Archive for the ‘until 2030’ Category

EFP Brief No. 261: Personalised Health Systems Foresight – the Success Scenario Method

Tuesday, March 29th, 2016

“Personal Health Systems Foresight” was launched as part of the 7th EU Framework Programme to explore options for integrating Personal Health Systems (PHS) into the health care system and to investigate framework conditions required for the Europe-wide introduction of PHS. Furthermore, the project wanted to initiate a mobilisation of the innovation landscape, increase networking, and develop strategies to promote PHS across Europe.

Personalised Health Systems:  Chances of a Holistic Approach

Rising costs, an ageing population and a shortage of health care professionals are only three of the numerous challenges Europe’s health system has to face. Personal Health Systems (PHS) promise more individual, effective and efficient health care as they assist in the provision of continuous, quality controlled and personalised health services. PHS are technical aids which gather, monitor and communicate physiological and other health-related data via stationary, portable, wearable or implantable sensor devices. Individual treatments or nutritional advice can then be provided virtually anywhere. Furthermore, PHS technologies can provide new business opportunities and can mobilize novel cross-disciplinary and -sectoral innovation partnerships.

There are already various technically advanced solutions available in the fields of e-health, mobile health and ambient assisted living. Several initiatives have been launched across Europe to increase the integration

of new technologies into the health care system. However, most of these projects are limited to small-scale applications and do not situate PHS within the wider health and social care service systems as they were mostly driven by a technology push. The EU project “Personal Health Systems Foresight” wants to fill this gap by looking at the integration of PHS into the health care system from a more holistic view.

 

Structure of the PHS Foresight

As a first step of the project the team conducted a set of analyses in order to get an overview of the PHS area. These include a bibliometric and a case study analysis to gain information about the present state of the topic, a patent analysis in the field of PHS, and a social network analysis to visualize R&D collaboration networks and central actors in the area of PHS on the European level. Additionally, the project partner developed an online platform in order to generate and cluster visions on related innovations and societal challenges.

On the basis of the results from the analyses and the online consultation process, two stakeholder workshops were organized in order to explore the pathways for desirable future developments. The applied method was the “success scenario” technique, which is described in the following by the example of the second scenario workshop for the PHS foresight, held in Manchester in February 2014.

The Success Scenario Method as Core Element of the Foresight Process

The “success scenario” method can be regarded as a mixed form of conventional scenarios and roadmapping. The latter is often a process that extends upon several workshops and produces highly detailed information relevant to one specific goal. In comparison the success scenario approach usually speeds things up by creating a less structured pathway. It identifies a plausible and desirable course of development, the steps required to receive it and the indicators of progress in the right direction.

A product of the process is the scenario text, which can be used to share the vision and mobilise other actors, but the scenario process itself also has a number of functions including:

  • Providing a platform to create mutual understanding and sharing of knowledge,
  • forming a stretch target to think beyond the boundaries of “business as usual”,
  • developing indicators to move the scenario beyond vague aspirations and produce clarity as to what precisely should be discussed and how goals can be achieved, and
  • developing action points and setting priorities.

In this sense the second stakeholder workshop as a core element within the PHS foresight (figure 1) developed elements of a vision for PHS in the year 2030 through a series of steps, in which major dimensions of change, indicators that might be used to assess progress towards desirable outcomes, and actions and strategies to facilitate PHS development in desirable directions were considered. The attainable future could thereby vary across different European countries.

Figure 1: Methodologies applied in the PHS Foresight

261_bild1

The workshop was structured as follows:

  • Introduction of participants, overview of project and the PHS area, explanation of the workshop
  • Presentation of PHS scenarios (from previous workshop)
  • Discussion of success scenario method
  • Specification of indicators of success
  • Discussion of how far success might be realised in terms of these indicators
  • Identification of challenges to be overcome to achieve progress along these lines
  • Possible issues affected by these developments
  • Key actions required to achieve progress
Indicators, Issues and Strategic Actions for the Implementation of PHS

After an introduction of the participants and a first overview of the project and the PHS area, the PHS scenarios from previous workshop were presented. The participants built 4 break-out groups (BOGs):
a) chronic conditions, b) active independent living, c) acute conditions, and d) healthy lifestyles. These groups discussed what might constitute the success scenario and what specific outcome indicators could be appropriate to illustrate it. The indications from the BOG discussions were further analyzed and refined by the participants, this time in plenary. The resulting list of indicators is presented in table 1.

Table 1: Final set of outcome indicators for the PHS success scenario

  1. Reduction in the number of visits to health centres/hospitals required by people suffering early stage chronic diseases through use of PHS
  2. Share of health and social care professionals educated into competence concerning applications of PHS in practice
  3. Percentage of budget spent on chronic diseases saved by PHS use
  4. Reduction in hospital mortalities of frail/elderly admitted for emergency care (75%)
  5. Share of patients with long term conditions monitored by physical and ambient sensors (100%)
  6. Share of citizens with detailed electronic health records that can be accessed by health care professions in a common format across the EU (100%)
  7. Share of people suffering acute episodes whose EHRs can be accessed by emergency care providers without new explicit consent required (100%)
  8. Share of adults active in a patients’ group supporting active independent living and ways of reducing problems associated with conditions
  9. Share of people with PHS that interact with surroundings and personal information to provide advice in everyday situations on food and other choices
  10. Share of people with control over own health data, determining who uses and how
  11. Share of people using tools for individualised, personalised health advice where the advice is evidence-based
  12. Number of such tools that are scientifically proven as reliably advantageous
  13. Importance of new evidence and modelling for testing and validating such PHS tools for the uptake of these tools
  14. Share of spending in PHS funded by private consumption/enterprises in complementary fashion
  15. Share of population with PHR systems that are integrated with EHR systems

Note: The percentages in parentheses after several items are the views of that group as to the extent to which this indicator is liable to have developed by 2030.

For the next step in the workshop, the participants worked in five BOGs, each focusing on particular areas where transformations may be required for the realisation of the success scenario for PHS. These areas of transformation were defined as:

  1. Technologies, platforms, infrastructures, technical standards, and research and development
  2. Data, privacy and public awareness, attitudes and behaviour
  3. Skills, new occupations, changing new occupational roles and specialisms, training
  4. Health and social policy, goals and philosophy, funding and financing
  5. Public-private roles & relationships, changing organisational forms, new business models

The five BOGs then identified issues related to the implementation of PHS in the health care system and finally considered strategic actions relevant to different stakeholders, in the light of these issues.

Strategic actions in relation to interoperability, standardisation and regulation include for instance harmonisation of healthcare systems regulations, interoperability of IT systems, development of common dictionaries and use cases, standards development, legislation for data security and data access.

Actions in relation to developing a PHS innovation eco-system include the coordination and collaboration among a variety of actors in the research, and business communities engaging also societal actors by applying user-centred innovation approaches.

Creating a PHS market with wide accessibility and affordability requires the establishment of market and competition mechanisms and regulations, procurement, development of plans for stage-gated deployment of reimbursement models. Establishment of value chains from priority setting, selection of technologies, to manufacturing and implementation is important and the production of user-friendly and cheap products and services is relevant.

Strategies towards raising social awareness and increasing PHS skills involve actions like educational programmes to introduce PHS systems to professionals and informal carers but also schools, setting up PHS help and advice lines, or incentives to educational institutions to develop PHS strategies and programmes.

PHS research should target to demonstrate PHS benefits and certify PHS products and services. Demonstration of benefits could be done through creation of modelling labs for PHS applications, or building a catalogue of what is available, what is being developed and what needs to be developed through a gap analysis and towards the jointly defined PHS vision. Longitudinal health studies, health economics and cost-effectiveness studies could be deployed along with health technology assessment.

Finally, PHS research should also deal with big data analysis issues while being oriented towards developing customised, user friendly and certified applications easily accessible online and offline. The target groups should be patients, as well as informal carers in the first instance; at later stages the whole of society should be addressed, as there is a need to shift from a reactive to proactive healthcare approach promoting healthy living. The role of EU institutions could be important in supporting PHS research, as well as in providing platforms for disseminating results helping to draw the lessons from both success stories and failures.

Towards a More Individual and  Efficient European Health Care System

In summary there was a general consensus among workshop participants that PHS can contribute to improved health outcomes as well as increasing the efficiency of health services. The process of implementing PHS will involve numerous stakeholders in order to build what participants described as a PHS „innovation eco-system”. It will be important to recognise the interests of different stakeholders in order to avoid a decline in health outcomes, to maintain and extend the equity and social inclusion elements of health systems, to stimulate the development of innovative and effective health interventions and medical technologies, to maintain professional competences and social status, to reward entrepreneurial behaviour, and to use and protect personal data.

Meeting these challenges will require experimentation, dialogue, and monitoring of change. Major aspects of change range from the creation of new business models and partnerships between different kinds of organisations, through stimulating the acquisition of new skills and the emergence of new professions in health and health-related workforces. It will also be important to put regulatory frameworks into place that can allow for informed acceptance of evidence-based solutions.

In all of these aspects of change, public attitudes will need to be taken into account, since citizens are crucial stakeholders in these processes. Further development of visions of the desirable futures that can be achieved, and awareness of the problems that may be encountered and the ways in which these may be addressed, will be necessary in the future. The PHS foresight and the results from the success scenario workshop can be regarded as one step in the direction of adopting a holistic and combined approach in understanding PHS and establishing and sharing visions of the desirable futures that can be achieved through the implementation of PHS into the European health care system.

Authors: Susanne Giesecke (susanne.giesecke@ait.ac.at), Doris Schartinger (doris.schartinger@ait.ac.at), André Uhl (andre.uhl@ait.ac.at), Totti Konnola (totti.konnola@if-institute.org), Laura Pombo Juárez (laura.pombo@impetusolutions.com), Ian Miles (ian.miles@mbs.ac.uk), Ozcan Saritas (ozcan.saritas@mbs.ac.uk), Effie Amanatidou (effie.amanatidou@mbs.ac.uk), Günter Schreier (guenter.schreier@ait.ac.at)
Sponsors: European Union’s Seventh Framework Programme (FP7 2007-2013)
Type: European Foresight Project
Organizer: Austrian Institute of Technology AIT, Susanne Giesecke, susanne.giesecke@ait.ac.at
Duration: 2012 – 2014
Budget: 450,000 €
Time Horizon: 2030
Date of Brief: March 2016

Download EFP Brief No. 261: Personalised Health Systems Foresight – the Success Scenario Method

Sources and References

This brief is based on the following report, in which the findings are discussed in more detail:

Amanatidou, E., Miles, I., Saritas, O., Schartinger, D., Giesecke, S., & Pombo-Juarez, L. 2014. Personal Health Systems: A Success Scenario. Personal Health Systems Foresight.

References

Schartinger, D., Miles, I., Saritas, O., Amanatidou, E., Giesecke, S., Heller-Schuh, B. Pompo-Juarez, L., & Schreier, G. 2015. Personal Health Systems Technologies: Critical Issues in Service Innovation and Diffusion. Technology Innovation Management Review, 5(2): 46–57. http://timreview.ca/article/873

Schartinger, D., Miles, I., Saritas, O., Amanatidou, E., Giesecke, S., Heller-Schuh, B. Pompo-Juarez, L., & Schreier, G. 2015. Personal Health Systems Technologies and Service Systems 2014. Presented at the 24th Annual RESER Conference, September 11–13, 2014, Helsinki, Finland

EFP Brief No. 259: Austrian Materials Foresight

Friday, February 26th, 2016

The Austrian Material Foresight study was carried out in order (a) to underline and strengthen the awareness by the most important stakeholders for materials research and materials production in Austria, (b) to initiate and support innovative actions in structural material developments, and (c) to open new ideas and concepts beyond the already supported topics so that the research site and manufacturing base in Austria receive more foundation.

Challenges in the Austrian Manufacturing Industry

The Austrian manufacturing industry has been faced with off-shoring of production sites, low growth rates in Europe, limited availability of raw materials, and increasing costs of resources, with a simultaneous dumping on the domestic market. All these factors have been accompanied with changes in the value system of the society and with stricter legal regulations in recent years. To avoid these obstacles, a stronger focus on research and innovation is required.

Traditionally the Austrian economic power depends on the production and processing of materials, and a big share of the value chain is influenced by materials technology. Materials belong to the so called “enabler technologies” and lay the basis for innovations in automotive, aviation, machine engineering, ICT, medical technology and many other industries. Especially the steel industry plays a key role in Austria, represented through a highly specialized foreign trade with a focus on machines, production facilities and vehicles.

High-performance Materials  and Products in the Future

The Austrian Ministry for Transport Innovation and Technology initiated the study “Austrian Material Foresight” in order to examine possible strategies to support Austria’s position in the segment of high-performance materials and products in the future. Main objective was to develop future scenarios (horizon 2030) for the high-tech materials sector in Austria involving the expertise of universities, industry and organizations. Following aspects were particularly considered:

  • Identification of key factors and drivers for the progression of the materials industry and materials research in a national, European and global context.
  • Characterization of robust trends in the materials industry and research.
  • Illustration of Austria’s special role in future materials industry and research.
  • Building a basis for the co-creation of future European materials industry.

Future Scenarios as the Core of the Process

The Austrian Society for Metallurgy and Materials (ASMET), the Montanuniversität Leoben, and the AIT Austrian Institute of Technology GmbH designed and accomplished the project “Materials Foresight” for developing scenarios for the manufacturing bases in Austria. The challenge was to address all four structural materials such as steel, non-ferrous metals, polymers, and ceramic each regarded together with their composites for high-tech technologies along the whole value chain.

 

The methodology for the project (see figure 1) was based on the organizational structure with the core project team, the advisory board, the expert team, the procedure for the whole project and the process applied in the workshops, and the involvement of a broader community via conference and the media.

Figure 1: Organizational structure of  „Austrian Materials Foresight“
259_Bild1

The work was organized in three phases. Figure 2 presents the main tasks in each phase. It shows the development of future scenarios as the core of the process, accompanied by an environmental analysis, by constructive discussions with the advisory board, and the future conference and constitutive work with stakeholders.

  1. The preparation phase contains the collection of future trends and challenges within an environmental analysis. The Austrian situation with terms of implementation, the results of a roadmap of high performance materials, the participation of Austrian institutions in the seventh EU Framework Program, and the current national funding program on intelligent production (FFG Funding Program Production of the Future) were described and key factors were identified. To structure the key factors of the project team works with a STEEP analysis. Based on the results of the preparation phase, the scenario workshops are designed.

 

  1. In the main phase, scenario workshops on steel, nonferrous metals, polymers, ceramics and their composites were conducted together with representatives from the materials industry, materials science, the economic chamber and clusters, and the government. The previously identified key factors with the highest value for influence and uncertainty were chosen for the projection process, where the workshop participants in smaller groups worked out the projection of the selected key factors for 2030. For each materials group, the future products and the research topics were derived from the scenarios. Additionally, measures necessary to achieve the future perspectives were suggested by the participants of the workshops.

 

  1. In the shaping phase, the results of the workshops were analyzed and summarized in order to prepare for the discussion with experts in the first Austrian Future Conference on Materials. More than 300 participants of the conference were informed and attended discussions, which helped to disseminate awareness, results, and new ways of thinking. A press conference aimed to create awareness of the problems and results in the media. In a last meeting with the advisory board and some further experts a plan for the next steps was worked out.

 

Figure 2: Three phases of „Austrian Materials Foresight“

259_Bild2

Key Factor: Energy

The assessment of the key factors as a summary of all four materials fields shows that energy (in availability and hence in price) is the most important factor for the materials industry. The cost effective availability is the second most important factor, which influences research and production of materials technologies. Rank three is a political issue, namely the public support in research. The next important factor is the value development of society. The values of a society have thus a big influence on the materials technologies. The fifth rank goes to economic growth, followed by factors like environmental legislation, qualification, financial market, globalization, and production and manufacturing.

 

The cross-section research topics play an important role in each of the four materials fields (steel, non-ferrous metals, polymers, ceramic). Advanced materials 2.0 means a next generation of materials with new features, also new hybrid materials with new applications. Advanced materials 2.0 presents the biggest share of all cross-section topics, followed by sustainable materials and recycling. The third rank goes to continuous materials improvement followed by innovative flexible manufacturing processes and then energy efficiency in production. Testing for materials and production and modeling and simulation are also important cross-section topics.

 

From Concept to Impact:Strengthening the Materials Community

 

Besides the long-term verified scenario planning, this specific foresight proves that a very well‐developed concept can be a key success factor for the whole process. The excellence in each of the three aspects of the concept, methodology expertise, materials expertise, and network and knowledge about the stakeholders in materials industry, in materials science, as well as in politics and how one can get support from the most influential people is one of the building blocks for the success of this project.

Figure 3: Scheme of project concept

bild3

The three aspects in figure 3 were well represented in the project with the Austrian Society for Metallurgy and Materials (ASMET) with focus on experts and stakeholders networks, the Montanuniversität Leoben with the competence in materials, and the AIT Austrian Institute of Technology with methodology experience. However, the cooperation of all three organizations and the willingness to learn from each other made the project successful and strengthened the “materials” community.

 

Furthermore, the project could help to create awareness in this community as well as in the funding agencies and the ministry for what is already funded and supported by the national funding system, and also for what is still missing in the funding programmes. A follow-up project will be dealing in particular with working out and assessing research and project ideas with the potential for disruptive innovation. The addressed community during the foresight is also supporting the impact for disruptive innovation in the future.

 

Authors: Marianne Hörlesberger                      marianne.hoerlesberger@ait.ac.at

Bruno Hribernik                                bruno.hribernik@voestalpine.com

Brigitte Kriszt                                   brigitte.kriszt@unileoben.ac.at

André Uhl         andre.uhl@ait.ac.at

Sponsors: FFG (The Austrian Research Promotion Agency) on behalf of Austrian Ministry for Transport, Innovation and Technology
Type: National Foresight Project
Organizer: ASMET (Austrian Society for Metallurgy and Materials); Bruno Hribernik
Duration: 2013 – 2014
Budget: € 150,000
Time Horizon: 2030
Date of Brief: February 2016

Download EFP Brief No. 259: Austrian Materials Foresight

Sources and References

This brief is based on the following article, in which the findings are discussed in more detail:

Hörlesberger, M., Kriszt, B., Hribernik, B. (2015). Foresight for the Enabling Technologies Materials. In: Pretorius, L., Thopil, G., (eds.)  Graduate School of Technology Management, University of Pretoria, Proceedings of the 24th International Association for Management of Technology Conference, 08th – 11th June, Kapstadt, pp. 449-464.

Hribernik, B.; Kriszt, B.; Hörlesberger, M. (2014). Foresight für Hochleistungswerkstoffe zur Stärkung des Wissens- und Produktionsstandortes Österreich. Study on behalf of BMVIT. (http://asmet.org/austrian-materials-foresight/)

References

Cuhls, K. (2012). Zukunftsforschung und Vorausschau. In: FOCUS‐Jahrbuch 2012. European Foresight Platform (efp). ForLearn. http://www.foresightplatform.eu/community/forlearn/.

Geschka, H.; Von Reibnitz, H. U. (1983). Die Szenario‐Technik ‐ ein Instrument der Zukunftsanalyse und der strategischen Planung. In: Töpfer, A. und Afhelt, H. (Hrsg.): Praxis der strategischen Unternehmensplanung; Frankfurt/Main: Matzner; S. 125‐170.

Keenan, M. (2002). Technology Foresight: An Introduction, Institute of Innovation Research, University of Manchester, UK.

Martin, B. (2001). Technology foresight in a rapidly globalizing economy.

Martin, B., R. (2010). The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective. IN Technological Forecasting & Social Change, 77, 1438–1447.

Miles, I.; Keenan, M. (2003). Overview of Methods used in Foresight, in [UNIDO 2003].

Von Reibnitz, H. U. (1992). Szenario Technik: Instrumente für die unternehmerische und persönliche Erfolgsplanung, Wiesbaden: Gabler Verlag.

EFP Brief No. 255: RIF Research & Innovation Futures

Wednesday, February 20th, 2013

RIF explores possible future ways of doing and organising research in order to inspire fresh thinking among research stakeholders about underlying potentials and looming risks in the present.

Drivers for New Ways of Doing Research

RIF was setting out from the observation that current ways of doing and organising research are experiencing a number of new phenomena, challenges and tensions such as:

  • Increasing demand for public participation in defining research priorities
  • Demand for early economic exploitation of research findings and subsequent protection of intellectual property right
  • Increasing call for creation of socially robust knowledge
  • Emergence of diversity of knowledge claims challenging the monopoly of “science” such as the Rise of citizens scientists
  • New technologies changing science practises such as big data, computer simulation, researcher social networks and e-publishing
  • Call for open access to research findings
  • Established publishing modes challenged by new players
  • Institutional diversification and change of established division of roles
  • Increasing engagement of industry in research activities
  • Turn in Research and Innovation Policy towards mission oriented strategies
  • Established notions of science excellence being contested
  • Increasing relevance of large technical infrastructures
  • Change in the global landscape of research, emergence of new countries leading publications

Tackling Tensions of Future Research Governance

In view of this background the RIF Foresight exercise defined the following objectives:

  • Systematize knowledge of the emerging patterns, trends and drivers of change of ways of doing and organising research.
  • Develop medium-term explorative scenarios of possible future models of doing and organising research in our knowledge societies at a time horizon 2020
  • Anticipate and assess possible challenges and tensions resulting from these scenarios
  • Develop long-term transformative scenarios of alternative development paths of the way we will do and organize research and innovation in our societies at a time horizon of about 2030
  • Identify policy issues and strategic options for the actors and stakeholders affected, as resulting from the two types of scenarios
  • Create an open debate between different communities contributing to knowledge dynamics from their respective perspectives and explore room for joint action.

Explorative and Transformative Scenarios

The core element of the RIF methodology is a two stage scenario process as shown in figure 1.

bild1

In a first stage the RIF team identified current trends and drivers of research practices and organisation through an in-depth stocktaking of literature, forward looking studies and strategy documents (Schaper-Rinkel et al. 2012). In a next step RIF set up a scenario process involving around 70 stakeholders with a wide range of backgrounds and perspectives within three interactive scenario workshops:

In the first workshop participants developed “explorative scenarios” with a mid-term time horizon by extrapolating today’s trends and drivers (c.f. RIF 2012). Out of these explorative scenarios they identified a set of tensions, junctures and dilemmas that could be emerging in the mid-term if current dynamics continue (c.f. figure 2).

The explorative scenario workshop comprised the following interactive methods:

 

  • plenary discussion and multi-criteria assessment for the selection of core trends
  • facilitated group brainstorming for projection of the selected factors into the mid-term future
  • open-space session for the final identification of tensions (c.f. figure 2)
  • self-organised group work for elaboration of the tensions

bild2

In the second transformative scenario workshop the RIF team and a few selected external participants with a background in the most relevant issues brought forward by the preceding workshop developed the “nuclei of change” from the previous workshop into draft transformative scenarios within plenary and group brainstorming sessions.

The third scenario workshop was dedicated to validation and enrichment of the transformative scenario drafts. A world café format enabled a constructive and structured futures’ dialogue:

On each world café table the team had placed a characteristic image and short descriptive paragraph for one transformative scenario draft. In group sessions of ca. half an hour participants commented on the drafts and enriched the scenarios. Several rounds were carried out so each participant was able to comment on at least two scenarios. One table had been reserved in case participants proposed additional scenarios, which was indeed the case when an entirely new wild card scenario was proposed by one of the participants.

In the second session participants relating to the four stakeholder groups science, policy, civil society and industry worked in separate groups. In a first step they defined their core strategic objectives with respect to research. Secondly, they assessed opportunities and threats for these targets for all six scenarios.

The RIF project has now arrived at the midterm of its duration. The next two workpackages will be dedicated to stakeholder debate on policy implications and strategic options emerging from the scenarios. For this purpose several participatory foresight workshops will be held. Some of these strategic conversations will be crosscutting while others will address specific stakeholder groups that are facing particularly relevant strategic issues according to the scenario analysis.

Broad Stakeholder Participation

The RIF team selected the participants of the Foresight exercise on the basis of a stakeholder analysis using (among others) the stakeholder classification scheme developed by Mitchell et al (1997). Representatives from the following institutional backgrounds participated in the workshops:

 

  • University based researchers (Professors, PhDs, students)
  • University administration
  • Research funding agencies
  • Foundations active in research funding
  • Regional policy agencies
  • Public research organisations
  • Research Ministries (national and EU level)
  • Large companies
  • SMEs
  • Science shops
  • Citzens’ science activists
  • Scientific journal editors
  • Science quality control agencies
  • Industrial associations
  • Trade unions
  • Health organisations
  • International researcher networks
  • Large research infrastructures

 

The majority of the participants came from different European countries representing some organisations from regional, national and European level but also from other continents and international organisations. RIF achieved a good balance between female and male participants.

From Slow Science to Competition 2.0

The RIF project is still on-going. Currently, the scenario report containing the explorative and transformative scenarios emerging from the stakeholder process is being finalised. The insights generated by the stocktaking and draft scenario building are available and summarised below.

The stocktaking (Schaper-Rinkel et al. 2012) pointed out six core dimensions of change in ways of doing and organising research:

  • Digitalization and virtualisation
  • Cooperation & Participation
  • Access
  • Impact
  • Globalisation & Internationalisation

Within these dimensions the analysis revealed the following tensions:

  • open science versus commodification of research
  • short-term project-orientation versus long-term development of new forms of research
  • abundance of scientific information versus shortage of individually manageable and reliable information
  • research collaboration versus competition for research funding
  • collaborative research versus individual incentives
  • diversity in research versus quality standards
  • scientific excellence that is associated with value-free, curiosity-driven research versus research that is relevant to contributing to societal needs
  • diversity versus uniformity
  • research efficiency versus foundational breakthroughs
  • diverse epistemic cultures in providing knowledge for decision-making

The foresight process outlined above generated seven transformative scenario drafts within the first two workshops:

Scenario I: Open Research Landscape

European research is coordinated by “Open Research Platforms (ORP)” where different types of globally connected actors align their funding activities. Each ORP runs an open knowledge sharing WIKI platform where researchers integrate their findings. The new gate-keepers of scientific quality are science & society social networks. University performance is judged by their contribution to the ORPs success.

Scenario II Divided Science Kingdom

The research landscape is divided between two extremes: strictly governed publicly-funded research applying traditional quality criteria versus an open “knowledge parliament” where knowledge claims and funding opportunities are continuously negotiated. Universities are highly diversified according to the two realms

Scenario III: Grand Challenges for real

European research and innovation is strictly organized around Knowledge and Innovation Communities (KICs) that develop solutions for key societal challenges through large scale socio-technical research and experimentation aligning diverse actors and knowledge types. Large shares of public budgets are used to finance the KICs in a coordinated manner. This happens in a period of reduced economic growth in Europe, where higher priority is given to other dimensions of quality of life.

Scenario IV: Tailored Research

The research landscape is coordinated through a fully tailored system of functions fulfilled by highly specialised actors that share revenues according to market rules. At the top of the pyramid, Research Assembling Organisations (RAOs) integrate the contributions of second and third tier research service providers into systemic solutions. A few actors define the rules of interaction and control access to research results and resources. Science is viewed as one of the key enablers for winning the global competition race.

Scenario V: Slow Science

A dedicated group of scientists, also known as “slow science community”, is orienting re-search towards societal and policy needs and placing high emphasis on work-life balance and on making the results of their research work effective in practice. The community is locally rooted, globally connected and funded by bottom-up crowd-funding from diverse sources.

Scenario VI: Competition 2.0 – European public research divided

Driven by business pressure, the Europe’s emphasis is on innovation-oriented research with a focus on improving mid-term global competitiveness. Independent basic research has almost vanished and struggles for funding from public sources.

Scenario X Happiness 2030

To reach the ambitious requirements of wellbeing and happiness until 2030, by 2020 a fully distributed research system based on virtual open science communities, micro-funding and real science markets emerges. Virtual communities grow stronger due to shared methods and processes, affordable tools and applications, as well as to ambitious young talents working and striving for societal reputation. Social science entrepreneurs are climbing up the ladder of success and foster bottom‑up innovation.

These scenario drafts are now being consolidated on the basis of the input from the third workshop which is documented in RIF 2012. The full scenario report will be available soon after.

Changing Value System in Research & Innovation

It is too early yet to draw definite conclusions and policy implications from the RIF foresight exercise. Already now it becomes clear however that longstanding certainties are becoming volatile and the future of research will pose major challenges to decision makers on all levels and institutional backgrounds. The lively debates around the “policy table” in the Vienna world cafe on pros and cons of the various scenarios revealed several valuable strategic questions for policy making today. Accordingly we expect the emergence of a number of relevant policy implications from the strategic debate within the two next work packages:

  • Scenario implication assessment (WP3)
  • Strategic options for society and policy (WP4).

The scenario report will present a consolidated version of the scenarios based on the inputs from the third workshop.

Authors: Philine Warnke                         philine.warnke@ait.ac.at
Sponsors: European Commission DG RTD Science in Society
Type: European level  thematic exercise
Organizer: Matthias Weber, AIT Austrian Institute of Technology GmbH, and matthias.weber@ait.ac.at
Duration: 2011-2013
Budget: € 860 ,000
Time Horizon: 2020/2030
Date of Brief: January 2013

Download EFP Brief 255_RIF Research and Innovation Futures

Sources and References

More information on the RIF project including all reports for download can be found at: http://www.rif2030.eu/

Amanatidou, E., Cox, D., Saritas, O. (2012): RIF Deliverable 4.1: Stakeholders in the STI System.

Mitchell, R. K., Agle, B. R. and Wood, D. J. (1997), ‘Toward a Theory of Stakeholder Identification and Salience: Defining the Principle of Who and What Really Counts’, The Academy of Management Review, 22 (4), 853–886.

Schaper-Rinkel, P., Weber, M., Wasserbacher, D., van Oost, E., Ordonez-Matamores, G., Krooi, M., Hölsgens, R. Nieminen, M., Peltonen, A. 2012: RIF Deliverable 1.1 Stocktaking Report.

RIF 2012: Research in Europe 2030: Documentation of the RIF Vienna World Café. http://www.rif2030.eu/wp-content/uploads/2012/12/RIF-Docu-World-cafe-Vienna_final.pdf

(Links for further information, references used, etc.)

EFP Brief No. 253: Egypt’s Desalination Technology Roadmap 2030

Thursday, February 14th, 2013

This project was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Stud-ies in the Egyptian Cabinet’s Information and Decision Support Center, with the aim of identifying the future needs for desalination technology development, charting a series of research and development activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet the national future needs, and providing short and long term action agenda to guide desalination research and investments in Egypt till the year 2030.

Investment to Meet National Needs

Water shortage is a worldwide problem, where 40% of the world population is suffering from water scarcity. In Egypt, the per capita water share was 771 CM/capita/year in 2005, which is below the international standards of “water poverty line” of 1000 CM/capita/year. Due to the long time horizon required to implement the Upper Nile development projects, directing efforts towards non-conventional water sources – such as; water recycling; reuse of drainage water; treated industrial and sewage effluents; rainfall harvesting; and desalination – provides a short term solution to the water shortage problem. Water desalination should top the agenda of developing non-conventional water resources, since desalination technologies have developed substantially over the last fifty years, especially with the development of “Reverse Osmosis” (RO) technology in the sixties leading to significant reductions in the cost of desalination. Therefore, due to the great advances which occurred in the field of desalination globally, and the noticeable increase in awareness of the importance of such a technology among decision-makers in Egypt, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt in the year 2030. The desalination roadmap is a program-planning document that identifies the most appropriate desalination technologies and their related R&D projects that Egypt needs to invest in to meet the national needs.

Developing and R&D Agenda

The desalination roadmap is a program-planning document that identifies different desalination technology alternatives and their related R&D projects, and the milestones for meeting future national needs of water resources. Due to its role in investigating the future of Egypt in different areas, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt. The project objectives are:

  1. To identify future needs for desalination technology development.
  2. To chart a series of R&D activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet future national needs.
  3. To establish development activities that will accelerate the rate of improvement of current-generation desalination technologies, and therefore allowing these technologies to better meet the short-term national needs.
  4. To develop short-term and long-term action agendas for the required desalination R&D projects in Egypt till 2030.
  5. To improve communication within the R&D community and between this community and the end users.

Technology Roadmapping Methodology

The desalination technology roadmap project was divided into three main phases: roadmap initiation, technical needs assessment, and technical response development. The first phase was concerned with the preparation of the actual roadmapping process and involved agreement on the roadmap’s scope, leadership, participants and deliverables. This phase involved constituting the Desalination Steering Committee (DSC), validating the need to roadmap and clearly portraying this need in a clear vision statement.

The second phase was Technical Needs Assessment: which involved technical needs definition, by assessing current capabilities and identifying the capability gaps and associated R&D goals. This was carried out by the Steering Committee’s core research group who conducted research in the field of desalination, in general, and in Egypt, in particular to determine recent breakthroughs in desalination technologies and how far Egypt has reached in this field. This was followed by identifying and specifying the areas of technical risks/opportunities, and correspondent technical solutions that are either available, or currently under development through a series of brainstorming sessions to identify potential alternate solutions. This phase resulted in a number of critical objectives associated with each need highlighted in the vision statement, and which certain research projects are meant to fulfill. These targets aim at challenging the R&D community to pursue and achieve major technological breakthroughs to be used in future projects, and should only be developed if key projects are not scheduled to start for another 10 years or more.

The final phase of the project was the Technical Response Development, which involved identifying relevant technological areas and research projects (e.g thermal, membranes, alternative, reuse, and cross-cutting research areas) to meet the metrics of each critical objective, and involved brainstorming to identify all possible technical approaches which represent the mechanisms for achieving the critical objectives. This phase resulted in a Broad Strategic Action Agenda which serves as a guideline for the R&D projects required on the short and mid/long term by providing prioritized suggested R&D projects, their duration and an estimated budget.

Most activities associated with the roadmapping process were conducted through committees or workgroups, and a number of focus group meetings were sequenced and scheduled for all work groups to come together, share results, and reach consensus on the defined targets or critical objectives. In addition, a number of individual follow-up meetings took place.

The Desalination Roadmapping Team was composed of the Desalination Steering Committee (DSC) and the Desalination Working Group (DWG). The main responsibility of the DSC was to oversee the technology roadmapping process, and guide it in the direction of achieving the vision statement or the final goal. The DWG is a committee representing a group of experts in desalination technology, environmental engineering, water resources planning, and energy resources. Their main responsibilities were to brainstorm technology options responsive to the technology strategies provided by the DSC, as well as the costs, benefits and risks of the different options.

Good Water Quality Free of Charge

Upon identifying the steering committee, a meeting was held to highlight the main national needs facing Egypt’s water resources in the future till 2030. This meeting was held among a number of prominent experts in the field of water resources and desalination, and accordingly, the following broad vision for desalination was formulated and agreed-upon to cover the main national needs as below:

“Develop desalination technologies that aim to secure cost-effective, drinkable, fits for its uses and sustainable water for Egypt in 2030”.

National Needs and Critical Objectives to Meet National Needs

Following the extensive literature review carried out by the research team during the second phase of the roadmapping process, the technical needs of Egypt in the field of desalination were identified and were mainly focused on capitalizing on the availability of abundant renewable resources in Egypt, mainly solar and thermal energy. As determined by the agreed-upon vision, Egypt’s main national needs with respect to water can be categorized as:

  • Cost-effective water: In Egypt, as in many countries, there is no direct charge for water services provided for agriculture, while water provided for domestic and industrial uses is subsidized. Farmers receive water free of charges and are only responsible for pumping costs from the manual pump to the field. However, the provision of water free of charges to farmers began to pose an increasing burden on the government especially in the face of increasing costs for O&M and irrigation and drainage system rehabilitation, due to the increasing population and construction of mega projects. As with regards to the municipal and industrial sectors, it is estimated that government subsidies amount to 70% of water service in the industrial sector and 88% in the municipal sector. The rate for domestic water supply in Greater Cairo is about LE 0.13/m3, which is much lower than the cost of providing raw water (around 0.56/m3). Charging users for water and water services in Egypt is a sensitive issue, as it involves political, historical, social, and economic factors.
  • Drinkable water: Access to safe drinking water and sanitation is considered a basic human right, however providing this service and securing the required investments are a real challenge for the government. In Egypt, over 90% of Cairo’s drinking water is drawn from the Nile, which has provided high quality water during the 1970’s and 1980’s. However, the Nile’s water quality showed increasing deterioration in the 1990’s due to increased industrial and agricultural discharges, and also contamination from human sewage. In addition, water quality provision was increasingly threatened by the inefficient infrastructure and deteriorating distribution systems and water treatment plants.
  • Water fits for its uses: Given the worsening water situation in Egypt due to the massive and increasing demand by the agricultural sector, supplementary non-conventional sources including desalination of sea and brackish water, and reuse of waste water, represent very important sources to ensure maximum water allocation for its uses. In general, desalinated seawater costs about more than twice the price of freshwater used in irrigation and hence is considered too expensive for all types of agricultural production. However, desalination costs have decreased to nearly one-tenth of what it was 20 years ago, and are likely to continue falling due to continuous advances in the field. This declination in cost is likely to make the use of desalinated sea or brackish water feasible for wide use in both agricultural and industrial fields.
  • Sustainable water. Achieving the national need of providing sustainable water resources requires that policy makers widen their scope on the main users of water, to include the environment as well as the traditional industry, agriculture and household users. This measure is crucial in the future in order to overcome the unsustainable “hydrological” debt that Egypt faces today, as its future water flows are more or less fixed while consumption is increasing at an enormous rate leading to water depletion.
Quantifying the Objectives

These are the objectives for each national need that the different proposed desalination technologies are expected to fulfill. These objectives gained consensus by the experts who have participated in this study.

Near Term Critical Objectives (2015):

  • Reduce capital cost by 20%
  • Increase energy use by 10%
  • Decrease operating and maintenance cost by 20%
  • In-house manufacture of renewable energy (RE) units
  • Increase public awareness, education/training on the importance of desalination.
  • Water quality meets drinkable water standards identified by Egyptian Environmental Affairs Agency (EEAA)
  • Develop science related concentrate specific regulations
  • Microbial removal
  • Provide water for supplementary irrigation coupled with greenhouse irrigation
  • Water use in industry
  • Reduce cost of desalinated water by 20%
  • In-house manufacture of RE
  • Maintain stability of reclaimed water over time
  • Brine reuse for other purposes

 

Mid/Long Term Critical Objectives (2030):

  • Reduce capital cost by 50%
  • Increase energy efficiency by 50%
  • Reduce operating cost by 50%
  • In-house manufacture of multi stage flashing (MSF)/Multi Effect Distillation (MED) desalinating plants
  • Develop small desalination units for remote areas
  • Address cumulative issues related to concentrate and enhance regulations
  • Wider water for supplementary irrigation coupled with greenhouse irrigation
  • Wider water use in industry
  • Reduce cost of desalinated water between 60-80%
  • Development of new systems projects
  • Use of nuclear energy for large desalination plants using CANada DUterium Oxide Uranium (CANDU) technology.
Desalination Technologies to Address Critical Objectives: Research Areas with the Greatest Potential

The Roadmapping Team identified three main technology areas where R&D is needed in order to create the next-generation desalination technologies. These technologies and their associated research areas are:

  1. Solar/Thermal Technologies:
  • Design and manufacture of solar stills
  • Application of a reflection reduction solution to the glass of solar desalination units
  • continuous improvement in material enhancement for solar desalination unit
  • Multistage evacuated solar desalination system
  • Multiple effect humidification/ dehumidification at ambient temperature (solar)
  • Solar multistage condensation evaporation cycle
  • Enhancement of reverse engineering of national made (5000 m3/day) MSF (or MED) units (existing 5000 m3/day of Sidi Krir & Euon Mosa could be used for verification)
  • Solar PV-RO system
  • Develop solar ponds for energy and concentrate management
  1. Membrane Technologies
  • Enhancement of in- house manufacture of RO technology
  • Enhanced evaporation through Multistage Condensation Evaporation Cycle
  1. Other Technologies
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day)
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients).
  • Ionization of salty water for irrigation
  • Secondary treatment of brine for salt production
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients )
  • The biology of salty water, including understanding of environmental impacts, using bacteria for beneficial treatment, etc.

Expectations of Impacts

Given that the critical objectives that are to be achieved by the roadmap are divided into short-term and mid/long term, it was seen as most suitable to divide the strategic plan for desalination into a strategic plan to achieve short term critical objectives and another strategic plan to achieve mid/long term critical objective

Mid/Long Term High Priority R&D Projects
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day). Duration: 10 years, Expected Cost: L.E10 million.
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients). Duration: 5 – 10 years, Expected Cost: L.E 2.5 million.
  • Storage of brackish water aquifers all over the country. Duration: 10 years, Expected Cost: LE 5 million
  • Bio technology using Bacteria, micro, plants…etc, that reduce amount of salt in seawater (e.g. Man-Grove). Duration: 12 years, Expected Cost: 2 million.
  • Combined nuclear power & desalination plants. Duration: 20 years, Expected Cost: 50 million.
Authors: Dr. Abeer Farouk Shakweer

Reham Mohamed Yousef reham.yousef@gmail.com

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion
Organizer: Center for Future Studies
Duration: 2006 – 2007
Budget: n.a.
Time Horizon: 2030
Date of Brief: June 2011

Download EFP Brief No. 253_Desalination Technology Roadmap 2030

Sources and References

Abou Zaid, Mahmoud, “Desalination in Egypt between the Past and Future Prospects”, The News Letter of The Middle East Desalination Research Center, Issue 9, March 2000.
El-Kady, M. and F. El-Shibini, “Desalination in Egypt and the Future Application in Supplementary Irrigation”, National Water Research Center, Ministry of Public Works and Water Resources, July 2000.

Food and Agriculture Organization of the United Nations (FAO), “Raising Water Productivity”, Agriculture 21 Magazine, Agriculture and Consumer Protection Department, March 2003, http://www.fao.org/AG/magazine/0303sp2.htm

National Research Council “Review of the Desalination and Water Purification Technology Roadmap”, The National Academies Press, Washington DC, January 2003.

EFP Brief No. 252: Egypt’s Water Security – Future Vision 2030 Using Delphi Method

Tuesday, February 12th, 2013

This study was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Studies in the Egyptian Cabinet’s Information and Decision Support Center. Using Delphi Method, the study aims at identifying, analyzing and foreseeing potentials of Egypt’s water security as ground to thinking of pilot solutions aimed at evading problems and crisis as well as developing a set of procedures whereby Egypt’s water security is attained.

Increasing Gap between Water Supply and Demand

The Nile stands as Egypt’s main source of water whereby it secures 80% of Egypt’s water yield per year-according to the 1959 Nile Agreement, Egypt’s fixed quota of Nile water comes to 55.5 billion m3/year. In Egypt, water security tops the national agenda whereby studies reveal that estimations of available water and water needs for different purposes are heading towards an increasing gap between water supply and demand, not only because of the anticipated increase of water demand, but also due to the impact of other factors on the available quantity of Nile water. The study at hand contributes to foreseeing the future of Egyptian water security, by analyzing the impact of varied factors influencing Egypt’s water security in terms of the political, economic, environmental, hydrological, legal and strategic aspects,  developing an integrated vision, and forming a new approach for further research in this area and providing comprehensive knowledge.

Combining Forecasting and Delphi

The study applied the “Delphi Technique” – an important qualitative tool of future studies – which relies on collective intelligence and scientific forecasts, by deriving knowledge from a group of experts, directing them to consensus on aspects of the issue at hand, and providing verifications for the relatively extreme positions. This technique was used to identify the main factors of uncertainty that will affect the future of Egypt’s water security, and to forecast potentials of these uncertainty factors, their different expected impacts, and proposed recommendations. A Delphi web site was developed allowing access to 25 experts in the areas of water, economic and political science.

The study also used forecasting (futures analysis) which does not seek foreseeing or planning the future, but rather conducts a set of conditional forecasts or scenarios assuming either the reality or desired ones. Hence, the research does not conclude to achieving any of the aforementioned scenarios but aims at allowing societal players to learn about the requirements of achieving one of the desired scenarios according to their relevant preference in order to work on giving it precedence over other alternative scenarios.

Main Factors Affecting Water Security

Based on the theoretical review of the issue of Egypt’s water security, the most important factors affecting Egypt’s water security were identified by applying Delphi Technique as follows:

  1. Relations between countries of the Nile basin towards either cooperation or struggle:

The regional hydrological system of the Nile basin lacks a comprehensive legal or institutional framework deemed acceptable by all Nile countries because of their conflicting outlook on the legitimacy of the existing agreements and international conventions – the 1929 and 1959 Agreements in specific. Accordingly, countries of the Nile sources divide the River Nile’s water according to the area of River Nile basin passing through the given country, and the contribution of each country to the river’s water yield. However, Egypt and Sudan refuse reviewing the distribution of water quotas in the Nile basin based on calls for justice and equity.

Additionally, some of the Nile basin source countries are calling for enforcing the principle of international water sale on the Nile basin system including that Egypt and Sudan, pay financial compensation in return for their water quotas if they wish to maintain them, while Egypt and Sudan refuse this principle on the ground that water is a socio-economic commodity that should not be subjected to market mechanisms.

On another level, countries of the Nile basin sources reject the condition of advance notification when developing water projects or taking water measures within their national borders, which is seen as necessary by Egypt and Sudan.

  1. Impact of external powers:

External powers, mainly USA and Israel play a crucial role in affecting international water interactions in the Nile basin, and carry out a motivating role for struggle. In this regard, Israel adopts two main strategies: “Quota based system” considering projects involving water that eventually aims that Israel receives fixed water quota from the Nile and “Seizure Strategy” which implies surrounding the Egyptian policy and using water as a pressure card against Egypt and Sudan. European countries, specially Italy, Holland and some Asian countries particularly Japan are playing a motivating role for water cooperation in the Nile basin putting down inclinations towards water related conflicts by providing financial and technical support for a number of water related projects in the Nile countries.

  1. The impact of the separation of South Sudan:

Opinions vary on the impact of south Sudan separation on Egypt’s water security. Some opinions perceive minimum negative impact resulting from the separation on the Egyptian water yield from the Nile and others are seriously concerned about the potential impacts.

  1. Shifts to irrigated agriculture and minimizing pressure on the blue water:

All countries of the Nile sources wish to follow Egypt’s footsteps in terms of cultivating spacious irrigated agricultural areas. However, this type of agriculture requires costly technical expertise. In this context, funding and technical assistance provided through investors, local, regional or international entities might have a hidden agenda for helping poor citizens of the Nile countries, destabilizing some countries and creating tension in a manner that impacts development plans.

  1. Change in the economic:

As a main feature of the Nile basin countries- except Egypt- extreme poverty reflects on the capabilities in terms of providing water related infrastructure. According to 2007 World Bank data, Burundi had the lowest GDP (US$0.97 billion) among Nile Basin countries, whereas annual GDP per capita growth rate was highest in Ethiopia and Sudan at 8.4% and 7.7% respectively. Egypt comes next with a growth rate of 5.2%. Nevertheless, GDP per capita share decreased in Burundi by 0.3% and in Eritrea by 2.3%.

  1. Water reservoirs or control utilities:

If dams are constructed to serve as reservoirs, it is necessary to ensure that the stored water affects Egypt’s water quota in the long term.

  1. Impact of climate change on water of Nile basin:

The most important climate changes affecting the Nile’s water are increasing temperatures which  will cause rising rates of evaporation, and changes in the rates, locations and seasons of water fall will cause the loss of quantities of rain that were to be used in agriculture and human consumption in the northern coast.

  1. Political stability of the Nile basin countries:

Continuous or aggravated forms and indicators of domestic instability in the Nile basin countries will push them to adopt struggle based foreign policies. It is projected that countries of the Nile basin sources will resort to adopting aggressive foreign policies towards both mouth and stream countries-Egypt and Sudan-every now and then. This is in an effort to divert the domestic public opinion away from internal problems and failures suffered in each country relatively.

Egyptian Water Security Scenarios

Given the aforementioned main factors affecting Egypt’s water security, the future of water in the Nile basin will likely be shaped according to three alternative scenarios as follows.

Business as Usual Scenario

The current situation of struggle relations between Egypt and the Nile Basin Countries, will continue but will not escalate to war because of political expertise,  and countries of the Nile basin maintain a reasonable margin of rationality with their neighbours. Furthermore, the domestic political, economic and social circumstances of the Nile basin countries will not permit potential escalation of conflicts.

According to the outcomes of Delphi survey, a change in the current situation of cooperation or struggle regarding water is unlikely (there were no sharp deviations regarding the potential full cooperation or struggles that may escalate to war over water), where 46%, 38% and 50% is the probability of increasing the normal yield of Nile water before 2030 via cooperation where Egypt develops projects in the Ethiopian Plateau, Equatorial Lakes Plateau and Bahr el Ghazal. But the probability of reaching an agreement on some of the conflict areas by amending the existing legal agreements of the Nile basin countries is 48%.

Also, lack of current sufficient funding will affect the ability of benefiting from green water and relieving the pressure off blue water in Nile Basin countries. And in light of the outcomes of Delphi survey, Egypt’s probability of developing projects -in cooperation with donor international organizations-aimed at assisting other countries in benefiting from green water is 49%, 52% and 53% respectively in the Ethiopian, Equatorial Plateaus and Bahr el Ghazal.

It is unlikely that the basin countries will experience an economic boom on the short term, since economic development requires stable political regimes and local, regional and international capital, capacity building, technical calibres and improvement of institutions and laws.

There is low probability of an impact from the separation of south Sudan on Egypt’s yield of the Nile water, as the new State will be bound by all past conventions related to the River Nile. Needless to mention, South Sudan is advantaged with abundant rain which spares it the need for this water. According to Delphi Survey, the probability of a relevant impact on Egypt’s Nile water supply is 45%.

It is likely that climate changes will continue without an impact on the normal yield of Nile water in Egypt, at least during the coming twenty years. According to a study by the Organization of Economic Cooperation and Development (OECD) in 2004, there is limited confidence regarding changes in amount and direction of rainfall on the future on the Nile basin countries. Based on the survey results, the probability that climate changes will move the rain belt far from the Ethiopian, Equatorial Lakes Plateaus or Baher Al Gazal are 40%, 35% and 44% respectively.

Optimistic Scenario (Regional Cooperation)

This is the scenario of optimization of available opportunities for developing shared water resources and building a regional water system capable of securing the needs of the region’s countries without undermining the fixed historical and legal rights of some of the countries.

This scenario involves the potential of expanding cooperation areas among Nile basin countries within the Nile Basin Initiative, which includes all ten Nile basin countries, provides an institutional framework for collective cooperation, receives governmental and political support, and pays great attention to projects and mechanisms aimed at building mutual trust among basin countries, as well as capacity building and training projects.

There is an increased possibility of establishing water related projects in collaboration with the basin countries via building and connecting dams on a unified electricity network in those countries, aimed at generating power for agriculture and industrial production purposes rather than storing water and assist in regulating water supply to Egypt. Survey results indicate that probability of completing Gongli Canal is 56%, in addition to the possibility of redirecting Congo River to benefit from its water is 60%.

Pessimistic Scenario (Conflict)

This scenario is based on the possibility that variables motivating struggle will lead to raising chances of conflict of national interests in the Nile basin countries to an extend of inter struggle. The struggle inclination might rise given the following variables:1) A strong and sharp inclination of the Nile basin sources countries towards enforcing the principle of “selling Nile water” to the two countries of the mouth and stream will cause an eruption of international water struggle and wars among the countries.2) Escalated role of the external motivating powers for Nile-Nile struggle based on the following considerations:

Israel will play a motivating role for water struggle in the Nile basin in addition to the indirect role of the USA, where it will work on besieging and pulling the parties of Egyptian policy, on the regional level, in a way that serves coining the American power on the political and strategic levels in preparation for an effective Israeli role.

Countries of the upper Nile basin will seek to constitute external coalitions aimed at changing the current situation; these are mainly Ethiopia, Kenya, Tanzania, and Uganda.

Separation of south Sudan will be at the expense of projects dedicated to exploiting the wasted Nile water in the Egyptian and joint upper parts, such as the Gongli Canal project.

The political tensions in the Ethiopian Plateau will negatively affect the Egyptian water yield as well as failure to implement any proposed projects. According to the survey, the probability of the eruption of a civil war (due to ethnicity, religion, political or tribal affiliation) in the Ethiopian Plateau and bearing an impact on water projects and management is 53% and 57% respectively.

Based on the Delphi Survey outcomes, the probability of increased Nile basin countries’ demand for Blue water for agricultural, industrial, drinking, tourism, and fish wealth purposes by 2030 in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region are 60%, 61% and 59% respectively. As for the probability that those countries construct dams or other projects in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region-to meet the increased demand for water -that will eventual-ly affect Egypt’s Nile water quota by 2030 are 63%, 59% and 54% respectively.

Cooperation for Water Security

  1. Cooperation among the Nile Basin Countries

Regional cooperation should depend on balancing the distribution of benefits and duties in the context of a cooperative Win-Win Approach, which will eventually lead to optimizing the benefits among all Nile countries enabling a relevant improvement and development.

  1. Endorsing the Soft and Diplomatic Instruments

This ensures avoiding the struggle scenario, and can be supported by developing the mutual dependency mechanism between Egypt and Ethiopia via joint projects where Egypt provides the technical expertise in irrigation currently being provided by Israel.

  1. Enhancing Cooperation between Egypt and Sudan

The mutual dependency mechanism between Egypt and Sudan, in light of separation, can be achieved through establishing strong ties with both north and south via joint cooperation in agriculture, power production, health, education and industrial projects in addition to military. This entails developing railways, river naval lines and unified electricity networks, and that Egypt grants southern citizens all advantages equal to Sudanese citizens in terms of education, work, residence, and entry into Egypt, and redrafting the projects to exploit wasted water in the upper Nile in Bahr El Gabal, Bahr El Gazal, and Mashar Swamps situated in south Sudan.

  1. Benefiting from Green Water

This entails that Egypt: cooperates with the international donor organizations for developing projects in the source countries, transfers agriculture technologies to all Nile basin countries by availing technically qualified irrigation and agriculture engineers, and developing rain harvest technologies and introducing selected seeds and chemical fertilizers.

  1. Creating a social, economic, political observatory

This should be in charge of monitoring changes immediately, analysing indicators and presenting relevant plans. In the event of any internal political tensions in the Nile basin countries, Egypt should adopt a neutral position, stimulate mediations in ethnic and border conflicts taking place in the Great Lakes and African Horn regions to evade the potential sensitivities that might emerge due to aligning with any of the conflicting parties.

  1. Egypt’s Role in Developing Economies

It is recommended that Egypt carries out development projects in Nile Basin countries and cooperates with international organizations in areas of improving health care, and eradicating Endemic diseases that affect public health and consequently productivity.

  1. Forecasting the Impact of Climate Changes

Developing a local model for forecasting the impact of climate change on the Nile basin water yield, in cooperation with the British Meteorology Office.

Authors: Dr. Nisreen Lahham   nisreenlahham@idsc.net.eg

Dr. Mohamed Saleh   msaleh@idsc.net.eg

Sahar Sayed Sabry    saharsayed@idsc.net.eg

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion.
Organizer: Dr. Nisreen Lahham, Executive Manager, Center for Future Studies, www.future.idsc.net.eg
Duration: 2009 – 2010
Budget: n.a.
Time Horizon: 2030
Date of Brief: August 2011

Download EFP Brief No. 252_Egypt’s Water Security

Sources and References

Ayman Alsayed Abdul Wahhab (editor), “River Nile Basin: Cooperation opportunities and problems” (Cairo, Al Ahram Center for Political and Strategic Studies, 2009).

Mohammad Salman Taye`a, Water Security in the Arab Gulf in a Changing World: between Prerequisites of National Interest and Addressing External Threats, Middle East papers, National Center for Middle East Studies, Vol. 38 October 2007.

Atlas of international agreements on fresh waters, UNEP, FAO, and Oregon University, 2002.

H.J.Brans (ed.), The Scarcity of Water: Emerging Legal and Policy Issues, London, The Hague, Boston, Kluwer International, International Environmental Law and Policy Issues, 1997, 21-39.

Theodore J. Gordon, The Delphi Method, future research methodology – V2.0, AC/UNU Millennium Project.

World Bank, World Development Indicators, Washington, 2007

 

EFP Brief No. 251: VERA – Forward Visions on the European Research Area

Wednesday, February 13th, 2013

The VERA project provides relevant strategic intelligence for the future governance and priority-setting of the research, technology, development and innovation (RTDI) system in the EU and for better adapting science, technology and inno-vation policy to the shifting global environment and upcoming socio-economic challenges. For this purpose VERA carries out an in-depth stocktaking of RTDI related forward looking activities in Europe and internationally and a thorough review of trends and drivers of long-term change of European RTDI governance. On the base of these insights VERA develops scenarios on the evolution of the European Research Area, assesses the critical issues for the ERA’s future capabilities emerging from these scenarios, explores subsequent strategic options and ultimately generates a set of policy recommendations for responsive and future oriented multi-level, multi-domain RTDI policy strategies. As VERA will run until 2014 we will present some intermediary results of the first two work packages in this Brief.

Changes and Tensions within ERA

Recently, ERA has undergone many relevant changes from inside. First of all, research and development became a domain of shared competence between the member states and the EU as a result of the new Lisbon Treaty in 2009. The subsequent strategic processes, such as the Lund Declaration, the Ljubljana Process, the Europe2020 Strategy and the Europe 2020 Flagship Initiative Innovation Union, have provided a solid mandate for a strong and open European Research Area that is highly responsive to societal challenges and provides excellent research and innovation activities in open exchange with the international RTI landscape.

However, in order to realise this ambitious agenda, the share of integrated research expenditure needs to be significantly increased. Furthermore, new coordination mechanisms are required to allow for flexible identification of ERA priorities, mobilisation of the critical mass of funding, and governance of its implementation.

In the last few years, a number of integrative instruments have been developed and implemented, such as:

  • Knowledge and innovation communities (KICs) selected within the European Institute of Innovation and Technology (EIT)
  • ERA Net and ERA-Net Plus allowing for joint funding of EU and member states
  • Joint technology initiatives (JTIs article 187) developed through the European technology platforms (ETPs)
  • Joint programming in research (JPIs)
  • Public private partnerships (PPP)
  • Joint research programmes (article 185)
  • European research alliances
  • European innovation partnerships

Thus a number of opportunities and experiences for more integration and pre-allocating significant chunks of EU funding to joint priorities do exist. At the same time, there are many tensions associated with the implementation of these strategies.

A key challenge and opportunity for ERA development is its relation to and integration with the wider world. The production and composition of knowledge have become globalised. While science always has been international, the scope of actors and the need for coordination and cooperation across the globe has changed dramatically in the face of global challenges. At the same time, there is an increasing specialisation of knowledge production and exploitation. Global division of labour and connecting the global centres of excellence that have emerged is a key requirement of the future. In addition, many of the problems European societies face are either the same as for other societies (obesity, demographic change) or transnational in nature (climate change, pollution, security) while the EU is just one among many international players. The overarching challenge of decoupling economic growth from the depletion of the ecosphere and preserving natural capital demands an unprecedented alignment of efforts on a global scale.

There are a number of changes in the way research and innovation is being embedded in the societal context. Changing values and lifestyles are giving rise to new societal expectations of research and innovation. Changing economic and institutional contexts introduce new rationales into knowledge production. Established boundaries, such as basic and applied research or users and producers of innovation and knowledge, are blurring. New actors such as NGOs, citizens and user groups are increasingly playing relevant roles in the realm of research and innovation.

The need for research and innovation to address the grand challenges in realms such as health, food, security and sustainability is not only increasingly advocated but also poses new kinds of challenges. Transformative socio-technical pathways rather than isolated key technologies need to be explored. Social innovation, service organisation and organisational innovation need to be aligned with breakthrough technological innovation. Experimental approaches are gaining relevance for successful innovation trajectories, in particular when transitions are at stake. These changes make it imperative to situate ERA in the global context.

Identifying the Grand Challenges of the Future

In order to generate custom-made strategic intelligence for the future of ERA, the starting point was, first, to identify Grand Challenges (GC) and, secondly, to do so in relation to research sectors that are relevant to the ERA. The GC were identified based on existing EU documents and discussion papers that had been published in the context of pertinent foresight and horizon scanning projects. These GC were classified into relevant research sectors, for instance health, energy, environment and civil society. This approach allowed a thematic clustering of topics, which then served as a basis for broadening the scanning of FLAs. Ten sectors and more than 760 GC in total from a stock of 71 sources were identified.

The stocktaking was designed so as to collect information that would help reach the objective of the work package, i.e. to answer questions such as,

  • What Grand Challenges in the fields of economy, environment, geopolitics, society and ethics, technology and health are the documents and projects under consideration concerned with?
  • Do these documents and projects represent the discourse on Grand Challenges in the European Union and in other parts of the world?
  • What conclusions can we draw from these documents concerning the future governance needs of the ERA? And what do they tell us about the future requirements of RTI governance?

Sixteen Grand Challenges

The VERA team managed to identify 16 Grand Challenges from the analysis and clustering of 760 individual issues from the inventory and interviews with individual STI experts:

  1. Uncertainty is arising from a multipolar world

Increasing polarisation and regionalisation are driving towards a multipolar world. Possible evolutions and implications of or even solutions for this multi-aspect and multi-level challenge are still hardly understood.

  1. Values and attitudes are changing globally

Attitudes and values are changing globally; societies and particularly policy need to respond to these changes.

  1. The traditional role of the state is challenged

A number of developments require new models of governance that go beyond the traditional model of the state.

  1. The world is becoming more interconnected and thus more vulnerable

The more the world becomes interconnected and interdependent, the more new forms of crime and security threats are interlinked and have far-reaching consequences at all levels of society.

  1. Health concerns of an aging society are rising

The ageing of populations has diverse implications for science, technology, economy and society that are proliferated in the context of new health risks and ineffective health systems.

  1. A risk of financial system failure is emerging

In the financial sector the risk of systemic failures is increasing.

  1. Current non-sustainable economic models come under scrutiny

A growing unease with the current model of economic growth calls for alternative approaches to societal progress at the macro level. At the same time, environmentally sustainable business models are required in all sectors of economic activity.

  1. Migration requires responses

The challenge of migration takes many forms as a consequence of other challenges such as climate change, food and water shortages, natural disasters, pandemics etc., each of which requires a specialised and coordinated response at various levels of governance.

  1. Education is struggling to cope with new demands

The education and training systems in Europe need to be modernised. A more specific demand defines the need for education systems capable of promoting sustainability, innovation and solidarity values, and new professions require highly skilled craftsmanship.

  1. The health situation in deprived regions is deteriorating

Impoverished regions around the world are struggling with acute and virulent health issues.

  1. Climate change is causing new diseases

New health problems are arising globally due to climate change.

  1. Providing basic resources for increasing global demands becomes difficult

Without ecologically, economically and politically sustainable solutions, scarcities of basic resources may lead to extensive and serious social and political problems in some areas of the globe.

  1. Material resources are becoming increasingly scarce

Demand for metals and minerals is growing dramatically, especially due to the fast growth of emerging economies and increasing strategic demand for minerals in industrialised economies.

  1. Our modes of energy supply and use are threatening the survival of humankind

Adopting sustainable forms of energy production and consumption is one of the key means for mitigating climate change.

  1. Transportation systems are coming under strain

Environmental and health impacts from emissions, mitigation of climate change, urbanisation, the need for traffic safety and security, and avoidance of traffic jams are among the drivers pushing towards the reinvention of mobility and full-scale transition of existing transportation systems.

  1. EU competitiveness is endangered

The fragmentation of Europe, poor education and skills as well as rising costs and declining labour force participation caused by demographic change may prevent effective exploitation of Europe’s research and innovation potential.

Facing the Grand Challenges to the Future of Europe Means Facing the Global Ones First

From the analysis of a broad range of sources on Grand Challenges, it becomes clear that we cannot take a European perspective only. Especially not when attempting to identify ways of dealing with the Grand Challenges, or at least some of them. The most pressing challenges are globally interconnected and require global action. Topics like Our modes of energy supply (14), Providing basic resources for increasing global demands (12) and The world becoming more interconnected (4) are the ones most frequently discussed. They also show the need to accept shared responsibility on a global scale, which implies that the EU countries cannot lay back and point to other countries to take action. On the contrary, from a European perspective, European countries are among the major contributors to the drivers of the Grand Challenges and among the major countries affected as well, although the impacts of the Grand Challenges are more widespread globally than the drivers are.

The sixteen clusters identified and discussed above also seem to be the ones that call for policy action most immediately and represent the cases where such action could make a substantial difference if planned and executed in a systemic way.

To face the Grand Challenges to the future of Europe, most of all we need to cope with the global ones. If we make a major contribution to the global ones, we will be better equipped to cope with the challenges that lie ahead for Europe.

What we as Europeans have to face is that our lifestyle and the underlying economic model must be considered the root of fundamental problems with devastating global consequences. Many studies and independent resources have pointed this out before. It is of course not only the European lifestyle but also that of all developed economies. At the same time, the global interconnectedness that seems to make this lifestyle transferable to emerging, lagging and, in the long term, even to undeveloped economies also makes societies vulnerable to shocks in many respects.

Facing the Grand Challenges means to introduce fundamental changes in many areas of our lives and activities, thereby affecting global liaisons as well. Even if radical changes are unrealistic, the changes required in tackling the Grand Challenges will be felt by every European citizen. Policy-makers are in a crucial role as these changes will not occur without fundamental and coordinated policy measures in almost every policy area.

Furthermore, it becomes clear that the scope of these Grand Challenges is in essence societal. We need to take this into account when we talk about policy action, for example in the area of research, technology and innovation policy – in the respective work packages of the VERA project and beyond. We especially need to consider what the impact of that societal scope is with regard to the systemic character of handling the Grand Challenges.

Text Analysis and Discussion with “ERA Thinkers”

The second set of tasks performed was to synthesise the existing insights on trends, drivers and key dimensions of change in European RTDI governance. A computer-assisted analysis helped to characterise the body of discourse on ERA in a systematic and quantitative manner. The analysis of text data on ERA was expected to allow interpretations and descriptions of the attitudes, structures, values and norms that currently dominate STI governance. In view of the large quantities of data in textual form, text analysis provided an important means of discovering obscured meanings and unveiling hidden relationships. The computer-assisted analysis took as a point of reference a pre-understanding of ERA constituencies gained through literature review. Following the digitisation of the entire corpus, linguistic analysis software was used for cleaning and formatting, unitising and indexing. The development of categories and dictionaries, as well meaningful associations, relied on qualitative analysis techniques.

Quantitative text-analysis software allowed to produce an aggregation of unit-level coding. Statistical and network analysis software was used to highlight frequencies, trends, comparisons, networks and maps of relevant factors influencing STI governance.

Subsequent interviews with ERA “thinkers” served to obtain additional types of information (i.e. narratives, accounts, fronts, stories and myths).

Relevant factors identified by means of discourse and interview analysis provided the basis for a so-called key-factor workshop with key stakeholders. The insights on potential key factors were synthesised into a background document.

Based on these insights, VERA developed scenarios on the evolution of the European Research Area. VERA’s uniqueness is grounded in the systematic knowledge base it creates, for example, by stocktaking exercises such as the one on Grand Challenges described above. They are publicly accessible and intended to be used widely. At the same time, the results of these exercises feed the scenario process, the subsequent assessment of the scenarios, and the exploration of strategic options. Another distinct feature of VERA is that it pays particular attention to the assessment and policy implications of the scenarios, which will help to make scenario results useful for policy-making and thinking about the future of ERA.

Authors: Susanne Giesecke         Susanne.Giesecke@ait.ac.at

Philine Warnke             Philine.Warnke@ait.ac.at

Effie Amanatidou           effie.amanatidou@mbs.ac.uk

Sponsors: European Commission, DG Research, Social Sciences and Humanities Programme
Type: Multiple issue brief
Organizer: Fraunhofer Gesellschaft – ISI, Karlsruhe Germany, Stephanie Daimer, Stephanie.Daimer@isi.fraunhofer.de
Duration: 2012-2014
Budget: € 1,940,000
Time Horizon: 2030
Date of Brief: Decemeber 2012

Download EFP Brief No 251_VERA

Sources and References

References

The Lund Declaration (incl. its addendum), July 2009; available for download at

http://www.vr.se/download/18.7dac901212646d84fd38000336/ Lund_Declaration.pdf

Links to further results of the VERA project at http://www.eravisions.eu

The inventory contains 726 individual Grand Challenges named by the 67 screened FLAs. It has been submitted in an independent report and can be downloaded at http://vera.dev.zsi.at/stocktaking/list

EFP Brief No. 244: Survey of Future Market Research and Innovation Needs

Tuesday, January 29th, 2013

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. The WBC-INCO.NET project seeks to promote the bi-regional dialogue on science and technology between the EC, the member states and the Western Balkan countries. The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

Future Research and Market Needs for the Western Balkans Region

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. WBC-INCO.NET partners from the Western Balkans include research and policy stakeholders from the following countries: Albania, Bosnia and Herzegovina, Croatia, FYRo Macedonia, Montenegro, Serbia and Kosovo (under UNSCR 1244). The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

The findings of the survey will support other activities that together will provide a clear overview of the region’s current situation and future needs in regard to innovation. These activities should help to prepare an action plan for further cooperation in innovation between the Western Balkan countries (WBC) and serve to establish closer cooperation between research and innovation stakeholders in the region (i.e. publicly funded researchers and innovative companies). This should include expertise from the industrial sectors and the fields of innovation management and market entry. It should also involve exploring EU programmes, other than FP7, and supporting programmes of other institutions that are directed toward increasing innovation in the WBC.

Survey among Stakeholders

Two questionnaires were jointly designed by the European Commission JRC-IPTS (Seville) and the Ivo Pilar Institute of Social Sciences (Croatia). The questionnaires addressed market and research stakeholders, including selected firms and entrepreneurial researchers, and aimed to identify current and future research and innovation needs in order to support the design of a joint action plan towards 2030.

The methodology employed consisted of five phases:

  1. Initially, a literature review on innovation was conducted to identify important aspects that would have to be taken into account when designing the questionnaires. The selected aspects were:
  2. i) Importance of different stakeholders in the innovation process.
  3. ii) Specific actions that can improve regional cooperation as well as innovation.

iii)   Factors necessary to stimulate regional cooperation divided in human resources, entrepreneurship infrastructure, expert assistance and cooperation between industry and research, fiscal and financial obstacles, and national and local regulations.

  1. iv) Likely outcomes of enhanced regional cooperation.
  2. The first questionnaire was submitted to selected firms in the WB region.
  3. Building on the results of the first questionnaire with the aim to compare them, a second questionnaire was sent to research stakeholders in the region.
  4. A statistical analysis was conducted for both questionnaires and the results were crosschecked.
  5. The results were circulated within the consortia for final refinements.

It must be emphasised that the findings indicate only  potential needs in the region, which need to be refined by further analysis and discussed with industry, research and regional stakeholders, for instance in a workshop for this purpose.

The response rate of the industry questionnaire was low: only 20 firms replied, which nevertheless allowed the team to perform some analyses. The response rate of the researcher questionnaire was higher.

Interesting Results of the Industry Survey

The respondents were asked to assess the importance of 14 stakeholders for firms’ innovation capacities.

Top Three Stakeholders

As the top three stakeholders, the respondents identified:

  1. Employees in the respondents’ enterprise or enterprise group
  2. Professional and industrial associations
  3. Universities and colleges
Bottom Three Stakeholders

The bottom three stakeholders were:

  1. Cluster networks
  2. Suppliers and customers from the WBC region
  3. Venture capital firms/angel investors
Interesting Results of the Researcher Survey

Figure 1 (below) compares the proportion of researchers that ranked various factors influencing university-industry collaborations as highly important. A majority of the researchers assessed all the factors as more important in the future than today, which suggests that the researchers feel that other barriers need to be overcome in the short-term.

Figure 1. Important factors for university-industry cooperation today and 2030
244_bild1

Industry and Research: Diverging Views on the Needs for Research and Innovation

Based on the results of the surveys in the field of research, the following points can be highlighted:

  • The most important actions to improve cooperation between business and research in the region, both in the present and in the future are (1) more funding for knowledge/technology transfer activities and expert consultations and (2) more funding for collaborative research between universities and businesses.
  • Whilst state and local regulations as well as expert assistance seem critical for innovative performance today, investment in human resources and infrastructure emerge as crucial to enhance cooperation in the future.
  • The analysis of the questionnaire administered to both research and business stakeholders reflects disagreement as to which potential outcomes of enhanced regional innovation collaboration are to be considered more relevant. The only outcome that both equally perceive as important is access to new markets. This suggests the need to build both more awareness of new opportunities and (new) capabilities in the region. To this end, improved communication, including the respective infrastructure (e.g. ICT), and mobility seem to be critical.
  • The answers industry and researchers give when asked about the most important actions to improve regional innovation activities differ substantially. The three actions least important to industry are among those actions that the participating researchers considered most important:
    • common programmes for mobility of personnel in the region between universities and business to establish cooperation between science and industry,
    • a consistent legal framework aimed at facilitating foreign direct investments in the WB region, and
    • the progressive liberalisation and mutual opening of the service market within the WB region.

The only action that business and researchers both perceive as important (ranking third for both of them) is developing regional initiatives for large infrastructural projects. Such an outcome highlights the need for enhanced communication and understanding between these two groups of stakeholders in order to achieve a joint agenda.

  • Finally, of the research topics identified by industry as important to trigger regional innovation through collaboration, the ones that the researchers also appear to be interested in are
    • the environment,
    • information management systems: monitoring through ICTs and the automation of information management systems, artificial intelligence and agent-based software and
    • new approaches and frameworks to enhance foreign direct investment and cross-regional investments in the region.

Diverging Views  between Industry and Research

Hot Policy Topics:
Need for More Technology Transfer

A strong divergence between the views of industry and research in terms of present and future actions as well as areas for collaboration has emerged. This call for policy measures aims at improving communication between the two groups of stakeholders to facilitate the move towards a common agenda.

Presently, a strong need is also felt for policies that provide more funding for knowledge/technology transfer activities and expert consultations as well as collaborative research between universities and businesses.

Action Needed: Improving Innovation Capacities

This exercise is part of a wider project that aims at defining a long-term strategy for scientific collaboration within the Western Balkan countries and between them and Europe.

The critical issues that emerged in the survey call for further analysis and discussion. In particular, it is suggested that industry and the research community gather to discuss the following aspects:

  • Investments in knowledge and technology sharing, expert consultations and collaborative research
  • Decrease in regulation
  • Strengthening of human resources
  • Improvements in infrastructure (including ICT)
  • Building of awareness of innovation benefits
  • Fostering of mobility
  • Enhancement of communication between different stakeholders
Shaping the Future: Critical Factors

This project was part of the larger WBC-INCO.NET project, which ultimately will develop a joint action plan for the WBC. The results will feed directly into the process at three levels:

  1. The development of a common vision for the WBC: This vision should set the longer-term objective(s), which are to be defined by authoritative experts in the field and endorsed politically.
  2. The translation of the vision into a strategic research agenda (SRA), which entails specific, measurable, achievable, realistic and time-based (SMART) objectives. The strategic research agenda should make the vision operational and link the implementation of the vision’s objectives with existing competences in Europe (or in the region) and new ones to be developed.
  3. The implementation of the SRA: All participating public authorities should gear their programs and funding towards the implementation of the SRA in a coherent manner. The full toolbox of public research instruments should be explored and used to implement the individual joint programming initiatives. Regular monitoring and evaluation of progress against the SMART objectives should be ensured and the results reported to the political level.
Authors: Cristiano Cagninc         cagnin@cgee.org.br

Elisabetta Marinelli       Elisabetta.Marinelli@ec.europa.eu

Sponsors: European Commission
Type: Quantitative survey

(The survey was conducted as part of the WBC-INCO.NET project)

Organizer: EC – Joint Research Centre – Institute of Prospective Technological Studies
Duration: 2008-2012
Budget: n.a.
Time Horizon: 2030
Date of Brief: July 2012

Download EFP Brief No. 244_Research and Innovation Needs in the Western Balkan Countries

Sources and References

For sources and references see the WBC-INCO.NET website:

http://wbc-inco.net/

The brief is based on the report by IPTS in collaboration with IVO-PILAR:

http://wbc-inco.net/object/document/7423

EFP Brief No. 240: BMBF Foresight

Friday, December 21st, 2012

The aim of the BMBF Foresight process that ran from 2007-2009 was to identify long-term priorities for German research and innovation policy with an emphasis on crosscutting systemic perspectives. The foresight process was meant to complement the German High-Tech Strategy, which had defined mission-oriented priority fields with a medium-term horizon. After the finalisation of the foresight process in 2009, an implementation phase with several interacting activities was launched in order to feed the results into other strategic processes. As a next step, BMBF set up an embedded, continuously learning foresight system with dedicated phases that will be repeated by all subsequent processes. Within this framework, the second foresight cycle was launched in early 2012.

Complementing the High-Tech Strategy

Before the first cycle of BMBF Foresight started in 2007, the German High-Tech Strategy (BMBF 2012a) had established a number of priority fields for research and innovation policy with a time horizon of 5-10 years. The foresight process was launched by the BMBF strategy department with the following main objectives:

· complement the High-Tech Strategy with a longer-term perspective on emerging technologies and potential priorities,

· identify emerging issues across established research and innovation fields,

· explore in which areas strategic partnerships might be required.

At this point in time, BMBF had not carried out any overarching foresight process since the FUTUR process (Giesecke 2005), which had been finalised in 2005. As some actors within BMBF had a rather critical view of FUTUR, an important additional objective of the new foresight process was to (re-)establish trust and confidence in foresight within the ministry. Accordingly, high emphasis was placed on communication within the ministry and early-on involvement of all BMBF departments that were potentially affected by the foresight outcomes. The foresight process was accompanied by a process and impact evaluation carried out by the Institut für Technologie und Arbeit (ITA).

Adopting a Technology Push Approach

As described in detail by Kerstin Cuhls in the preceding brief No.174 and in recent publications (Cuhls et al. 2009a), the methodology of the foresight process combined several elements. The most prominent approaches were

· environmental scanning including a literature survey and bibliometric analysis and

· expert interaction through interviews, workshops and a national online survey.

In parallel, a monitoring panel composed of international top experts was interviewed twice in the course of the process.

As requested by the ministry, the foresight process adopted a ‘technology push’ approach. In the first phase in particular, the process concentrated on identifying emerging technologies with long-term relevance to the German economy and society within the established realms of research and innovation. The criteria to assess ‘relevance’ were established in interaction with the ministry.

In the second phase, the emphasis of the foresight process was placed on a second set of objectives: the identification of key issues emerging across these established technology fields. For this purpose, the results emerging from the technology push analysis were systematically reviewed and mirrored against major societal challenges such as sustainability and health. In this way, the seven ‘new future fields’ were developed as described in the previous brief. These fields are characterised by a highly dynamic development at the interface of emerging solutions and societal demand.

Sharpening the Research Dimensions

Participants

In line with the science and technology push orientation of the foresight process, the participants were mainly research and technology experts, however, from diverse organisational and professional backgrounds. Along with the numerous national experts, ca. 20 highly renowned international experts from the key science and technology fields under investigation were involved through the international monitoring panel. In one of the conferences that focused on innovation policy instruments, practitioners and researchers in the realm of innovation policy were gathered. In the final phase, when developing the ‘new future fields’, more and more social scientists were involved. So, for instance, in the case of ‘humantechnology interaction’, a workshop with philosophers and sociologists, on the one hand, and engineers and programmers, on the other, was carried out to sharpen the research dimensions (Beckert et al. 2011). Finally, there was intense interaction with actors from various BMBF
departments particularly in the later phases of the process in order to validate and enrich the foresight findings.

Intended Users

The first cycle of the BMBF Foresight process addressed two main user groups. First of all, the process sought to maximise its usefulness to the various departments within BMBF that are responsible for steering the BMBF support to research and innovation in their respective domains. The main benefits envisaged for the departments were the possibility to mirror their own perceptions against the foresight findings, gain an overview of each other’s activities, develop overarching perspectives, and identify potential linkages and possible blind spots. Secondly, the foresight was meant to serve the wider innovation system by providing long-term anticipatory intelligence for orienting strategy building within and among diverse organisations.

Crosscutting New Future Fields

The tangible output of the foresight process consisted of two core reports (Cuhls et al. 2009b and c). One report listed the selected themes with high long-term relevance in fourteen established research and innovation fields. The other report spelled out the seven crosscutting ‘new future fields’ and provided an analysis of key actors in the German innovation system as well as recommendations for policy action within these fields.

Dissemination

The reports were first disseminated within the BMBF and later widely throughout the innovation system starting with a large public conference. Within the ministry, the uptake of the findings was actively supported through dedicated workshops where the project team members presented the findings and discussed the implications with the departments.

Implementing Strategic Dialogues

In order to further facilitate the uptake, two follow-up projects were launched: The first was the ‘strategic dialogues’ where innovation system actors who had been identified in the foresight report jointly discussed options for implementing the findings. In one case (Production-Consumption 2.0), several other ministries, such as the ones dealing with the environment or food and agriculture, were involved in this debate. In a one-day workshop with more than 30 participants, diverse stakeholders debated the transdisciplinary research around the transition towards sustainable production and consumption that had been proposed by the foresight process. Secondly, the ‘monitoring system’ was set up in order to keep track of the evolution of the new future fields and inform the ministry in case further action was needed.

Direct Impact

Within the ministry, the uptake of the foresight results differed according to the type of outcome. In case of the future topics in the established fields, there was initial reluctance within the ministry’s departments as these findings seemed to trespass on their own domains of activity. In several cases, however, the departments perceived the availability of findings from an independent process as a mirror for their own strategic thinking as useful. Several of the topics proposed by the foresight
process were taken up by subsequent BMBF funding initiatives.

In the case of the ‘new future fields’, there was a general appreciation of the ‘bird’s eye view’ across established domains of ministerial activity that the process provided. Several attempts were made to take up the proposed perspectives. As the new fields did not match the existing organisational structures of BMBF, the implementation was not straightforward. This, however, was seen as an asset rather than a problem by the strategic department as the crosscutting perspectives were viewed as long-term guidance for strategic thinking within the ministry rather than an agenda for immediate implementation.

In case of the future field ‘human-machine cooperation’, a new department was created in order to pursue the transdisciplinary perspective proposed by the foresight process. For ‘ProductionConsumption 2.0’, a few smaller seed projects were launched to explore some of the core issues. In both cases, several aspects inspired the BMBF programmes in domains such as production,
environment, security and ICT. Finally, several of the core findings of the foresight process were fed into the strategic debate around the renewal of the High-Tech Strategy, which was taking place in parallel.

In addition, several of the foresight’s suggestions entered the strategic debates in the wider German innovation system. The project team received numerous requests from the governments of the Länder (German states), research institutes and companies to discuss the implications of the ‘new future fields’ on their own strategies.

At the European level, the ‘new future fields’ were recognised with interest as well. At the time, the European Union was seeking to orient its research and innovation activities towards the grand challenges of our time in a systemic manner. In a special event that was organised by the Social Sciences and Humanities (SSH) foresight group, findings from several foresight processes that sought to connect key technologies and grand challenges in a systemic manner were reviewed, among them the German case (EC 2011). In the context of an EU expert group on the future of Europe 2030/2050, suggestions for such systemic priorities from several countries were compared (Warnke 2012). The review revealed that the German ‘new future fields’ were among the most far-reaching suggestions for integrating technological and societal dynamics into systemic ‘transformative priorities’. At the same time, it was noted that exercises in other countries, such as the ‘Netherlands Horizon
Scan’, had defined some areas that were well in line with some of the ‘new future fields’, such as sustainable living spaces and human-technology cooperation. Nevertheless, the analysis suggested that there are no ‘onesize-fits-all’ systemic priorities as each cultural contextrequires its own specific framing of the issues at stake.

Furthermore, the foresight process attracted considerable international attention, partly due to the fact that there had been substantial involvement of international experts through the monitoring panel and two conferences with international participation. After the process was finished, several countries around the world expressed their interest in both content and methodology.

Finally, within the academic community concerned with the governance of research and innovation and forward-looking activities, the German foresight experience was widely published and presented. In particular, the challenge of generating truly systemic sociotechnical perspectives and feeding such perspectives into governance structures, which are organised according
to their own rationale, created wide interest and debate (cf. e.g. Warnke 2010).

Indirect Impact

As outlined above, paving the ground for embedding foresight into BMBF strategy building was an important objective of the process. The evaluation report confirmed the substantial progress made in this respect. Several actors in the ministry felt that they had benefitted from the foresight process and expressed their renewed openness and positive attitude towards foresight approaches.

Follow-up: Embedding Foresight

As a consequence of the perceived success of the first foresight process and in following up on the recommendations of the evaluation team, the ministry decided to establish foresight within the ministry as a continuous anticipatory learning process.
For this purpose, a ‘foresight system’ was designed and implemented (BMBF 2012 c). This system cyclically evolves through the following phases: scanning, analysis, implementation and preparation of the next cycle. The previous foresight process was considered a pilot for the first cycle.

Furthermore, it was decided that the second cycle should focus on the demand side of research and innovation and therefore primarily explore relevant societal changes that could then be linked to the technological trajectories suggested by the first cycle.

Based on this framework, a call for proposals for the second foresight cycle was launched. A consortium of the VDI Technologiezentrum and Fraunhofer ISI was selected to carry out the project, which started in May 2012 with a new ‘search phase’. Again, the project is being accompanied by an evaluation process conducted by ITA to keep track of lessons learned and to optimise the communication processes. This time, a board comprised of actors from key organisations of the German
innovation system has been set up to accompany the foresight process. From the beginning, the approach and findings are discussed with the BMBF departments on a regular basis. A separate EFP brief will be issued in order to describe this new process in detail.

Download EFP Brief No. 240_BMBF Foresight.

Sources and References

Beckert, Bernd; Gransche, Bruno; Warnke, Philine and Blümel, Clemens (2011): Mensch-Technik-Grenzverschiebung Perspektiven für ein neues Forschungsfeld. Ergebnisse des Workshops am 27. Mai 2009 in Karlsruhe im Rahmen des BMBF-Foresight Prozesses ISI-Schriftenreihe Innovationspotenziale. Karlsruhe

BMBF (2012a) http://www.hightech-strategie.de/en/350.php (accessed 15 November 2012)

BMBF (2012b) http://www.bmbf.de/en/18384.php (Foresight Cycle 1) (accessed 15 November 2012)

BMBF (2012c) http://www.bmbf.de/en/18378.php (Foresight System) (accessed 15 November 2012)

BMBF (2012d) http://www.bmbf.de/en/18380.php (Foresight Cycle 2) (accessed 15 November 2012)

Cuhls, Kerstin; Beyer-Kutzner, Amina; Bode, Otto; Ganz, Walter and Warnke, Philine (2009a): The BMBF Foresight Process, in Technological Forecasting and Social Change, 76, p. 1187–1197

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009b): Foresight-Prozess im Auftrag des BMBF. Zukunftsfelder neuen Zuschnitts, IRB Verlag, Karlsruhe/ Stuttgart. http://www.bmbf.de/en/18384.php

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009c): Foresight-Prozess im Auftrag des BMBF. Etablierte Zukunftsfelder und ihre Zukunftsthemen, IRB Verlag, Karlsruhe/ Stuttgart.

European Commission (2011): EUR 24796–European forward-looking activities: Building the future of ‘Innovation Union’ and ERA. Luxembourg: Publications Office of the European Union http://ec.europa.eu/research/socialsciences/books50_en.html

Giesecke, Susanne (2005) Futur – The German Research Dialogue. EFMN Foresight Brief No. 1.

Warnke, Philine (2012): EFP Brief No. 211: Towards Transformative Innovation Priorities, http://www.foresightplatform.eu/wp-content/uploads/2012/04/EFP-Brief-No.-211_Towards-Transformative-Innovation-Priorities.pdf (accessed 15 November 2012)

Warnke, Philine (2010): Foresight as tentative governance instrument-evidence from Germany. In: International Conference ‘Tentative Governance in Emerging Science and Technology – Actor Constellations, Institutional Arrangements & Strategies’, 28/29 October 2010, Conference Booklet, p. 113.

EFP Brief No. 208: Forecasting of Long-term Innovation Development in Russian Economic Sectors: Results, Lessons and Policy Conclusions

Saturday, March 17th, 2012

The exercise presented includes scenarios of key Russian economic sectors and determines necessary technologies in accordance with such scenarios. As key sectors, the foresight team investigated the energy, iron and nonferrous-metals industry, agriculture, the chemical industry and pharmaceutics, the aircraft industry, commercial shipbuilding and the information sector.

Intensifying Foresight Efforts to Modernise the Russian Economy

Over the last years, we have seen increasing activity of federal and regional authorities in innovation and industrial policy in Russia. This activity has led to a series of documents and commissions concerned with the long-term development of the Russian economy. Among them are industry strategies (in more than 15 sectors), a conception of long-term socio-economic development for the Russian Federation (RF), priority directions for the development of science and technologies, and the Commission for Modernization and Technological Development of Russia’s Economy under the RF’s President.

The year 2006 marked the first “Concept for Long-Term Russian S&T Forecast till 2025” in the country’s modern history. This was developed and approved in cooperation with key ministries and science and business representatives. In 2006, practical steps toward implementing some of the foresight and forecast projects were launched (by 2012 we will have more than 50 key projects at different levels, including the national, regional and corporate level).

The first serious attempt to organise a foresight project at the national level was conducted more than 30 years ago within the Complex Program of S&T Development for the USSR. It aimed at S&T forecasting for a period of 20 years and can be considered a project of the first foresight generation (according to the definition by Georghiou et al., 2008). For the next 10-15 years, there was an absence of foresight and forecast exercises. In recent years, a number of initiatives have been launched to overcome this deficiency (for more information, see Sokolov & Poznyak, 2011).

Modern foresight projects in Russia today are very much in line with the current fifth generation of foresight exercises in developed countries, which includes a focus on social context and a strong policy-advisory orientation. Thus, we can say that Russian foresight development has taken a shortcut in these years and “leapfrogged” directly to what is currently considered the state of the art in foresight methodology.

The main challenges that these projects address are:

  • the need for diversification and a decreasing energy-output ratio of national GDP,
  • the increasing role of modernisation,
  • the transition to the innovation path proposed by the government,
  • threats from emerging countries (China, India) to Russia’s traditional markets,
  • changes in the global value chain, and the need to find new niches and markets,
  • opportunities to cooperate with foreign countries.

The key objectives of these projects are to:

  • identify key drivers and trends for the Russian economy,
  • identify the most critical technologies,
  • elaborate scenarios for key sectors and S&T fields,
  • develop policy recommendations at the federal and regional levels,
  • identify research priorities,
  • build expert networks around research organisations,
  • create pilot technology roadmaps for S&T fields and key sectors.

Methodology and Database for Foresight of Russian Economic Sectors

To achieve our aim, the database was based on two pillars. The first included information and relevant data from foreign and Russian forecasts, foresights at the country, industry and corporate level, and key Russian documents on S&T and industry development. The second pillar comprised data from various industry experts, representatives of key industries and consulting companies.

To construct various sector scenarios, we used elaborated qualitative models, which included sector analysis (characteristics of the technological base, organisation structure, role in exports, etc.), the identification of basic strategic alternatives for future sector development (e.g. technological and institutional), the construction of models of sector development, future visions, and the identification of priorities for S&T development in the sector in question for each vision.

This resulted in four to eight prospective scenarios for each key sector. To discuss the preliminary visions and present a final set of scenarios, we held a series of round tables and conferences. We also formed a multi-level pool of experts: the core included so-called “system experts” – high level professionals who were able to provide a comprehensive evaluation of the vision for the sector in question (2-3 persons for each sector); the next level included sector analysts who could contribute in-depth knowledge of different aspects relevant to the particular scenario (e.g., on markets and technologies; 7-12 persons for each sector); the last level was public relations experts and experts familiar with governmental and administrative processes and included representatives of industry journals, key federal and regional authorities (about 10-15 persons for each sector). We conducted focus groups, in-depth interviews and surveys to gain information from the experts participating in the project.

The beneficiaries of the project results are business (large, small and medium enterprises, business associations, industry institutions), government (state institutes for innovation development, federal and regional authorities), science (the system of Russian academies, research institutes), universities (leading institutes and labs in the Russian higher education system), and experts in the fields under consideration.

Project Results: Sectoral Models and Critical Paths

Some of the main sectoral results indicated that key sector development scenarios took institutional and technologic alternatives into account while identifying the main technologies necessary for implementing the scenarios. The results for the various sectors were highly diverse due to different sectoral structures and the number of sectors (ten). The table and illustration below briefly show some results for two sectors.

Medical Equipment and Pharmaceutics

After the sector analysis, we elaborated seven alternative paths of development for the pharmaceutics and medical equipment sector based on a literature review along the criteria mode of regulation, position in value-added chain, degree of modernisation and management. Then we verified alternatives by consulting industry experts and developed the five most probable models.

Information and Communication Technology

In case of the ICT sector, most experts agreed that a transition to the most preferable scenarios (“niche leader” or “technological leader”) cannot be accomplished directly. The only way to achieve them is to establish bridgeheads and use the competitive advantages gained to further advance toward the goal. Each scenario in Figure 1 contains a description of a future vision, possible barriers and risks, pros and cons, and recommendations for a shift in policy.

The exercise led to the following three policy-oriented results: (1) alternative “preferable” visions for the development of key sectors that are not limited only to the simple dichotomy of “bad” or “good” as in major government S&T documents; (2) recommendations for integrating long-term S&T forecasting as a basic instrument for strategic policymaking; (3) formation of a multi-level expert pool to serve as a communication network for discussing and constructing Russian S&T policy.

Foresight Culture Still Underdeveloped in Russia

We believe that the lessons and experience obtained during this project are representative of the whole field of foresight and forecast initiatives in modern Russian history. One of the key success factors in foresight is participation of key stakeholders and experts involved in shaping the future. In the case of Russia (at least 3-4 years ago), a lack of foresight culture has resulted in an “a priori”, indiscriminately negative perception of foresight initiatives. This can be explained historically by the fact that there have been some serious gaps between science and business and, as a result, in the supply of and demand for innovation. Mutual complaints are voiced to that effect. Business shows little interest in projects oriented toward long-term outcomes, lacks receptivity to innovations and displays low levels of global competition. We can say that the key actors (government and business) responsible for shaping the future are not fully up to the task. They have lost the “habit” of planning for a time span of more than 2-3 years.

One of the repercussions of the Soviet heritage is a lack of experts capable of acting as so-called “integrators”: experts able to devise strategies based on combining market pull with technological push. As a result, we have to first nurture a new generation of experts, typically to be recruited from representatives from the “technology” side, with the skills required to adopt a more comprehensive perspective of the sector as a whole.

Apart from qualification, a lack of expert commitment poses another problem in that experts show low interest in collaborative work and are more intent on lobbying and pushing their own individual interests.

Another serious drawback in foresight culture in Russia is an insufficient commitment to the processes required to formulate visions and scenarios on part of federal and regional authorities: they usually want to see “ready-to-use” results instead of participating in the process from the beginning.

We believe that a serious obstacle to the development of foresight culture in Russia is the lack of actually working, sustainable, systematic communication platforms for discussing different foresight results. Only in the past 2-3 years have they grown in number, particularly platforms launched by national research universities, technology platforms, etc. (for further information see Simachev, 2011).

Development of a common “cure” for deficiencies in foresight culture in Russia is complicated by the fact that Russian economic sectors are of a multi-structural nature, technologically and institutionally: some basic technologies are 100-150 years old and modernisation processes have not yet been completed in most industries. As a result, we observe a low level of innovation receptivity among Russian companies. Taking this into account, government policy should switch from “one-size-fits-all” instruments towards an innovation policy tailored to the specific situation in each sector or sub-sector.

Authors: Alexander Chulok, National Research University Higher School of Economics                                                       achulok@hse.ru
Sponsors: Ministry of Education and Science (Russian Federation)
Type: National foresight exercise
Organizer: Interdepartmental Analytical Center (www.iacenter.ru), Alexander Chulok, achulok@hse.ru
Duration: 2009-2010 Budget: N/A Time Horizon: 2030 Date of Brief: July 2011  

 

EFP Brief No. 208_Forecasting Innovation in Russian Economic Sectors

Sources and References

Georghiou, L., Cassingena Harper, J., Keenan, M.; Miles, I. & Pooper, R. (eds.) (2008): The Handbook of Technology Foresight: Concepts and Practice. Cheltenham: Edward Elgar Publishing.

Sokolov A. & Poznyak A. (2011): Building Foresight Capacities for the Modernisation of the Russian Economy, EFP Brief No. 193, available for download at http://www.foresight-platform.eu.

Simachev Y. (2011): Technology Platforms as a New Instrument of the Russian Innovation Policy. available for download at http://www.iacenter.ru/publication-files/157/133.pdf

EFP Brief No. 206: Future Strategies for Ageing Management in the Working World of Salzburg Province

Wednesday, February 29th, 2012

The projected demographic change and the resulting necessity of a longer working life represent considerable challenges for (1) the individual quality of life and work of employees, (2) the innovative capacity and productivity of companies and (3) the negotiability of the welfare state. As its goal, the foresight project set out to analyse the concrete situation and development potential of the working world in the Province of Salzburg and depict the options for taking action at the micro-level (individual), meso-level (organisations) and macro-level (socio-political actors) in the form of scenarios. The project placed particular emphasis on transferring research results into practice.

Demographic Change in Salzburg Province

As in all of Europe, Salzburg Province also conforms to the population development trend that has been evident now for decades: a rising number of older people in retirement in contrast to a consistently sinking number of younger people of employment age. Because of this, a longer term of employment is required in order to secure the social systems and to maintain economic strength.

Simultaneously, the employment-related difficulties are increasing for those in the workforce, for instance, through more rapid and increasingly complex work processes, time pressure or the devaluation of professional qualifications over time. In addition, a lack of professional specialists is expected, which is heightened further by the demographic development.

In order to meet the challenges arising from the change in population structures and the workforce, it is important to become proactive and take determined measures in a timely fashion.

In research and politics, the need for action is recognised in principle; however, there are deficits in implementing large-scale and in-depth problem-solving options in practice. Therefore, the project begins with sensitising and supporting actors in implementing age management in the working world.

Flaws in Existing Concepts

Existing concepts…

… neglect the holistic perspective, are attentive exclusively to the target group of employees who are already older at present, and focus only on certain fields of action;

… do not give enough attention to individual actors whose interests often contradict each other and result from short-term thinking;

… presuppose that companies have a certain resource potential. These concepts are therefore not suitable to the general conditions of the smaller companies characteristic of Salzburg Province.

In addition, many actors appear to be overwhelmed by the complexity of the problem and the numerous recommendations of how to tackle it. They often react to this by postponing necessary measures or even refusing to take action.

A Holistic View on Ageing in the Working World

Against this background, a two-part project structure emerged. First of all, it was important to grasp the specific situation in Salzburg Province in a basic research phase and to analyse the developmental stages to be expected in each of the topic areas and fields of action at the different societal levels (individuals, organisations, socio-political actors) that are significant for the further development of the regional labour market. Parallel to this, the project sought to identify the factors so far preventing employment appropriate for an ageing workforce. A further emphasis of this research phase was how age management concepts should be conceived for small companies to be able to apply them.

On the other hand, the focus was placed on attempts to put the research findings into practice in an implementation-oriented transfer phase. Particular attention was paid to the enterprise and branch structure of Salzburg Province. The transfer phase involved an awareness-raising process regarding age management in the working world. The target groups here were both the companies as well as their employees – from the apprentice on up to the senior employee.

The aim of the project “Future Strategies for Ageing Management in the Working World of Salzburg Province” is to set impulses for a working world in which companies facilitate the work capabilities of employees and societal structures are created to enable longer employment with a high quality of work life for everyone. In the process, it is important to take the diverse fields of action into consideration that together form a working world appropriate to ageing (Fig. 1).

Innovations for Demographic Change in Work Life

The target variables in the basic research phase were (1) the individual quality of life and work of employees, (2) the innovative capability and productivity of the companies and (3) the negotiability of the welfare state. With an eye to these main target variables, we analysed the challenges resulting from the ageing of the population for individuals, companies and socio-political actors and determined the measures to be taken to establish a living and working environment appropriate to ageing and the barriers in the way of implementing urgently needed measures. The complexity of the problems was described from multiple perspectives using the scenario technique in which the potential consequences of successful or, in some cases, unsuccessful age management was systematically varied on several levels.

Methodical Procedure

In an initial step, we reviewed the findings in the relevant research literature and of previous projects. In a second step, we conducted interviews with regional and supra-regional experts who were able to give a first overview of the relevant factors regarding developments in the working world.

Expanding on the analysis of research to date and the explorative interviews with the experts, a total of four extensive structural analysis workshops (MICMAC) were organised for the central fields of action (education, health, business operations and society). These structural analyses were conducted by involving regional actors who were noted for their positions of authority and professional competence in each particular field of action.

Based on the workshop results, influential factors decisive for the working world of Salzburg Province were identified and their reciprocal effects were described in a consistency analysis. Systematic variations allowed projecting numerous potential paths of development in the Salzburg working world. The three most plausible and significant development tracks were then compactly designed as scenarios.

In this way, the first project track led to differentiated scenarios that illustrate the complexity of the topic while allowing to integrate the individual research results. Thus, the scenarios primarily enabled formulating the comprehensive and complex connections resulting from the demographic changes for the company context and beyond. They were meant to create awareness for the problem and were used as the basis for a second, practice-oriented project track, involving a maximum diversity of actors across all sectors. This second step was aimed at devising ways of giving higher priority to the necessary long-term structural and behavioural changes over short-term planning horizons.

Scenarios: Creating a Working World Appropriate for Ageing

The scenario process revealed that the degree of activity on the political and operational level is significant for establishing age management in the working world. Political and operational activity thus form two axes along which the scenarios vary, leading to three conceivable scenarios. The fourth scenario in this scheme based on active political and reactive operational activity was excluded as implausible.

Scenario 1: Everyone for Him/Herself

In the first scenario, neither political nor company actors are actively involved in age management in the working world. Everyone struggles on his or her own and is driven by the demands prevailing in the modern working world.

Scenario 2: Leader of the Pack

The second scenario depends on high initiative within the company itself. With persistence and readiness to make investments, a few succeed in mastering the challenges of a changing working world. The political initiative is missing that is necessary to push the less innovative and strong enterprises towards appropriate management of ageing.

Scenario 3: Salzburg Gets Busy

In this scenario, the political and organisational actors take collaborative action and establish suitable working structures. Step by step, they create a working world appropriate to ageing.

Involving Older Employees, Young Workers & Socio-political Actors

The second line of the project centred on putting the research results into practice. Three scopes of application with different priorities were realised in order to make use of the lessons learned from the scenarios in the working world.

  1. The first module was to develop a model for age management in small and medium-sized businesses. Considering the particular situation especially of small-sized businesses, we developed instruments for assessing the current situation and sensitising actors to the problem of demographic change and devised measures to address the challenges. In a scenario workshop, employees were able to expand on what they expected regarding their own future career.
  2. A second module aimed at sensitising young workers. The apprentices were given opportunities to become familiar with the topic of “Labour and Age” in a creative way. They received information about the demographic change and its consequences for the working world and were instructed in a theatre workshop about preparing for the future challenges to be faced.
  3. The third and most important use of the scenarios was to sensitize socio-political actors. The scenarios provided a means of demonstrating to politicians, social partners and public institutions the underlying factors and connections and allowed to derive recommendations for action to establish age management in the working world.

The practical experience modules were carried out in close collaboration with the Salzburg Occupational Health Services Centre for healthful employment, which plans to implement the project results in its future work with companies and their employees.

Individual and Structural Adaptation Strategies

Demographic changes take place over relatively long periods of time. Seen from one angle, this enables projecting demographic trends relatively reliably, but it also makes it more difficult to influence them in the short- and medium-term. For the actors in Salzburg Province, this means two things: they can influence the process of demographic change only to a very limited extent, and in shaping the working world, the task consists mostly of adapting to future developments with expectancy and efficiency. Against this background, the research process brought forth the following findings:

  1. Structure:

Successfully surmounting the challenges of demographic change requires that the actors in Salzburg Province coordinate their efforts. A particular responsibility falls to the political actors who are in charge of the general structural conditions providing the framework for the job market in Salzburg Province. Due to the complexity of the topic and the economic structure of the region with its many small businesses, it is hardly realistic to expect any comprehensive initiative on the organisational level, or as the case may be, independent initiative on the individual level. Decisive factors for the formation of age management in the working world in Salzburg Province are closely linked with the amount of political action, on the one hand, and with the amount of involvement at the company level, on the other. Individual behaviour in the working world in Salzburg Province can be viewed as a consequence of action at higher levels of social organization and cannot be expected to act as a major force in initiating change.

  1. Actual age at the onset of retirement:

The workforce must adapt to a longer working life. The political goal is to prolong working life and delay retirement. Early retirement based on exceptional circumstances and in cases of hardship is now more difficult. What measures are taken at the level of legislation and implementation will be decisive as to whether the extension of working life will be cushioned by welfare state regulations in socially responsible ways or whether the additional burden must be carried by each and every individual alone.

  1. Working capability:

The prerequisite for a longer working life is maintaining the ability to work. This poses a problem particularly in professions defined by hard physical labour and mental stress. Here it is rarely possible to remain healthy and motivated until legal retirement age. Thus, the primary goal must be to retain the individual ability to work. This pertains most of all to physical and mental health but also to skills and motivation.

  1. Skilled workers:

It is worth considering that a shortage of qualified workers in the wake of demographic change could lead to competition for the “best and brightest”, a situation already found today to some extent within some companies. Companies as well as the Salzburg Province itself are well-advised to shape the economic and other framework conditions so that the region remains an attractive economic location.

  1. Qualification and job market:

Not every group in the job market can be expected to live up to the demands of life-long learning. For this reason, we can assume that there will be stronger polarity in the job market between a group of well to very well qualified workers and a group of rather poorly qualified ones.

The better qualified will be highly sought after in the future and will perform challenging tasks whereas the rather poorly qualified workers will be left with the simpler and fairly stressful activities. The situation of the less qualified will worsen in the future due to the fact that certain qualifications will probably be required even for simple jobs. The demands in regard to knowledge, skills and proficiency will tend to rise even for positions requiring lower qualifications. Initiatives will thus be required in order to profitably integrate this part of the workforce in the working world throughout their entire working life.

  1. Women:

More strongly integrating women and retaining the ageing population in the job market would contribute to better utilising the potential workforce and better distributing stress in the working world. A very effective measure to that effect is improving structures for childcare.

  1. Attitudes and values:

Less concrete but no less effective than welfare state and company regulations are the ideas entertained throughout society about the working world. The images of the working world in the minds of the general population have a considerable influence on behaviour in the labour market, for instance, concerning job preferences and choice of profession. Deficit-oriented perceptions of ageing, stereotypical gender roles or assumptions about the stages in an employment biography strongly affect individual working behaviour. Changes in the “labour market culture” in the service of age management in the working world could be one of the most powerful influences of all.

Authors: Katja Linnenschmidt   katja.linnenschmidt@fh-salzburg.ac.at

Dirk Steinbach             dirk.steinbach@fh-salzburg.ac.at

Elmar Schüll               elmar.schuell@fh-salzburg.ac.at

Sponsors: Austrian Research Promotion Agency (FFG)
Type: Regional foresight project covering a single issue
Organizer: Salzburg University of Applied Sciences, Centre for Futures Studies
Duration: 11/2008–10/2011 Budget: € 400,000 Time Horizon: 2030 Date of Brief: Dec 2011

EFP Brief No. 206_Future strategies for ageing management in Salzburg Province

Sources and References

Ilmarinen, Juhani; Tempel, Jürgen (2002): Arbeitsfähigkeit 2010 – Was können wir tun, damit Sie gesund bleiben? VSA Verlag, Hamburg.

Steinbach, Dirk; Linnenschmidt, Katja; Schüll, Elmar (2011): Zukunftsstrategien für eine alternsgerechte Arbeitswelt – Trends, Szenarien und Empfehlungen. LIT-Verlag. Vienna.

www.fhs-forschung.at/zfz