increase in transport demand might not affect the overall transport network in Austria apart from the main traffic axes. FVA2050 was informed by the general vision of the European Commission for a most competitive and sustainable transport system in Europe. This includes “growing transport and supporting mobility while reaching the 60% CO2 reduction target” (European Commission 2011, p.5). However, priorities from a regional perspective may differ from those defined at the European level. Other environmental policy targets, such as particulate matter or noise and vibration reduction, can be considered equally important.

Most freight transport in ton/kilometres is regional and not long distance freight transport. From a regional perspective, future scenarios revolving around reregionalisation are thus more feasible than scenarios based on internal market integration and globalisation. From a regional point of view, traffic congestion is a problem of infrastructure bottlenecks and not of the overall European transport network. The main challenge here is to coordinate environmental and transport-related policy targets across different policy levels and policy areas.

Stakeholder and Expert-driven Approach

The FVA 2050 project pursued an expert-driven, forwardlooking approach. Stakeholders and experts from different areas relevant to freight transport in Austria participated. Among them, in particular, demand-side actors from transport and logistics companies, but also researchers, NGOs and public administration representatives at the national and the state level (Länder). The aim of FVA 2050 was to explore possible futures of freight transport and logistics in Austria up to 2050. The participating stakeholders and experts outlined a shared vision and, in the process, blueprinted structural change in the freight transportation system to achieve the European CO2 emission targets and other transport and environmental policy objectives, such as minimising road fatalities, abating noise and particulate matter pollution and reducing congestion. Ideas and opinions on how to transform the current freight transport system towards this vision were discussed in detail, particularly ideas concerning technology and innovation pathways towards the future.

Scenarios and Socio-economic Trends and Trend Breaks

In the first workshop, the initial task was to outline framework scenarios describing possible socioeconomic futures that reflect the social and economic environment in which freight transport and logistics activities can be imagined to take place in the future. Four framework scenarios came out of this exercise: two scenarios reflecting current socio-economic trends and two scenarios taking potential trend breaks into account. Drivers, trends and trend breaks were jointly investigated. The experts drafted storylines for socioeconomic scenarios in group exercises and later developed them into coherent future stories:

· Trend scenario “Growth and liberalisation”
· Trend scenario “Growth and regulation trends”
· Trend break scenario “Oil & energy price shocks”
· Trend break scenario “Regionalisation & shrinking”

In the second foresight forum, the participants identified relevant technology and innovation pathways towards the future from a present point of view and perspective. They assessed options and obstacles of technological progress from the present to the future and opportunities for future innovations, considering the socio-technical context embedding and the socio-economic conditions shaping them. The final task of the second foresight workshop was to sketch out a shared vision of a structurally changed freight transport system for Austria that would allow to attain the different policy targets by 2050. The third foresight workshop was dedicated to further specifying the vision of a structurally changed freight transport system by 2050, including the main actions necessary to achieve it. However, in the end, the focus was mainly on technological steps towards this vision.

The main mission of FVA 2050 was to identify relevant priorities for the upcoming process of setting the national technology research agenda for research and innovation funding. A final, rather normative exercise allowed to define more radical technological steps. The incremental key technology and innovation opportunities initially identified by an explorative method were thus complemented by a range of blue-sky and out-of-the-box technology and far horizon innovation opportunities. The foresight exercise created a vision for a structurally changed Austrian freight transport system by 2050 and drafted a range of socio-economic framework scenarios.

Finally, the major outcomes were a synopsis and a prospective assessment of key technologies and future innovation opportunities up to 2050 and beyond. Around 80 experts and stakeholders of the Austrian freight transport system participated in FVA 2050, an average of 30 participants in each workshop. The foresight was implemented by a consortium of six partners: the AIT Departments Foresight & Policy Development and Mobility, the Department of Logistics at the University of Applied Sciences in Upper Austria and the Department of Production Logistics Management at the University of Economics and Business in Vienna. ProgTrans AG from Switzerland delivered a transport demand outlook for 2050. Transver Gmbh delivered an environmental impact assessment referring to the transport demand trends of ProgTrans AG. Most partners had already been involved in the European funded foresight FreightVision Europe (2007–2009).

They were thus invited to propose a similar forwardlooking and foresight activity for Freight Transport and Logistics 2050 and beyond in Austria. The Ministry of Transport, Innovation and Technology (bmvit), the two major Austrian funding agencies (FFG, AWS) and the two major national rail and road infrastructure operators (OEBB, ASFINAG) assisted the foresight. They were all involved in an advisory board.

Shift to Rail versus Electrification of Road Transport

The foresight study Freight Vision Austria 2050 was performed during three large stakeholder workshops. Most of the stakeholders participated in all three workshops, which gave the exercise a particular continuity. Prior to each workshop a discussion paper was drafted by the consortium members and distributed among the participants. This discussion paper was based on desk analyses and outcomes of the preceding workshops.

The future dialogue started with an intensive discussion of the transport demand outlook presented at the first workshop. The prognosis anticipated a doubling of freight transport demand by 2050. This growth in freight transport demand can be expected to lead to a relevant increase in transport activities across all transport modes. An increasing shift to rail transport and even a bigger increase in road transport is estimated. Inland waterway transport is expected to remain at moderate levels due to exterior infrastructure.

The transport demand outlook and the projections of freight transport activities by 2050 were discussed controversially. On the one hand, the experts agreed that a significant increase in transport could be expected to come with economic growth. On the other hand, the experts questioned the anticipated doubling of trans-European freight transport, pointing out that a return to a regionalisation of production networks and supply chains could change the trend. However, the outlook gave definite alert that freight transport is expected to increase until 2050. Particularly on the main axes, transport infrastructure capacities in Austria may not at all be prepared to accommodate such growth.

The rather controversial discussion in the beginning motivated the preparation of four distinct socio-economic framework scenarios. At first, storylines were developed and elaborated into coherent stories of potential socioeconomic futures. In a second step, the scenarios were discussed regarding their overall feasibility. For example, the scenario on growth and liberalisation was assessed as less feasible than initially expected. The experts did not perceive it to be an option to leave freight transport futures to liberal markets alone; regulation and public policy were considered just as necessary to cope with increasing freight transport demand. Thus the second trend scenario on growth and regulation was seen as more feasible than the first scenario of full market liberalisation.

The experts anticipated a future of European freight transport where the primacy of the “free movement of goods” should no longer be interpreted as free choice among all means of transport along all European transport infrastructure axes. The Zurich Process for cross-alpine freight transport (CAFT) – a cooperation between the transport ministers of the alpine member states – was an example mentioned in this context. The experts pointed out that they explicitly expect a trans-European initiative to push the road to rail shift in the future.

Rising Oil Price as Moderate Driver towards New Technologies

Even more interesting was the dialogue regarding the two trend-breaking scenarios. The first of these socioeconomic scenarios was rather similar to trend break scenarios in other transport-related foresight exercises. None of the experts rated an oil price increase as a shock event but as a moderate driver towards technological alternatives such as the electrification of road transport or alternatively fuelled vehicles. Another discussion focussed on a return of regionalisation and local production networks. Instead of more European market integration, the shrinking of the internal market was seen as a potential socioeconomic future triggered by increasing global protectionism and global economic conflicts. By comparison, in 2009, such a socio-economic framework had not at all been envisioned in FreightVision Europe 2050.

In the second foresight workshop, the discussion focussed on relevant environmental and transport policy targets for freight transport futures. It was difficult to come to a conclusion. Although there are strong trends toward harmonising environmental and transport policy targets in the European multilevel governance system, there is obviously still an open debate whether these objectives ought to be seen as a planning horizon or as guidelines for the future. Policy targets at one policy level may conflict with policy targets at other levels. The involved stakeholder and expert group decided to take European policy targets in addition to national targets as a frame of reference while addressing this frame in a rather general way based on a shared vision of how to shape the Austrian freight transport system by 2050 (structural change) by taking into account an increase in freight transport demand by 30-40% by that time.

Towards a “Network of Networks”

As the core of this foresight process, a shared vision of the Austrian freight transport system in 2050 was blueprinted. The participants illustrated their ideas and visions in a group exercise and further discussed their ideas and expectations for the future. All illustrations were integrated in a single shared vision scenario. A European transport network will be achieved by 2050. European legislation will serve to drive and harmonise environmental and transport regulations. However, a single European transport network is expected to be achieved as a network of networks with a European main axes infrastructure network at its core, but tightly connected with inter-regional, regional and urban mobility networks. Communication and information technologies will progress and allow to more closely connect these networks while allowing for many alternative mobility patterns for travelling and transporting goods. In a far-distant perspective, private sector mobility and transport might decline since European industries can be expected to more strongly revolve around knowledge-based services.

In 2050, freight transport at medium (up to 300 km) and long distance (above 300 km) will be fully intermodal, with a considerable shift to rail transport. European infrastructure axes for all transport modes will be integrated into one single corridor network. Road transport (below 300 km) will be widely electrified with large numbers of charging stations providing the necessary infrastructure. However, electrification of road transport may not be feasible for heavy duty transport. Last-mile transport will still be mainly road-based and rely on individual transport modes. Automated systems and pipe networks are expected to be deployed in urban areas.

Logistics in 2050 will be organised rather centrally under strict rules and requirements set at the European level. Third parties are going to organise logistics in crossregional or regional and urban distribution networks. Large interregional distribution centres will be established on a European scale. Tri- and bimodal hubs will be situated along the main transport corridors near manufacturing sites and will profit from information and communication concentration and renewable energy clusters (smart grids). Significantly improved freight demand management will reduce empty and half-full trips; this will include alternative modes of operation, for instance so-called milk runs for circular distribution.

Another main exercise in the foresight FVA2050 was to sketch a list of technology trends in the near (2020), medium (2035) and distant future (2050). The main areas discussed in the transport-related technology and innovation debate were:
· Intelligent transport systems
· Green freight and logistics
· Intermodal freight transportation
· Innovative infrastructure technologies

In these areas, particular technology and innovation pathways were assessed. Communication and information technologies as well as alternative vehicles and new materials were introduced as enabling technologies.

Smart Technologies to Improve Capacity, Greening and Safety

From 2020 to 2035, supply and transport chains will be further “smartened” by ICT. Information management systems will enable systems that calculate ecological impact. Between 2035 and 2050, most infrastructure and freight vehicles will be equipped with communication modules enabling real-time multimodal transport information. Autonomous and semi-autonomous vehicle systems are expected to increase capacity and safety by platooning. A similar revolution like the container will provide new opportunities for intermodal transport with swap bodies to serve the European internal market. Automated harbour and hinterland transport, including vertical and horizontal loading systems, is expected to allow 24-hour operation. A European transport network will include a Europe-wide network of intermodal transport hubs. Transport infrastructure will be connected to energy infrastructure as a smart mobility/energy grid. In a distant perspective, from 2035, distributive intelligence in command and control will give rise to decentralised robot systems: smart objects, pipe networks and other simple track systems.

New Alternatives for Distances above 300 km

One of the key questions raised in FVA 2050 was if electrification of road freight transport might also be viable at medium and long distances in the future – a measure that is thought to play a significant role in achieving future European CO2 emission reduction targets. Experts believe that a shift to rail freight transport for distances above 300 km and even below 300 km for regional distribution will be a significant option in the long term. However, additional measures are required, for instance, regional rail/road distribution centres serving the first and last mile by an electric fleet. This has direct implications for future mobility and transport as well as transport-related technology and innovation policies.

Download the brief: EFP Brief No. 231_FreightVision Austria 2050.

Sources and References

COM(2011) 144: White Paper. Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0144:FIN:EN:PDF

Seibt, C., Rath, B., Wilhelmer, D., Zajicek, J., Toplak, W., Hofmann-Porkopczyk, H., Starkl, F., Bauer, G., Stefan, K., Schmiele, J. (2012): Freight Vision Austria 2050. Final Report. AIT Report No. 42, Vienna, see www.ait.ac.at/fva2050

EFP Brief No. 227: Assessment of Global Megatrends

Tuesday, November 13th, 2012

The aim of the European Environment Agency’s regular state of the environment and outlook reporting is to inform policymaking in Europe and beyond and help frame and implement policies. Information can also help citizens to better understand, care for and improve the environment. Global megatrends assessment complements the assessment of four European challenges (climate change, biodiversity loss, growing material use and concern for the environment, health and quality of life) while it identifies additional social, technological, economic, environmental and political factors beyond Europe’s control that are already affecting the European environment and are expected to continue to do so.

Demographics, Technologies, Trade Patterns and Consumption Put Pressure on the Environment

An assessment of global megatrends relevant to the European environment has been performed for the 2010 European state and outlook report prepared by the European Environment Agency (EEA) and a network of countries (EIONET). It focuses on identifying the most relevant global pressures on Europe. A global-to-European perspective is relevant to European environmental policymaking because Europe’s environmental challenges and management options are being reshaped by global drivers such as demographics, technologies, trade patterns and consumption.

While the future cannot be predicted with certainty, it also does not arise from nowhere. It is rooted in our present situation. Some trends visible today will extend over decades, changing slowly and exerting considerable force that will influence a wide array of areas, including social, technological, economic, environmental and political dimensions. While these megatrends cannot be predicted with certainty, they can be assessed in terms of plausible ‘what-if’ projections.

Mega-trends always include uncertainties or strategic shock factors. They can lead to a sudden slowdown or change of direction. This concerns especially events with low probability but far-reaching implications (so-called ‘wild cards’). In addition, a combination of sub-trends can emerge into novel megatrends over a longer time frame, for example several decades.

Many of these changes are interdependent and likely to unfold over decades. They can significantly affect Europe’s resilience in the long term. Naturally, such changes also offer unique opportunities for action. Effective measures, however, require better information and a better understanding of a highly complex and evolving situation.

The assessment grouped a rich diversity of information on global drivers of change into a number of social, technological, economic, environmental and political (governance) megatrends (see Table 1). It summarised key developments succinctly with the goal of triggering a discussion about how we should monitor and assess future changes in order to better inform European environmental policymaking.
227_bild1

 

Public Call for Evidence

The approach utilised for this exercise included:

  • A public call for evidence on global megatrends of relevance to Europe’s long-tem environmental The call was launched in June 2009 via the EEA website and was disseminated to relevant research networks and mailing lists. It generated a list of relevant studies that helped further prioritise topics for the analysis.
  • The setting up of an external advisory group to guide the progress of the work. The group comprised representatives of international and national organisations in the field of environmental assessment as well as EEA’s scientific committee members.
  • Reviews of academic and non-academic information sources in the form of eight targeted background reports produced between autumn 2009 and 2010.
  • Consolidation of the information base following the STEEP (social, technological, economic, environmental and political) framework for classifying drivers of change.
  • Structuring of the information base into information sheets including indicators.

The complexity of interlinkages and manifold uncertainties inherent in megatrends require an exploratory, qualitative approach, underpinned by empirical data. It does not solely rely on quantitative modelling although already available model results are used in the analysis. Current approaches to risk analysis and quantitative forecasting are problematic since the systems at hand and their dynamics are not well understood, assumptions are often non-transparent and necessary data are not always available.

The selection of the final list of global megatrends has been determined by matching selection criteria of relevance, novelty, data availability and feasibility within the time frame of the assessment.

The analysis of global megatrends and their relevance to Europe’s long-term environmental context is being carried out as a longer-term and iterative process. The current report captures issues and results relevant to the context and timescale of the state and outlook report 2010. Further work will be undertaken during the next years – and this assessment process intends to provide a solid information base to support policy formulation with a long-term perspective.

Global Megatrends of Relevance to European Environment

Eleven global megatrends were selected to address the European environmental challenges in the area of climate change, nature and biodiversity, natural resources and waste, and health and quality of life.

Increasing Global Divergence in Population Trends: Populations Aging, Growing and Migrating

The global population will continue to grow until the mid of the century but slower than in the past. People will live longer, be more educated and migrate more. Some populations will increase as others shrink. Migration is only one of the unpredictable factors for Europe and the world.

Living in an Urban World:
Spreading Cities and Spiralling Consumption

An increasingly urban world will probably mean higher levels of consumption and greater affluence for many. Yet it also means greater poverty for the urban underprivileged. Poor urban living conditions with the environmental and heath risks this involves can easily spread to other parts of the world, including Europe.

Changing Patterns of Global Disease Burdens and Risk of New Pandemics

Risk of exposure to newly emerging and re-emerging diseases and new pandemics grows with increased mobility of people and goods, climate change and poverty. Aging Europeans could be vulnerable and at risk of being severely affected.

Accelerating Technologies: Racing into the Unknown

The breakneck pace of technological change brings risks and opportunities. These include, in particular, the emerging clusters of nanotechnology, biotechnology and information and communication technology. Innovations offer immense opportunities for the environment – but can also create enormous problems if risks are not regulated adequately.

Continued Economic Growth

High economic growth accelerates consumption and the use of resources, but it also creates economic dynamism that fuels technological innovation potentially offering new approaches for addressing environmental problems and increasing resource efficiency.

Global Power Shifts:
From a Unipolar to a Multipolar World

One superpower no longer holds sway; regional power blocs are increasingly important, economically and diplomatically. As global interdependency and trade expands, so do international and bilateral agreements.  Europe may benefit from this development by improving its resource efficiency and knowledge-based economy.

Intensified Global Competition for Resources

How will Europe survive in the intensifying scramble for scarce resources? The answers may lie in more efficient production and use of resources, new technologies, innovation and increasing cooperation with foreign partners.

Decreasing Stocks of Natural Resources

A larger and richer global population with expanding consumption needs will place growing demands on natural systems for food, water and energy. Europe may see more pressure also on its own natural resources.

Increasing Severity of the Consequences of Climate Change

Accelerating climate change impacts will imperil food and water supplies, impair human health and harm terrestrial and marine life. Europe may see also more human migration, changes in migratory species and heightened pressure on resources availability.

Increasing Environmental Pollution Load

The environment is burdened with an increasingly complex mix of pollutants that threaten the regulatory mechanisms of the earth. Particulates, nitrogen and ground-level ozone merit particular attention in view of their complex and potentially far-reaching effects on ecosystem functioning, climate regulation and human health. In addition, many other chemical substances are released into the environment, the effects of which – whether in isolation or combined – are still poorly understood.

Global Regulation and Governance: Increasing Fragmentation But Converging Outcomes

The world is finding new governance models – multi-lateral agreements and public-private ventures, for example. In the absence of international regulation, advanced European standards and procedures have often been adopted worldwide. But will this situation continue in the future?

Impacts on Europe’s Environment

The analysis of global megatrends shows that they may have a series of direct and indirect consequences for Europe’s environment. These consequences can be illustrated by looking at the four priority areas that underpin the European Union’s Sixth Environmental Action Programme, namely climate change, natural environment, resource use, and environment and health.

The most evident consequences are expected in the area of climate change. A whole set of global socio-economic megatrends will play a key role in determining the severity of climate change impacts in Europe in coming decades. Projected direct impacts in Europe include biodiversity change, particularly in the Arctic region, the Alpine region and the Mediterranean. Water scarcity can become a problem in southern European regions, whereas flooding threatens lowland coastal areas and river basins. Indirectly, Europe may experience increased migration pressures from developing countries, where accelerating global environmental change is becoming more important as a direct root source for migration, and its ageing population may become more vulnerable to extreme events such as heat waves.

For biodiversity and nature, the global megatrends are expected to have a relatively weak direct impact on Europe itself (i.e. spread of invasive species), though globally the loss of biodiversity and indirect impacts on European biodiversity (through use of natural resources and pollution) will be a major concern.

The links between global megatrends and their impacts on Europe’s natural resources are complex and uncertain. Europe is resource-poor in terms of fossil fuels (oil, gas) and minerals (e.g. rare earths, phosphorus, copper, aluminium) and will largely remain dependent on supply from abroad. For energy, Europe may turn to its own stocks (coal, oil shale, ‘revival of mining’), but exploitation costs will be high due to high costs of labour, environmental and occupational security, accessibility and landscape disruption. Changes in the abundance of migratory species and climate change impacts might be aggravated by an increased demand for and depletion of domestic resources (such as food and timber). Similarly, heightened global demand for European agricultural and forestry products may lead to an increase in the intensity and scale of agriculture and forestry in Europe, increasing pressure on water and soil resources. Technology, however, may act to reduce pressure on Europe’s natural resources by enhancing the efficiency of resource use and improving agricultural yields.

In addition to the direct and indirect consequences on Europe’s environment, the megatrends can be expected to also have a global impact on environmental security in many parts of the world, including Europe’s neighbours in the southern and eastern Mediterranean as well as in Sub-Saharan Africa. Examples of such impacts are climate-change-induced refugees, risk of new pandemics and new diseases, conflicts arising from competition for resources, development problems related to uncontrolled urban sprawl.

How Can We Respond to Global Megatrends?

The assessment of megatrends highlights a range of interlinkages and interdependencies. They increase complexity, uncertainty and risk and accelerate feedback within and between economic, social, technological and environmental systems. The growing global links also offer unique opportunities for action although the attempts to realise these opportunities face the challenge of huge time lags between action (or inaction) and effect.

Responding to global megatrends and reflecting future changes in policy is thus a challenging task. The report of the Reflection Group on the Future of Europe has emphasised how many recent global developments, such as the financial crisis or price volatilities in key commodity markets, have caught us by surprise.

A key question emerges: how can we respond to global challenges in resource-using systems when we are very far from understanding them completely? For example, much of the speed and scope of global environmental change has been underestimated by scientific assessments and policy appraisals. Few considered that some of the key emerging economies would develop so fast and affect global demand as quickly as they have in the last decade.

Brief reflection reveals three related but distinct challenges for the future:

  • reviewing assessment approaches to improve monitoring and analysis of future changes and their uncertainties;
  • revising approaches and institutional arrangements to embed a long-term perspective into policy planning and decision-making;
  • reflecting on further policy changes to take better account of global-to-European interlinkages and better align European external policies with environmental policies.
Authors: Teresa Ribeiro              Teresa.Ribeiro@eea.europa.eu

Axel Volkery                 avolkery@ieep.eu

Anita Pirc Velkavrh       Anita.pircvelkavrh@eea.europa.eu

Hans Vos                     hansbvos@gmail.com

Ybele Hoogeveen         Ybele.hoogeveen@eea.europa.eu

Sponsors: n.a.
Type: Regular European state of the environment reporting every four years
Organizer: European Environment Agency
Duration: 2009-2010
Budget: n.a.
Time Horizon: 2050
Date of Brief: August 2012

Download: EFP Brief No. 227_Assessment of Global Megatrends.

Sources and Resources

EEA, 2010a, ‘General support to framing the forward-looking assessment component of the European state of the environment and outlook report 2010 part A — Background Paper on Demographics and Migration’, European Environment Agency, Contract Number 3403/ B2009/EEA.53788 (unpublished).

EEA, 2010b, ‘Background paper on urbanisation and consumption— General support to the forward-looking assessment component of the 2010 European State of the Environment and Outlook Report (Part A)’, European Environment Agency, Copenhagen (unpublished).

EEA, 2010c, ‘Report on health related megatrends — Identifying global health megatrends in support of SOER 2010 Part A’, European Environment Agency Contract No. EEA/AIR/04/007 Specific Agreement 3403/B2009/ EEA.53683, Task 4.

EEA, 2010d, ‘Global megatrends in the area of nano-, bio-, ICT and cognitive sciences and technologies’, European Environment Agency, Copenhagen (unpublished).

EEA, 2010e, Pharmaceuticals in the environment, EEA Technical report No 1/2010, European Environment Agency (http://www.eea.europa. eu/publications/pharmaceuticals-in-the-environment-result-of-an-eea-workshop/at_download/file) accessed 23 November 2010.

EEA, 2010f, The European environment – state and outlook 2010: synthesis, European Environment Agency, Copenhagen.

EFP Brief No. 226: Freightvision

Tuesday, November 13th, 2012

The project goal was to develop a long-term vision and action plan for a sustainable European long-distance freight transport system by 2050, covering both transport policy and research and technology development policy. It aimed at bringing new knowledge (e.g. on climate change), perspectives (including from outside the transport sector) and stakeholder groups into an established field. Creating channels for communication between participants from business, policy, civil society and R&D to overcome sectoral boundaries was an explicit goal from the beginning.

Adjusting Long-distance Freight Transport to Old and New Challenges

The European Union faces the challenge to ensure economic growth and cope with limited transport infrastructure as well as increasing demand for freight transport in the years and decades to come. At the same time the transport system is supposed to become sustainable with a decreasing impact on climate change.

The Freightvision foresight focuses on a subset of sustainability aspects that are currently considered the most critical ones with regard to a sustainable European transport system and have failed to meet sustainability standards so far. These aspects are greenhouse gas (GHG) emissions, the share of fossil fuels, road fatalities and traffic congestion. They have been addressed specifically in the mid-term review of the European Commission’s 2001 transport white paper.

The Commission’s 20-20-20 goal to reduce GHGs and fossil fuel consumption and increase the share of renewable energy sources by 2020 along with the longer-term goal to reduce GHG emissions to 80% of the 2005 baseline by 2050 are tremendous challenges for the transport sector and particularly for freight transport.

DG TREN (MOVE) reacted to the overall goal and elaborated a new white paper. The financial crises and the rapid rise in energy prices led to new perspectives. Forecasts used before were outdated and business as usual scenarios had to be reconsidered.

Aligning Freight Transport with Climate Change Mitigation

The foresight focussed on long-distance freight transport in three modes: road, rail and inland waterways. The time horizon was set to 2050 in order to take into account climate change mitigation goals and the life cycle of infrastructures. Sustainable development should be envisaged in terms of GHG/CO2 reduction, reduction of fossil fuel use, less congestion and traffic accidents (particularly on roads).

The aim to develop a vision of long-distance freight transport in 2050 was understood in two different ways: (a) in the sense of concrete targets for 2020, 2035 and 2050 and (b) as a visualisation of the future of sustainable freight transport in 2050 based on stakeholders’ expectations.

The tangible output of the project was to consist of an action plan with recommendations for transport policy as well as for research, technology and innovation policy.

Complementary Approach to Foresight

The Freightvision foresight was designed as a complementary foresight process. The process accompanied the whole project and assured that stakeholders’ expertise and perspectives were integrated into the support action.

The complementary approach genuinely combined methodology, role and task sharing to capitalise on the capabilities of transdisciplinary research, foresight expert advisory and (trans-) organisational development counselling for complex projects settings.

The project was to profit from the team’s complementary expertise on:

  • Transdisciplinary research: Expert knowledge about the transport sector as well as the socio-economic and policy issues involved here. In particular, climate-related adaptation and mitigation expertise was brought into the stakeholder fora.
  • Foresight methods and techniques: Designing tailor-made foresight processes that encompass a fully fledged foresight process with appropriate techniques for the exploratory and normative phases.
  • (Trans-)Organisational development (OD) counselling: Orchestrating knowledge flows and network building in large group settings, such as the fora.
Integrating Modelling into Deliberative Foresight Processes

In Freightvision, results from several quantitative models were fed into the participatory foresight processes. The results of energy models informed the oil price scenarios; a congestion model and a CO2 emission model were used to analyse the impacts of reduction scenarios and assess policy measures.

Because the project provided a strong quantitative evidence base and integrated different strands of evidence by involving practitioners and including scientific expertise, deliberative participation and learning in large group settings led to well-founded results.

Stakeholder participation in this case was defined as invited representatives from research, business, policy and civil society taking part in a strategic dialogue on long-term issues. The stakeholders were explicitly involved as ‘experts’ based on their practical knowledge. The expertise of participants was treated as deliberative input to shape the content and tangible results of the foresight process, leading to robust scenarios, recommended action plans, visions and background reports.

To accentuate the expert role, attendance was mainly by personal invitation. The foresight process involved more than 100 representatives from the EC, ministries of the member states, advisory councils, technology platforms & ERANETs, freight forwarders and logistics companies, infrastructure operators, industry, trade, cargo owners, vehicle technology and energy suppliers, environmental and other non-governmental organisations (NGOs) as well as trade unions.

The project intended to take a holistic approach that addressed all aspects of the future challenges, i.e. infrastructure, ITS, propulsion systems, vehicles, fuels, interoperability etc., and considered all types of criteria in the solution: research, technologies, policies and pricing. The invitations were issued so as to ensure that a balanced mix of participants represented all relevant areas and that no group of stakeholders or mode of transport was over- or underrepresented.

The Freightvision process was organised in four highly interactive stakeholder expert meetings (fora) with up to 90 participants in each one. Given the large group settings, the goal of encouraging deliberation and the network-building function of the fora, the foresight relied on an overall architecture that had to be tailored to purpose. The methods applied in the group process were borrowed from the field of organisational development (OD) research, which focuses particularly on changes in the thinking and action of stakeholders. Applying OD concepts and instruments throughout all phases of the foresight aimed to maximise interaction, collaboration, deliberation and learning among stakeholders.

The four fora took place during a 12-month period from 2009 to 2010. They were designed around participative sessions where a maximum of 10 participants were seated at a table and each table discussed specific questions under the auspices of trained moderators. The stakeholders discussed project results, refined, adjusted, integrated and assessed the work of the project consortium, and collectively developed scenarios, visions and an action plan.

Modelling was used in four cases:

  • Long-term development of energy prices were taken from the Primes and PROMETHEUS model.
  • Forecasts from the Progtrans European Transport report were used to predict transport demand.
  • The TRANS-TOOL model was used for a congestion trend forecast for 2035. Making certain assumptions for the shorter term, the model was not flexible enough to properly capture longer-term developments as it was restricted to a limited network infrastructure of roads and railways.
  • A model for long-distance freight transport emissions and energy consumption was developed by the Finnish partner, SYKE. The model helped estimate the emissions and energy consumption of future transport systems described in the business-as-usual forecast and the backcasting exercise. The model maintained flexibility in accounting for different combinations of vehicles, technologies and fuels.

The model results – although often described as “forecasts” – were never used in the sense of predictions since such forecasts are most likely to be wrong. Instead, the results were used as a basis for discussions and a means of becoming clear about dimensions and relations (e.g. the emission reduction potential of transport modes). Awareness was raised that while model assumptions have to be made explicit, they are necessary to come to a manageable amount of scenarios in the process.


Foresight Toolbox

The projects led to a fully fledged foresight process including methods and techniques such as desk research, modelling, visioning workshop, scenario development, backcasting, wild card analysis and impact assessment. Figure 1 illustrates how the methodologies and particularly how modelling was integrated into the foresight process. Modelling was a part of each step of the project. The foresight forum meetings took place after each project step, and the modelling results and other findings were used and discussed in the fora. Apart from publishing research results in detailed work package reports, more comprehensive briefing documents (management summaries) were sent out to the participants prior to the fora to make knowledge flows more effective and transparent.

226_bild1

Figure 1: Integrated foresight design linking fora and project steps

Reducing Greenhouse Gas Emissions as Major Driver

The process resulted in three stylised projections for each of the four sustainability criteria GHG emissions, the share of fossil fuels, congestion and accidents by 2050. The project proposes a long-term vision and a robust and adaptive action plan, developed in a joint effort by the project team and relevant stakeholders, for both transport and technology policy for sustainable long-distance freight transport in Europe.

Reaching the GHG reduction targets when taken seriously will have a tremendous impact on freight transport. It became clear that the EC goals for reducing GHGs will be the most important driver of freight transport policy over the coming decades and can be expected to dominate other EU-level transport policy issues, such as congestion and accidents. Containing GHGs from road transport will require the most efforts in the process. The modelling exercise showed that, even if volume could be doubled and electricity is produced by low carbon sources, rail freight transport would only contribute to reduction targets to a rather small extent.

Visioning Quantifiable Targets

Quantifiable targets for the sustainability criteria (Tab. 1) were formulated in correspondence with the models where available. Targets were set for GHG emissions, the share of fossil fuels, congestion and accidents. Preliminary targets were assessed based on the action scenario (developed in a backcasting exercise), a conflict and feasibility analysis and a wild card analysis.
226_bild2

Table 1: Targets for reducing GHG emissions, the share of fossil fuels, congestion and road fatalities

Solution Strategies and Controversies

Greenhouse Gas Emissions Dominates Debate on Policy Measures

GHG-reduction goals are tremendously challenging and dominated the debate about policy measures. Some of the most important conclusions were:

  • A modal shift from road to rail would have a limited effect only. The relative importance and potential remedy of shifting freight from road to rail transport was heavily discussed. Quantitative modelling showed low potential for increasing the currently relative small portion of rail traffic substantially.
  • Gigaliners, praised by some as highly efficient, can play only a small role in reducing GHG emissions effectively.
  • Road transport is the main producer of GHG emissions and demands substantial action.
Solutions for GHG Reduction in Freight Transport

The normative part of the foresight produced 36 measures related to road transport, rail transport, inland waterways and maritime transport, supply chain, energy supply and vehicle suppliers. Some of the most important solutions for the reduction of GHG based on the SYKE model were:

  • Improved aerodynamics of trucks was identified as a very effective technological measure although existing norms hinder the dissemination of such improvements in road transport.
  • More efficient logistics has to contribute 25% to GHG reduction if targets are to be met.
  • Electrification of long-distance road transport would be necessary to reach the required reduction targets, which is a very challenging task in the light of the present absence of appropriate technologies, particular in storing non-fossil energy for trucks.

 

Table 2: Key characteristics and the most effective policy actions

Transport Performance
·         Network optimisation
·         E-freight
·         Transport route planning & control
Vehicle Energy Demand
·         Aerodynamics and rolling resistance
·         Best available technologies
Low Carbon Electricity
·         CO2 labelling
·         Taxation of fossil fuels
Electric Energy in Road Transport
·         Improved batteries
·         Taxation of fossil fuels
·         Investment in road infrastructure
Biofuels
·         Clean vehicle technologies II – biofuels
·         Taxation of fossil fuels
Efficient Usage of Vehicles
·         Transport consolidation & cooperation
·         Training for eco-driving
·         Liberalisation of cabotage
Engine Efficiency
·         Integration of CO2 standards into HGV regulations
·         Best available technologies
Modal Split
·         ERTMS
·         Intermodal transport
·         Internalisation of external costs
Electrification of Rail
·         Electrification of rail corridors
·         CO2 labelling
·         Taxation of fossil fuels
Truck Weights & Dimensions
·         Modification of  HGV rules Weights & dimensions
·         Investment in road infrastructure
Infrastructure Capacity
·         Investment in ITS
·         Investment in road infrastructure
Transport Costs
·         Internalisation of external costs
·         Congestion charge
Fatalities per Vehicle km
·         Investment in ITS
·         Harmonised speed limits
·         Training for eco-driving
·         Enforcement of regulations

 

Controversial Issues Laid Open

Given the challenging but feasible reduction targets for GHGs, all of the above-mentioned policy actions would have to be implemented within a four-decade time span. Obviously, this has a number of critical implications both in terms of single actions as well from a systemic perspective.

The advantage of a large group in a foresight process is the involvement of a broad range of policymakers and stakeholders, who are key players in shaping the future. To reach a shared vision for the future is probably the most critical factor for a transition to take place. Participation of key players increases the potential to reach consensus and form new networks or link existing ones to face new challenges.

At the same time, working in large groups increases dissent. Necessary changes might threaten established positions and networks. However, carefully planning each forum can limit the threat of conflicts that might undermine the success of the foresight process.

In Freightvision, controversies between stakeholders and within the Commission went beyond what would be expected for a FP7 project that has no direct influence on formal stakeholder consultation processes. Some stakeholders of the rail mode were particularly critical as the role of rail transport in reducing GHGs turned out to be less important than expected. However, the detailed process design, its transparency and the clear communication of the results of the qualitative and quantitative research helped to keep controversies at a constructive level during the project.

 

Authors: Klaus Kubeczko           klaus.kubeczko@ait.ac.at
Sponsors: DG TREN, FP7
Type: European – sectoral
Organizer: Austria Tech
Duration: 2008 – 2010
Budget: 4,000,000€
Time Horizon: 2050
Date of Brief: November 2012

Download: EFP Brief No. 226_Freightvision.

Sources and References

Freightvision website http://www.freightvision.eu/

Helmreich, Stephan; Keller, Hartmut (Eds.) (2011): FREIGHTVISION – Sustainable European Freight Transport 2050, Fore­­cast, Vision and Policy Recommendation. Springer Verlag, Berlin-Heidelberg.

Helmreich, S., Kubeczko, K., Wilhelmer, D. and Düh, J. (2011): Foresight Process. In Helmreich, S., Keller, H. (Eds), FREIGHTVISION – Sustainable European Freight Transport 2050, Springer Verlag, Berlin-Heidelberg, 17-32.

Schartinger, D., Holste, D., Wilhelmer, D. and Kubeczko, K. (2012): Assessing immediate learning impacts of large foresight processes. Special Issue: Foresight impact from around the world, Foresight 14(1), 41-55.

EFP Brief No. 219: Sustainable Urban Metabolism for Europe Planning Resource-Efficient Cities

Tuesday, June 26th, 2012

The Project SUME – Sustainable Urban Metabolism for Europe – analyses the relationship between urban form and urban metabolism in a long-term development perspective to 2050. Urban metabolism encompasses all flows of energy and material resources of a city or agglomeration while urban form describes the way cities are built in spatial terms. Two different spatial scenarios, the BASE scenario as a continuation of the current development and the SUME scenario as a path of sustainable spatial development, have been elaborated for seven European cities. These scenarios demonstrate a corridor of potential future demands in terms of land use and energy consumption.

How Can We Reduce Urban Resource Consumption?

In Sustainable Urban Metabolism for Europe (SUME), the concept of urban metabolism is explicitly applied to the organisation of space for the first time, demonstrating the impact of urban form on resource flows by analysing the spatial distri­bution of population and jobs, the transport system and urban building technology. This is per­formed in a long-term scenario approach, projecting the urban development perspectives of seven European urban agglomerations. For four of these agglomerations, a spatially explicit metabolism model has been developed and applied.

Urban forms have evolved throughout history and can be changed substantial­ly only over longer periods and/or through dynamic restructuring. In search of opportunities to reduce urban resource consumption, the SUME project estimates the potential for transforming urban building and spatial structures by 2050 by applying alternative spatial development pol­icies for a given demographic and economic development path. Urban agglomerations in Europe show extremely different spatial patterns: some are com­pact and confined; many are fragmented and spread out. Urban transport systems are of very different qualities: some featuring attractive, well-integrated public transport provision while others strongly rely on individual transport. Technical building standards also vary widely, often depending on the period of construction, and add to the resource impact of a wide range of climatic conditions. All these differences are included in the term ‘urban form’ as it is used here.

Approach 1: The given urban form, in all its variations, is taken as a starting point for long-term urban development scenarios by 2050 in order to analyse the future potential of resource-effi­cient transformation. Demographic and economic development dynamics are, of course, the main parameters influencing the potential to change a given urban form.

Approach 2: The spatial urban metabolism model allows for systematic simula­tions of the functional relations between socio-economic developments and their consequences on the urban metabolism.

Approach 3: Since cities are built step-by-step, with larger or smaller develop­ment projects changing the existing structures, it is important to understand the projects’ individual contributions to the improvement of the overall performance of a city/agglomeration in terms of resource consumption. The Metabolic Im­pact Assessment (MIA) is a novel methodology to evaluate the effect of proposed urban deve­lopment projects on the metabolism of a city. It is a decision-support tool geared toward analysing and understanding the complex metabolic consequences of new urban projects or urban plans, e.g. in terms of energy flows associated with the project, for heating, cooling and transport.

Approach 4: Urban agglomerations’ development processes are very complex. Many factors intersect to generate the spatial pattern that we see in the built environment today. Hence, the processes, actors and their respective rationales were under scrutiny in the SUME project as well. ‘Producers’ of the urban fabric, such as landowners, developers and investors, are im­portant players, but they are not the only actors who matter; ‘consumers’ are also crucial. This group in­cludes individuals and companies who use buildings and spaces in cities, not just the inhabi­tants of homes and offices, but also visitors to the city, whether for work, shopping or recreation.

SUME Principles for Resource-efficient Development

In the SUME project, two different storylines are at the core of the two urban development scenarios elaborated for seven cities: a baseline, the so called BASE scenario, understood as a continuation of the urban develop­ment policies supporting past spatial development trends; and a SUME scenario, defined as a path of sustainable spatial development. The ‘scope for action’ referred to in this project involves the choice between these two scenarios, meaning whether or not the SUME principles are applied in urban development over an extended period. The SUME scenarios are geared toward improving urban resource efficiency and are guided by the so-called ‘four SUME princi­ples’ for future urban development:

  • Principle 1: Spatially focused densification

Promoting a minimum density standard for any new quarter and redevelopment of existing low-density quarters in areas with attractive, high-level public transport

  • Principle 2: High-density development only with access to high-quality public transport

Focusing new high-density developments exclusively in areas close to public transport networks (especially those with job and service functions)

  • Principle 3: Functional mix in urban quarters

Providing a mix of functions (i.e. residential, jobs and services) in close proximity to each other at the local level, allowing for short-distance access

  • Principle 4: Combination of urban and building (object) reconstruction

Improving the thermal quality of buildings and using the opportunity to improve the spatial qualities of urban quarters

It seems clear that the importance and potential impact of each of the four principles depends on the current urban form of the respective city. The varying range of potential future improve­ments in terms of land use and energy consumption is analysed in the subsequent case studies of cities presented below.

Increase in Space, Decrease in Economic Growth

Comparing the urban development scenarios shows that there is a great potential to influence urban form over time if a consistent set of policies is applied. The scenarios also display that the differential between the policy sets adds up and becomes resource-relevant over time.

The BASE scenarios show a substantial expansion of the so-called Urban Morphological Zones (UMZs)[1] for the fast growing cities, ranging from growth by 24% in AthensUMZ to 30% in MarseilleUMZ, 41% and 47% in MunichUMZ and StockholmUMZ to 54% in ViennaUMZ. These results are due to population increase, a proportional growth of jobs and a continuing increase in per capita floor space consumption. Based on empirical evi­dence of the past, it has been assumed here that the historical trend of floor space increase will continue in a stable eco­nomic development, but the per capita growth will slow down compared to past decades.

From this ‘baseline’ of expected development, the so-called SUME scenarios demonstrate a develop­ment path that should result in lower resource consumption (land use, energy, materials) and could be reasonably achieved through concerted urban development policy packages. SUME scenarios focus on inner-city development, high-level public transport axes and more compact development on the fringes of the existing UMZ.

[1] The continuously built-up area of an agglomeration, as defined by UN-Habitat (200 m maximum distance between buildings, based on the CORINE land-cover data).

The potential effects are substantial: the expan­sion of the agglomerations analysed can be avoided altogether in OportoUMZ and NewcastleUMZ, which is also due to their small demographic development, but also in dynamic cities such as AthensUMZ and MarseilleUMZ. The fastest growing agglomerations in the group are MunichUMZ, StockholmUMZ and ViennaUMZ where the expansion by 2050 could be reduced significantly to 13%, 20% and 14% respectively.

The results of the two spatial development scenarios for four of the cities were used as input for the spatially disaggregated modelling of energy flows based on the spatial distribution of jobs and residents, localisation of services and central functions, and fast lines of public transport.

Reducing Today’s Energy Demand

Table 1 gives an overview of the main results for the agglomeration aggregates for both the building and the transport model. It shows the final state of development in 2050 and compares the per capita energy demand figures for hea­ting and transport in the BASE and SUME scenarios. The main results show that today’s energy demand can be reduced by 60% to 80%, varying between cities and scenarios. In general, a SUME-scenario-type agglom­eration development will reduce energy consumption between 10% and 40% by the year 2050 compared to the BASE scenario.

The results demonstrate that, even in a future agglomeration development using all available technological improvements, there is a large differential between a BASE- and a SUME-type development: A higher replacement or renovation rate of buildings and a better spatial focus of new developments with respect to public transport accessibility will reduce energy con­sumption by 30 to 40%. Only in special situations like in Oporto, where relatively small changes are anticipated for both components, i.e. buildings and transport, will the differ­ential between the BASE and SUME scenarios be less than 10%.

In principle, Metabolic Impact Assessment (MIA) can be applied to different types of planning proposals: policies, programmes, plans and projects. However, within the scope of the SUME project, it was applied to detailed plans of large urban development projects. It has been recognised that at more strategic levels, MIA’s application will be more complex and demanding. At a local level, data is more easily identified and the analysis becomes more objective.

Within the general objective of SUME to analyse the impacts of urban form on resource use, the application of MIA has focused on specific components of urban metabolism, namely energy, land use, water and materials. Moreover, in each case study some limitations of data have caused further restrictions.

The four case studies in the European cities of Vienna, Stockholm, Oporto and Newcastle demonstrate the application of the new method: Metabolic Impact Assessment (MIA). The case studies show the impact of projects, compare them with the performance of alternative projects and of the relevant districts within the agglomeration. Applying MIA can lay the ground­work for improving planning proposals in key aspects of urban metabolism and also contri­bute to the necessary assessment of alternative locations for such projects within the urban fa­bric. MIA shows that it is essential to include the impacts of urban development projects regar­ding infrastructure needs and transport in the agglomeration context because a) unexpected effects in other sections of the complex transport network can be detected and b) underuse of existing infrastructure in certain districts can be determined. Both of these aspects potentially lead to substantial project modifications.

Guidelines for Developing New and Existing Quarters

To improve the metabolic performance of a city or agglomeration, urban spatial development strategies should focus on the application of the four SUME principles for developing new and rebuilding existing quarters. This would be an ongoing process with a clear strategic orienta­tion:

  • Containment at the level of agglomerations: reduce urban expansion to a min­imum, keep travel distances low, provide for good spatial access to public transport routes and attractive service there. Currently most growth happens in the spaces be­tween transport axes in areas out of reach of attractive public transport.
  • Spatially focused densification in low-density urban outskirts: this is a key strategy in growing cities to avoid expansion and improve transport service quality.
  • Locate services and offices at transport nodes and allow for a mix of functions at the neighbourhood level: the busiest nodes of agglomerations’ public transport systems are attractive for office and service space, and most advantageous for the location of jobs with excellent access to public transport. On a neighbourhood scale, it is also important to have a functional mix within each of the urban regions’ neighbourhoods to provide for services and access to daily supplies at short distances.
  • Improve agglomerations’ public transport systems: some urban regions have com­paratively high densities, but do not provide well-developed public transport systems – there exists a great potential for improvements, particularly at the agglomeration level.

Urban development policy packages need to be oriented towards the following:

  • All urban growth and the life-cycle turnover of built structures should be used as potential to improve the existing urban form, both in terms of spatial structures and object qualities. Urban growth in this sense is not an enemy to sustainable develop­ment but can be a partner in getting there.
  • Larger urban development projects can be located and serviced with infrastructure in such a way that they improve the overall performance of a whole area of a city/agglom­eration (see MIA).
  • At the level of users/developers, all ongoing relocation and renovation activities have the potential to improve urban form if location, building standards and functional distribution (residential, services, jobs) are taken into account constantly and systematically.
  • Renovation and building rehabilitation programmes for urban quarters should reach be­yond improving thermal qualities only, to include raising inner-city attrac­tiveness (green spaces, pedestrian/bicycle mobility, services) and putting metabolism-relevant technology in place (e.g. smart city initiatives, production of renewable energy).

In order to follow these strategic recommendations, it will be essential to develop a cross-sectoral approach in urban development, integrating urban planning, housing policies, energy policies, infrastructure provision and transport policies. Such integrated, coherent approaches for the development of new and existing urban quarters, however, are hardly found nowadays. This shortcoming presents the greatest challenge in restructuring European cities along sustainable and resource-efficient line.

Authors: Christof Schremmer                        schremmer@oir.at

Barbara Saringer-Bory                    saringer@oir.at

Ursula Mollay                                  mollay@oir.at

Sponsors: FP7 Collaborative Research Project; Area 6.2.1.5 – Urban development ENV.2007.2.1.5.1 – Urban metabolism and resource optimisation in the urban fabric, collaborative research project
Type: Single issue brief
Organizer: ÖIR, Austrian Institute for Regional Studies and Spatial Planning, Project coordinator, www.oir.at
Duration: 2008-2011 Budget: 3.6m € Time Horizon: 2050 Date of Brief: Mai 2012  

 

Download EFP Brief No. 219_Sustainable Urban Metabolism for Europe

Sources and References

For information and downloads on the SUME project and its findings, please visit: http://www.sume.at/

EFP Brief No. 209: Future Forests Scenarios 2050 Possible Futures, Future Possibilities

Tuesday, April 3rd, 2012

This foresight brief summarises the findings of a scenario process on possible futures for Sweden’s forests and forest sector. The purpose of the process was to build interdisciplinary skills within the research programme Future Forests and to initiate discussions about the future with our stakeholders. A group of 21 researchers from different disciplines, ranging from the natural and social sciences to the humanities, took part in the process. Stakeholders and interest groups were involved in the initial steps and in discussions of the final scenarios. The process involved four steps: identifying external drivers, defining critical uncertainties to be discussed, developing the scenarios, and discussing implications with interest groups.

New Demands on Forests

Forests provide many ecosystem services to society, ranging from wood-based products to recreational value. Forest management has to take all of these services into account and must be able to deal with trade-offs between the different ecosystem services. This is a difficult task that requires a holistic approach to forest management, which includes not only knowledge of silviculture but also an understanding of, for instance, attitudes and values among different groups of stakeholders and of the conflicts between opposing goals. In addition, large-scale challenges and trends, such as climate change and globalisation, pose new and increasing demands on the services that forests produce. In other words, management of multi-use forests falls into the realm of so-called “wicked problems” where optimum solutions are difficult to find and an interdisciplinary approach is necessary to provide a basis for decisions.

The research programme Future Forests attempts to form a scientific basis for managing trade-offs between conflicting interests in boreal forests. Thus, Future Forests faces a challenge common to all applied, user-oriented research: reconciling the supply and demand of scientific information between scientists and decision-makers.

We believe that an interdisciplinary research approach is absolutely necessary to address these complex research questions within natural resource management and that stakeholders need to participate to ensure that research questions are grounded in real-world problems and help bridge the gap between science and action. We recognise, however, that conducting interdisciplinary research involving stakeholders is not without its own problems. For instance, difficulties in understanding and trust among different disciplines and differences in commitment between team members may cause interdisciplinary processes to come to a halt.

The scenario process that we describe in this brief was intended to act as a ‘nucleus’ around which we could hone our interdisciplinary skills, on the one hand, while it served the purpose of inspiring discussions with stakeholders about forest futures, on the other.

Confronting Renewable Energy with Strong Political Institutions

Our scenarios were developed as qualitative narratives of possible futures (see, e.g., the European Environmental Agency’s Environmental Issue Report no. 24 for a general description). The process was run as a series of workshops where we included stakeholders at certain steps. The scenario team consisted of 21 researchers from different disciplines, ranging from the natural sciences (forest management, ecology) to the social sciences (political science, social geography, forest economy) and the humanities (history). The 15 stakeholders who participated in the first step (see below) were from private and public forest companies, government agencies and NGOs (conservation and reindeer husbandry).

In short, we first listed a number of external drivers and trends that could affect the Swedish forest sector. This was done using both an expert panel approach and a participatory process with stakeholders (see the respective sections below for details). The research team then analysed the external drivers based on literature reviews. In the next step, we subjectively chose two major uncertainties that we wanted to explore using our scenarios. These were (1) the role of renewable energy sources and bioenergy, and (2) the role of strong political institutions and transnational agreements on climate mitigation and forest use. These two axes were placed orthogonally, resulting in four different scenarios (Fig. 1). These scenarios were then fleshed out into narratives using information from the literature reviews and in discussions among the research team. These narratives were described to our stakeholders in the form of bullet point lists, key sentences and fictional letters from the future.

How Climate Change and Other Variables Affect the Forest Eco-System

Extracting External Trends and Drivers

The process was started by identifying external trends and drivers that could affect the Swedish forest sector. External in this case refers to processes, events, trends etc. that the forest sector itself cannot influence. Internal structural changes, on the other hand, are, for instance, responses to these external drivers. We listed possible trends and drivers in two different brainstorming workshops: one where the research team acted as an expert panel and one with our group of stakeholders. The workshops produced 81 different suggestions, many of which were similar to each other. In a later meeting with the research team, these 81 drivers were aggregated into 11 themes (in no particular order):

  • Climate change
  • Climate change politics
  • Alternative land use
  • Demography and migration patterns
  • Energy and bioenergy
  • Environmental disasters
  • Markets for forest products
  • Geopolitics
  • Forest governance
  • Scientific and technological developments
  • Attitudes and values

These themes were analysed and developed through literature reviews by the research team members, except in a few instances where the group lacked sufficient expertise (for instance, in the field of geopolitics and demography/migration). These literature reviews constituted the empirical basis for the scenarios. A few of the literature reviews were later developed into published papers (e.g. Egnell et al. 2011 and Jonsson 2011).

The space in this brief does not allow for a thorough description of these reviews, but we will mention some of the key issues discussed. The climate change models from the IPCC all predict a similar climate development by 2050, but potentially taking different paths towards the end of the century. We thus assumed a similar global climate warming of about 1oC in all our scenarios. However, climate change politics may change much faster, for instance depending on the development of the Kyoto protocol or EU common forest politics. This is a key feature in our scenarios. Alternative land use (e.g. agriculture, protected areas or recreation) may strongly influence forest use. Demography and migration may also have strong effects (for instance climate refugees from Mediterranean areas). Energy and bioenergy is, of course, a key issue, especially if, and if so how, renewable energy sources and bioenergy are able to take a large market role. The environmental disasters paper discusses risks of windstorms, insect outbreaks and nuclear power disasters. Markets for wood products discusses trends in demands, while the geopolitics paper discusses the political stability of the EU and adjoining areas (e.g. Russia and the Arctic). Forest governance describes the international and national legislative, regulative and normative framework that can be seen as affecting forest use. Scientific and technological development discusses the construction of scientific facts and technological artefacts, and also the problem of implementing technological breakthroughs in a society that needs to accept, use and validate them. Finally, the attitudes and values paper concentrates on attitudinal factors about forests, which is comprised of values, environmental attitudes and beliefs, and personal norms.

Identifying Critical Uncertainties

Based on the literature reviews on drivers, we identified critical uncertainties that we wanted to investigate using our scenarios. This was done in a workshop with the research team in an iterative process where smaller groups produced suggestions, which were discussed among the entire team until consensus was reached. This step is by definition a very subjective one where the uncertainties chosen reflect the interests of a particular group of people at a particular period in time. Our research team agreed on the following two uncertainties, which by themselves are aggregates of several drivers: 1) the role that strong political institutions could have in achieving transnational agreements on forest use, and 2) the role that renewable energy, and bioenergy in particular, could have in society. These uncertainties served to construct our scenario cross (Fig. 1).

Constructing Scenario Narratives

The two uncertainties defined four different possible futures (Fig. 1): Balancing Act, Carbon Sink, Carbon Substitution and Free-for-all. These futures were fleshed out in several ways. In the first step, we extracted relevant information from our literature reviews. Secondly, the research team, acting as an expert group, commented on, added or changed the information to better suit the different futures. Finally, we gathered and organised the information into bullet point lists and also constructed a fictional letter from the future for each scenario. The bullet point lists and the fictional letter together served as a narrative that could be used as a basis for discussions. In the following, we give a short description of each scenario.

Balancing Act describes a stable world with a strong global economy and strong political institutions (such as the UN and EU) that can achieve international agreements (on climate mitigation, for example). Breakthrough innovations have led to reduced energy consumption, and both renewable sources of energy and nuclear power play an important role. The high demand for bioenergy has resulted in substantial land conflicts. The rural economy in Sweden is experiencing a favourable development thanks to more job opportunities in the forests. A strong demand for forest products has led to intensive forestry with short rotation periods. As a result of political decisions, efforts are being made to also take other forest uses into consideration, leading to a mosaic landscape where intensively cultivated forests are interspersed with protected areas, resulting in positive effects on biodiversity.

Carbon Sink describes a less stable world with a weak economy. Strong political institutions have some influence, however, and they have agreed on mitigating climate through carbon sequestration. No major innovations have taken place in the energy sector, and fossil fuels (predominantly coal) dominate. Rural development in Sweden is weak. There is a relatively weak demand for forest products, and forest management focuses on carbon storage. Forests are not managed intensively but in many cases as closed-canopy forests with long rotation periods. Biodiversity is doing well and the risk of infestations by pests and diseases is relatively low. However, the risk of storm damage has increased.

The Carbon Substitution scenario describes a world with growing tensions between states and weak political institutions. However, the economy is fairly strong since green economy has made a breakthrough in step with new innovations focussing on renewable energy and reduced energy consumption. A strong demand for bioenergy has resulted in severe land conflicts and resultant land grabbing. Rural Sweden is experiencing a favourable economic development. Demand for forest products is strong, with a focus on bioenergy and biomaterials to replace fossil energy sources and materials. Forestry is intensive with short rotation periods. Market-driven certification schemes have resulted in voluntary set-aside forests, and these are the only areas where any form of old-growth forests remains. Landowner’s rights have been strengthened and the right of public access weakened. Biodiversity is not developing well, and the risk of pests and diseases has increased.

The Free-for-all scenario describes a highly regionalised world with a high risk of conflicts (e.g. trade blockades and currency wars). There are weak political institutions and a weak global economy. There have been no major innovations in the energy sector, and nuclear power and coal are the dominant sources of energy. There are serious land conflicts due to a strong demand for traditional forest products in local markets in northwestern Europe. Rural development in Sweden is advancing in regions with an active forest industry. A high demand for timber and pulpwood creates an intensive forestry with short rotation periods. Biodiversity is developing in very unfavourable directions.

Discussing Implications with Stakeholders

So far, the scenario narratives have been used as starting points for discussions with government officials from the National Forest Agency, the management group for SCA Skog (one of the largest private forestry companies in Sweden), and with representatives from several different forest companies. One common thread in those discussions was a tendency among the participants to rank the scenarios according to the group’s specific interests, i.e. to move from possible futures to what the respective group considers a desirable future. Another, somewhat surprising, outcome was the marked ability of the groups to identify aspects of the narratives where the scenario teams producing the scenarios had failed to agree on the consequences, probably because the logic behind that particular aspect of the scenarios was not clearly described. However, we can conclude that, even though the scenarios were primarily intended for internal use within the research programme, they are also very well suited to stimulate discussions about the future with stakeholders.

Trying to Think in New Ways

Lessons Learned

In the following, we outline some of the lessons learned from our scenario exercise.

  • Foresight studies are powerful tools to deal with complex issues. As we were working with narratives rather than with quantitative simulations, it was quite easy to discuss complex relationships without getting bogged down in details. This makes it possible for researchers from different disciplines (both natural and social sciences) to contribute to the process. This kind of scenario exercise can thus be an important tool for building interdisciplinary skills.
  • A scenario exercise is more important as a process than as an end product. The most important aspect is the collaborative learning that takes place in the group that constructs the scenarios. This also means that scenarios can be difficult to communicate as they are always a result of many explicit and implicit assumptions and simplifications, which are difficult to describe to non-participants.
  • Collaborative learning means that if stakeholders are an important audience, they have to be involved in the whole process. Otherwise, they may find it hard to understand the logic behind the narratives.
  • Future scenarios are very much about the views of the future that we have today. They thus have a short ‘shelf-life’. For example, our scenarios were created just before the COP15 meeting in Copenhagen. At this time, the possibilities of achieving international agreements or not was an obvious topic to explore. On the other hand, the scenarios were created before the tsunami in Japan and the subsequent decision by Germany to phase out nuclear power. Prior to this event, nuclear power was a logical alternative to reduce the dependence on fossil fuels and was thus included in scenario-building.
  • Although scenarios are sometimes discussed as a tool to examine the consequences of surprising events, it is very difficult to think in new ways. Unconsciously we have a tendency to think in linear developments and along business-as-usual lines. This contributes to the short ’shelf-life’ of the scenarios.
  • Since an important aspect of the exercise is the process itself and the learning that takes place in the scenario group, it takes time and money.
  • Our scenarios were intended as possible futures, i.e. no probabilities were attached to the scenarios and they can all be seen as equally probable (or improbable). However, it was a challenge in both the scenario team and in discussions with our stakeholders to stop thinking in terms of forecasts.
Authors: Jon Moen                                       jon.moen@emg.umu.se

Annika Nordin                                 annika.nordin@slu.se  

Stig Larsson                                    stig.larsson@slu.se

Sponsors: N/A
Type: National foresight exercise, single issue
Organizer: Future Forests research programme, www.futureforests.se, Jon Moen, jon.moen@emg.umu.se
Duration: 01/2009–12/ 2011 Budget: N/A Time Horizon: 2050 Date of Brief: Jan 2012  

 

Download EFP Brief No. 209_Future Forests_Scenarios_2050

Sources and References

More information and contact addresses can be found at www.futureforests.se.

European Environment Agency (2001): Scenarios as tools for international environmental assessments. Environmental Issue Report, no. 24.

Egnell, G., Laudon, H. & Rosvall, O. (2011): Perspectives on the Potential Contribution of Swedish Forests to Renewable Energy Targets in Europe. Forests 2: 578-589. [Online]

Jonsson, R. (2011): Trends and Possible Future Developments in Global Forest-Product Markets—Implications for the Swedish Forest Sector. Forests 2: 147-167. [Online]