Archive for the ‘until 2020’ Category

EFP Brief No. 250: Mediating Different Stakeholder Levels in an “International Cooperation Foresight” Process

Friday, February 1st, 2013

The purpose of the New Indigo foresight process was firstly to identify the most important and most relevant drivers of current S&T cooperation between India and Europe. Its second aim was to engage relevant stakeholder groups in a structured discussion on what this cooperation should look like in 2020. Thirdly, long-term and short-term policy-recommendations for shaping this future have been developed.

Fostering Multilateral Research Cooperation between India and Europe

As one of the BRICS countries, India is among the biggest and most dynamic emerging economies worldwide, which increasingly excel in the area of science and technology (S&T). In her address to Parliament on 4 June 2009, India’s President declared the period from 2010 to 2020 as the “Decade of Innovation”. The main aim of the declaration is to develop an innovation eco-system to stimulate innovation and to produce solutions for societal needs, such as healthcare, energy, urban infrastructure, water and transportation. Although the gamut of innovation is vast and includes efforts in many sectors, the underlying emphasis is to boost advances in S&T. Focusing on the same time horizon, the European Union introduced the “Innovation Union”, a flagship programme of the Europe 2020 Strategy to be implemented from 2014 to 2020 to secure Europe’s competitiveness and face major societal challenges at a global level.

The European Commission and the European countries perceive India as an important future partner when it comes to S&T, as is evidenced by the fact that India was chosen to be the target country of the first pilot initiative of the Strategic Forum for International Science and Technology Cooperation (SFIC), an advisory body to the Council of the EU and the European Commission.

One of the EC funded instruments targeting S&T cooperation between India and Europe is the ERA-NET New INDIGO. The project fosters multilateral cooperation between the two regions by supporting the bi-regional policy dialogue, networking different stakeholders in the field of S&T cooperation, analysing current cooperation, identifying common priorities and implementing multilateral (networking and research) projects.

Following a participatory approach leading to policy-recommendations, the project conducted a one-year foresight study on the future of this cooperation between India and Europe. The consortium agreed to envisage a 2020 perspective, in line with the Europe 2020 strategy and the Decade of Innovation announced by the President of India in 2009.

The similarity of the political initiatives in both regions was the background against which a success scenario-based foresight study was conducted: a desirable scenario of what S&T cooperation should look like in 2020 was developed and respective instruments were identified that might be of help in turning the normative success scenario into reality.

From Bibliometric Research  to Delphi Analysis

The main methodologies used where Delphi analysis, scenario building, expert workshops and a bibliometric analysis. The methodological setup of the New Indigo foresight process is based on the idea that three main stakeholder groups are the most relevant for future EU-India S&T cooperation: policymakers, programme owners and scientists. The policymakers design the framework conditions within which S&T cooperation takes place and decide upon support structures. The programme owners/managers adopt an intermediary position between policymakers and scientists. They know both worlds, co-develop and implement dedicated programmes and, thus, are engaged in the actual implementation of S&T internationalisation policies. The scientists, finally, are the ones actually performing research cooperation. They are the ultimate target group and main beneficiary of all internationalisation policies.

The New Indigo foresight exercise started at the end of 2010 with preliminary desk analyses on drivers of S&T cooperation and EU-India co-publication trends. On this basis, evidence on the current status and thematic focus of S&T cooperation between India and Europe could be provided as an input to the foresight and wider policy processes. Furthermore, in a series of online consultations as well as expert workshops, factors (‘drivers’) have been identified that are likely to influence what future collaboration might look like in the year 2020. Figure 1 (p. 3) describes our implementation model that can roughly be divided into two phases: one before and one after the first draft of a success scenario. The scenario development phase spans from the preparatory analyses via driver identification by literature analysis, email consultations, online Delphi for driver identification and validation, and expert workshops leading to a draft success scenario. The second scenario validation phase involves consultations on the validity and viability of the success scenario for different stakeholder groups, backcasting activities trying to indicate paths towards the success scenario, as well as the development of instrument and policy recommendations.

Assessment of Stakeholder Groups

In order to gather data and opinions from the three core stakeholder groups as mentioned above as well as include and engage them in the process of thinking about future S&T cooperation between the two regions, we opted for a twofold data collection approach: In the case of policymakers and programme owners, we arranged for physical workshops in the framework of the New Indigo project and beyond. By contrast, we approached the scientists by means of an open email consultation followed by a Delphi survey.

The main reason behind these different ways of approaching the stakeholder groups is the fact that policymakers and programme owners concretely concerned with (and thus knowledgeable about) this form of cooperation are few in number. For these few, however, our preparatory analyses and project experience suggested that they have a good overview of the current state of programmes and future plans. Thus, it makes sense to try to investigate their expertise in more depth and engage them personally, not least because they have a major stake in designing the political framework conditions for the future they are reflecting upon in the foresight analysis.

As regards the programme owners, again, their number is limited, and several of them who are engaged in EU-India cooperation in their national contexts also act as policymakers (especially in the smaller EU member states and in India). It was this group of stakeholders that was most easily accessible via the New Indigo project as they formed part of the consortium as partners or members of the steering committee.

The scientists, however, are a much larger stakeholder group. We avoided to randomly approach large groups of Indian or European scientists and did not invite small groups to give us their individual and, given the large size of the population, unrepresentative views either. Instead, we considered it most reasonable to approach those scientists who already have cooperated. We decided to revert to co-publications as a proxy for cooperation experience, i.e. we looked for scientists from each of the regions who have already published with scientists from the respective other region and engaged them via an online consultation and Delphi survey.

The whole exercise dealt with the constraints proper to international S&T cooperation foresight (cf. Degelsegger, Gruber and Wagner 2011 in EFP Brief 201): increased complexity due to the bi-regional perspective combined with very limited time resources of and difficult access to policymakers. Moreover, members of this stakeholder group are, as said above, in a position not only to assess but to significantly shape the future we aim to look at, which again adds complexity to the process as few relevant variables can be considered totally external. Regarding the scientific community, it is not easy (due to time constraints on their side and negative experiences with policy consultation processes or simply disinterest) to attract those scientists to the foresight exercise who are excellent in their field, willing to cooperate and knowledgeable about science cooperation (and willing to adopt a meta-perspective on what they are doing).

Mediating Different Stakeholder Levels

As depicted in Figure 1 (p. 3), the different stakeholder groups were firstly assessed in parallel and the assessment results of one group then fed into the subsequent discussions in the other group(s): For example, drivers identified by scientists were categorised and prioritised by programme owners and policymakers. In a second Delphi round, the results of these discussions were again presented to the scientists for validation. This implementation method proved very fruitful regarding the participatory aspect of the foresight exercise: while, for example, some of the drivers identified by scientists seemed rather obvious to programme owners or policymakers, usually experts in the field of STI cooperation policy, discussions showed a growing understanding of the scientists’ problems and triggered some revised viewpoints. At the same time, the scientists, confronted with the success scenarios (based on programme-owner assessments of urgent and feasible drivers), came to harmonise and translate their expertise and experiences in a way that the latter could inform recommendations on policy instruments. With regard to the mediation of different stakeholder levels, one of the lessons learnt is that taking the time for a kind of ‘preparatory’ discussions is a necessity. Such discussions are yet not focused on a concrete set of drivers or scenarios but target the topic of cooperation rather openly. While such time may be perceived as wasted on side topics or general statements, it is actually necessary for the group members to align their thinking and experiences with each other and in view of the expected output of the meeting. Even later in the foresight process, participants (not all of whom had participated in the process from the start) had to be given time to start discussions “from zero”. The task of the workshop leader is to pull together and harness the discussions reasonably without frustrating individual input while building understanding for different levels within S&T cooperation.

250 New Indigo Foresight

Figure 1: Relation of different stakeholder levels within the foresight process

 

Another lesson learnt – which is actually well-known but became quite apparent in this particular international cooperation foresight – is the contradiction of the participatory (integrating all inputs to the extent possible) and the strategy building aspect of success scenario-based foresight: Involving a broad range of stakeholders makes it difficult to avoid a fairly general wish list of success indicators; at the same time, reasonable recommendations beyond commonplace solutions had to be developed. Again, it is upon the process designers and workshop leaders to guide discussions towards an agreed but still fairly concrete selection of instruments.

Outcomes and Impact

New Indigo has had the opportunity to present the results of its foresight study, particularly the short-term programme recommendations, not only in form of a deliverable to the European Commission, but in front of a high-level political stakeholders audience during the regular session of the India Pilot Initiative of the Strategic Forum for International S&T Cooperation (SFIC-IPI) in Vienna on 30 November 2011. The presentation was followed by comments and a discussion with the SFIC-IPI members and contributed to contextualising and complementing the short-term programme recommendations. Additional perspectives were considered in the discussions, for instance regarding the challenges the implementation of the programme recommendations faces in different national contexts, as well as regarding new forms of support to bi-regional collaboration (Networks/Virtual Centres of Excellence, part-time academic personnel exchange etc.). The most prominent outcome of the process is the integration of results into the draft EU-India Joint Strategic Agenda (currently in preparation, see: http://ec.europa.eu/research/iscp/index.cfm).

In addition, the results and outcomes, particularly the short-term recommendations, have been presented at the second EU-India S&T Cooperation Days in Vienna on 1 December 2011, a multi-stakeholder conference that gathered over 150 participants from India and Europe. The results are available to the public on the New Indigo website (www.newindigo.eu)

Funds for Mobility and Platforms for Joint Research

Finally, long- and short-term recommendations towards a 2020 horizon were deducted from the success scenario developed as part of the exercise. In its complete textual form, this success scenario reads as follows:

“By 2020, success in EU-India S&T Cooperation has been achieved by support to activities in each of the three areas of facilitating, funding and training.

With regard to the facilitation of cooperation, researchers have funds and fora available to meet their Indian/European counterparts. A significant number of established multidisciplinary networks of groups and senior scientists form the core of ongoing cooperation. Research funding schemes offer dedicated project top-up funds for mobility. Barriers for short and long-term mobility such as burdensome visa procedures have been removed and, at the same time, brain circulation channels have been opened that also facilitate career development.

Common standards are in place together with a standardisation in the area of IPR, allowing for fair treatment of each partner in bi-regional consortia and avoiding additional administrative efforts for the coordinators of joint projects. Formalised institutional cooperation has increased, for instance in the form of agreements between standardisation agencies (standardisation, joint testing, measurement, data, samples, etc.). Evaluation of collaborative projects and ex-post evaluation of project outcomes is uniform and transparent.

As regards funding, the availability of dedicated public as well as philanthropic financial resources is significantly higher in 2020 than it was in 2010, coupled with an increased and explicit donor commitment. Regular bi-regional calls for proposals with real joint funding (as well as virtual common pot funding programmes complementing bilateral programmes), complemented by co-funding from the European Commission, are in place. Scientists benefit from exchange schemes in the frame of specific research infrastructure in both regions as well as from access to joint infrastructure. In order to allow scientists to quickly find information and access to EU-India S&T cooperation funding, a single entry point information hub (e.g. in form of a website) for all Indian-European research funding offers is available. The results of successful joint multi- and bilateral S&T cooperation are presented to an interested business community in dedicated showcasing conferences, facilitating academia-business-society linkages. Society is involved in designing cooperation policy, priorities and the goals of collaborative research, while science itself applies a transparent and rigorous peer review mechanism.

R&D activities of small and medium enterprises (SMEs) are scanned both in India and Europe and showcased in both regions. Successful or potentially research-performing SMEs are routinely approached to be updated on possible public research partners.

Finally, dedicated funds are available (as part of wider S&T cooperation funding) for hiring outside PhDs who can support the creation of and stabilise long-term exchange between senior scientists. Two-way short-term mobility of postdocs, postdoc exchange schemes supporting young scientists to come back to their home institutions (and countries), and similar programmes are also facilitating brain circulation.

When it comes to training, a central virtual platform exists for preparing, accompanying and motivating multilateral joint research as well as for the development of joint degrees and the exchange of PhDs in sandwich programmes. Activities and results are presented in actual workshops once a year. These support structures trigger significant brain gain in combination with mobility schemes mentioned above, for instance when an Indian fellow spends two years of his/her PhD in Europe and the rest of the time in India or vice versa.

There are mechanisms in place for the development and quality control of joint PhD programmes. Joint programmes take advantage of online and virtual learning systems” (Blasy, C. et al., 2012: 31-32).

 

Authors: Cosima Blasy       blasy@zsi.at

Alexander Degelsegger degelsegger@zsi.at

Sponsors: New Indigo, co-financed by the European Commission (FP7 )
Type: International (S&T) Cooperation Foresight
Organizer: Centre for Social Innovation (ZSI), Alexander Degelsegger, degelsegger@zsi.at
Duration: 2010 – 2011
Budget: € 80,000
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No 250_New Indigo Foresight 2012

Sources and References

New Indigo Project website: www.newindigo.eu/foresight

Blasy, Cosima; Degelsegger, Alexander; Gruber, Florian; Lampert, Dietmar; Wagner, Isabella (2012): New Indigo International S&T Cooperation Foresight: A study of S&T cooperation future(s) between Europe and India. Project Deliverable 4.5 to the European Commission, online at http://www.newindigo.eu/foresight; last accessed on 13 October 2012.

Degelsegger, Alexander; Gruber; Florian (2010): S&T Cooperation Foresight Europe – Southeast Asia, in: Форсайт (Foresight), 4(3), 56-68.

ipts/Joint Research Centre of the European Commission (2007): Online Foresight Guide. Scenario Building, online at http://forlearn.jrc.ec.europa.eu/guide/3_scoping/meth_scenario.htm; last accessed on 13 October 2012.

UNIDO (2005): Technology Foresight Manual. Volume 1 – Organization and Methods, Vienna: UNIDO.

Technopolis Group et al. (2008): Drivers of International Collaboration in Research. Background Report 4, online at http://ec.europa.eu/research/iscp/pdf/drivers_sti_annex_4.pdf, last accessed on 24 July 2011.

Georghiou, Luke; Cassingena Harper, Jennifer; Keenan, Michael; Miles, Ian; Popper, Rafael (2008): The Handbook of Technology Foresight. Concept and Practice. Great Britain: Edward Elgar Publishing Ltd.

EFP Brief No. 247: Delphi-based Foresight for a Strategic Research Agenda on the Future of European Manufacturing

Tuesday, January 29th, 2013

This follow-up brief recapitulates the foresight exercise of the “Manufacturing Visions – Integrating Diverse Perspectives into Pan-European Foresight (ManVis)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned. We ask what the mid-term and long-term implications of this foresight exercise are, specifically how effectively the Delphi method was deployed to examine a wide spectrum of aspects underpinning the future trajectory of European manufacturing with a particular emphasis on the elaboration of scenarios that provide a broad basis for public discussion on the future of European manufacturing. This follow-up brief draws particularly on the lessons learnt from the organisers’ perspective.

Creating a Vision of the Future of European Manufacturing

The central purpose of the ManVis project was to inform a continuous process of policy development to enhance the competitiveness of the European manufacturing industries through a structured foresight exercise. In particular, the ManVis project was expected to contribute to completing the picture of the socio-economic dimensions that shape the technology dynamics in European manufacturing industries.

The policy relevance of the ManVis project was essentially linked to its role as one of the central strategic foresight studies in which the preparation of a more detailed Strategic Research Agenda (SRA), aimed at paving the way for the definition of research priorities to be implemented via the EU’s future RTD Framework Programmes, was anchored. The ManVis foresight was launched in response and complementary to the results obtained from previous foresight exercises and empirical surveys indicating that manufacturing in Europe needed to strengthen its innovation capacity in an environment where manufacturing is increasingly being relocated to locations outside Europe. Together with the FuTMaN (“Future of Manufacturing in Europe 2015-2020 – The Challenge for Sustainable Development”) project, the ManVis project was a central pillar of the Manufuture European Technology Platform, composed of high-ranking representatives of European industry and the scientific community, that was initiated in December 2004 with the explicit purpose of elaborating specific technology roadmaps, both horizontal and sectoral, to define the priorities for the first calls for proposals of EU’s Sixth Framework Programme (FP6).

In sum, the ManVis project addressed the following questions:

(a) Which technologies will be relevant to European manufacturing?

(b) What role will European manufacturing play in a more competitive world?

(c) Is European manufacturing prepared to meet the challenges of knowledge-based manufacturing?

(d) Which visions and challenges emerge for European manufacturing?

The ManVis Foresight Approach:
Delphi and Demand-side Scenarios

Delphi is a long-established methodology to create consensus among a wide range of opinions as a basis for developing an informed view on visions and alternatives in the setting of priorities in controversial or complex fields of science and technology policy. The ManVis Delphi survey collected the views of more than 3,000 manufacturing experts in 22 European countries as well as those of stakeholders and overseas experts that were collected during workshops and through interviews.

The Delphi survey covered developments of all relevant aspects of manufacturing from technological dynamics to organisational concerns and issues related to sector-specific developments. In parallel to the survey, scenarios on the future development of the demand side of manufacturing were elaborated.

Flexible Automation Instead of Unmanned Factory

The following key messages on technological dynamics in European manufacturing were derived from the ManVis Delphi survey:

(a) Micro-electromechanical devices, smart materials and products using nano-coatings represent long-term developments of new types of products with the potential to disrupt markets.

(b) New manufacturing technology principles, such as bottom-up manufacturing technologies are only expected in the long run. Manufacturing technologies using biotechnologies to create and manipulate inorganic material and products, such as nano-manufacturing, should be on the long-term “radar” of RTD policy.

(c) Micro-electromechanical systems (MEMS) as well as flexible organisation and automation strategies combined in reconfigurable manufacturing systems supporting flexible business strategies are important topics on the short-term research agenda. However, as a particular aspect, the experts surveyed viewed the unmanned factory with skepticism. Instead, they forecast that humans working with flexible automation solutions will play an important role in creating flexibility.

(d) Only long-term automation visions comprise human-machine interfaces such as man-machine speech recognition, self-learning systems and co-bots.

From these key messages the following implications were derived for the role of manufacturing research in combining the long-term horizon in technology trajectories with the short-term needs of firms to innovate successfully: Basic manufacturing research needs to prepare for new challenges, whereas applied manufacturing research should focus on the adaptation and transformation of existing technologies and organisational processes. Considering the functions of manufacturing research, it has been suggested that these key messages on future technology dynamics be discussed using the concept of the combined science-technology cycle of innovation (see Figure 1).
bild1

Figure 1: Manufacturing-related technologies on the sci-ence-technology cycle for macro innovations (Source: ManVis Report No. 3, Delphi interpretation report)

Integrating Non-technological Aspects

The ManVis Delphi survey covered many aspects of knowledge-based manufacturing related to the working environment. In particular, organisational concerns as they are linked to new challenges of product development were examined. In one of the interviews conducted for this follow-up, however, one of the organisers of the foresight process highlighted that – although the ManVis project was considered a “creative pool” for the construction of the Manufuture platform – contributors to the platform were skeptical concerning several of the organisational challenges. This was explained by a lack of interest in issues of work organisation at the company level, in particular on part of the predominantly larger industrial firms represented on the platform (SMEs were not represented). In addition, the organisers stated that the ManVis foresight contributed greatly to the integration of non-technological aspects in the debate on the future drivers shaping technological dynamics and on the demand for skills and competencies.

Furthermore, the interviewee argued that the Delphi results had the intended wide-ranging impact because the survey did not focus on sector issues alone. Although this impact was important in consolidating the field of manufacturing research, the foresight results were not followed up by more in-depth indicator-based (e.g. patents) research with a greater focus on sectoral issues. This was, however, not considered a methodological constraint but rather a weakness in following up on the Delphi results.

In addition, the organisers mentioned two methodological aspects as particularly important in shaping the results of the Delphi survey:

(a) The organisers’ interventions during several workshops at the national level, held to prepare the Delphi survey, played a central role in condensing the themes and elaborating the Delphi statements. As in any Delphi survey, the heterogeneity of the participants assured the validity of the results. In particular, the responses to the survey highlighted the facilitator’s role in coordinating the pool of heterogeneous expertise coming from a great diversity of technological and non-technological fields during the initial workshop, at which a list of 100 statements on a wide range of manufacturing topics was generated, as very important for the final outcome of the Delphi process.

(b) With regard to the stability of the responses to obtain a consensus among the participating experts, the summary feedback of aggregated responses of the second round did not generate any significant new changes. Under efficiency considerations, it could therefore be argued that the survey administration could have used statistical methods to analyse the data from the first round to assess whether any subsequent rounds were needed and, if not, terminate data collection after the first round.

Direct and Indirect Achievements of the ManVis Foresight

The ManVis Delphi survey results provided a broad basis for public discussion on the future of manufacturing in Europe. In particular, by complementing previous foresight studies intended to improve the self-understanding of the European manufacturing industry, it constituted an important pillar in the development of a strategic manufacturing research agenda at the European level. Several of the issues that were highlighted by ManVis, such as the need to explore the implications of user-driven innovation for manufacturing systems, were taken up in FP6.

Beyond its intended effects, the ManVis foresight also had some important unintended effects such as making a central contribution to the definition of research needs of the new member states that joined the European Union during the 2004 enlargement. Another central achievement of the ManVis foresight process was also an unintended side effect, namely to involve these new member states in the development of a Strategic Research Agenda on manufacturing in Europe.

Effective Dissemination of the Results under Budget Constraints

Since the financial budget for dissemination activities was cut significantly during the negotiation phase with the European Commission, the ManVis dissemination approach was under strain from the beginning of the project. Nevertheless, the project reported the results of the foresight to a wide audience of industry and governmental stakeholders at the Bled Conference in October 2005. This conference, which would not have been realised without the national resources of the Slovenian ManVis partner, provided a strong signal of interest in and relevance of identifying the manufacturing research needs in the new eastern member states.

Reaching the Policy Level

The ManVis key messages have been disseminated at the policy level to a wide set of stakeholders and actors of the European Commission, the member states, and industry. During the interviews for this follow-up brief, the communication with European policymakers was described as very good and the interaction with the EC as very supportive, in particular with regard to the central goal of feeding the results of the foresight exercise into key European initiatives such as the Manufuture European Technology Platform.

In sum, the outcomes of the Manvis project served to bring manufacturing experts with different national and professional backgrounds together to discuss the visions and the possible paths for securing the future of manufacturing in Europe. The results of the ManVis project have been fed into the EU’s Seventh Framework Programme.

Learning about the Manufacturing Research Needs of the New Member States

It was reported during one interview with the organisers of the foresight that a central achievement of the ManVis project was to involve the new member states in the development of a Strategic Manufacturing Research Agenda at this particular time. While the EC only had partial knowledge about key institutions and actors shaping policy development processes in areas related to manufacturing, it was an important indirect achievement of the ManVis foresight initiative to involve many experts and policy stakeholders from the new member states in defining and assessing the manufacturing research needs at the European level. In this sense, the networking effect, particularly during the Delphi preparation workshops, was highly appreciated by European policy stakeholders because they provided a unique opportunity to get acquainted and build strong relationships with key experts from these countries and to use the foresight initiative to define priorities for the first calls for proposals for the upcoming Seventh Framework Programme.

In this sense, the direct involvement of the new member states in the definition of research topics to be supported was stated as one of the most important, yet unplanned and indirect, contributions of the ManVis foresight process. The research topics thus identified are considered to have real industrial relevance and the potential to produce measurable impacts in terms of marketable products and services or more efficient manufacturing methods in the context of the catch-up process that these countries are undergoing.

Contributions to EU Enlargement

The ManVis foresight process made an important contribution to completing the picture of technology dynamics in manufacturing. At the particular time of realisation, i.e. in the aftermath of the 2004 EU enlargement, the Delphi survey not only set out several possible trajectories for developments of future manufacturing processes and policy scenarios, but it also helped to define the R&D position of 22 EU countries. In the context of the shifting comparative advantages due to the salary increases to be expected particularly in the new member states, the ManVis foresight provided an important platform to learn about manufacturing research priority topics and the adaptations needed at the level of companies and innovation systems. Beyond the identification of research needs, a concrete achievement of the ManVis foresight lies in the strong integration of key stakeholders from both public policy and industry of the new member states in the long-term planning of European research funding for manufacturing.

Authors: Dirk Johann             dirk.johann.fl@ait.ac.at

Elisabetta Marinelli   elisabetta.marinelli@ec.europa.eu

Sponsors: European Commission (Directorate General Research)
Type: International foresight activity (Specific Support Action) covering the enlarged European Union, focusing on the thematic area of manufacturing
Geographic coverage: Europe
Organizer: Fraunhofer ISI Karlsruhe, OPTI,  JRC-IPTS, Cambridge University, IVF Sweden and national correspondents in 22 European countries
Duration: 2003 – 2006
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: July 2012

Download EPF Brief No. 247_ManVis_Follow-up

Sources and References

Dreher, C. et al. (2005), ManVis Report No. 3 – Delphi Interpretation Report, Deliverable D15, Contract No. NMP2-CT-2003-507139-MANVIS

Dreher, C. et al. (2005), ManVis Report No. 6 – Manufacturing Visions – Policy Summary and Recommendations, Deliverable D17, Contract No NMP2-CT-2003-507139-MANVIS

European Commission (2006), Manufuture Strategic Research Agenda – Assuring the Future of Manufacturing in Europe – Report of the High-level Group, European Commission, Directorate-General for Research: Brussels

Jung-Erceg, P. K. Pandza, H. Armbruster, C. Dreher (2007), “Absorptive Capacity in European Manufacturing: A Delphi Study”, Industrial Management & Data Systems, Vol. 107, 1, 37-51

Link to the original Foresight Brief No. 53 “European Manufacturing Visions – ManVis 2020”: http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-53-European-Manufacturing-Visions-ManVis-2020.pdf

EFP Brief No. 246: Foresight and STI Strategy Development in an Emerging Economy: The Case of Vietnam

Tuesday, January 29th, 2013

With the purpose of supporting the definition of the Science and Technology Strategy 2011 – 2020 by the Ministry of Science and Technology of Vietnam, a novel approach to policy and strategy development was introduced, combining foresight techniques alongside traditional strategy programming tools. This novel approach is considered useful for application in developing countries with strong planning traditions.

Challenges to STI Policy Definitions in a Developing Country

Vietnam has one of the fastest evolving economies among developing countries. GDP growth was around 7% in the last decade and should continue growing if the country moves beyond the current model based on low labour costs and intensive capital investment. In spite of advances, strengthening competitiveness and productivity presents a key challenge. In social terms, poverty decreased from 58% (1993) to 14% (2008), indicating the capacity of the country to achieve the Millennium Development Goals. There remains, however, a large and increasing income gap. Advances in education and health have been important, but problems of coverage and quality associated to the services provided also remain as challenges.

Recognising the importance of science, technology and innovation (STI) as instruments of development, Vietnam has given them high priority and has defined and implemented corresponding policies and strategies for several years. The process followed an approach consistent with the country’s political context, i.e. based on a strong planning culture, a top-down policy approach and weak monitoring and evaluation systems.

The outcomes of this approach have been mixed. Demanding policies and strategies were defined but had a varying degree of success in terms of extent and quality of implementation and impact.

Recognising the challenges imposed by today’s accelerated technological change, the growing complexity of research and innovation, and obvious limitations of traditional approaches used in policy and strategy formulation, Vietnam requested support from UNIDO to formulate the 2011/2020 STI strategy and better meet its development goals.

The Novel Approach to Policy and Strategy Definition

Responding to the above request, the project developed and applied a novel approach to policy and strategy definition by using foresight as a focusing and policy informing tool, aiming to support, step by step, the preparation of a fully-fledged national STI strategy (UNIDO 2010a) and facilitate the institutional embedding of the foresight and strategy process. Very few cases of foresight exercises are known to focus explicitly on the future shaping of the whole STI system.

The application of the novel approach to shape the STI system requires its components and functions to be explicitly identified. On this basis, it is of crucial importance to ensure, first of all, an effective and efficient operation of the STI system in structural terms (“structural priorities”). More specific priorities can only be tackled if the main STI system functions operate properly.

A second element playing an important role in the context of the definition of policy and strategy are three types of thematic priorities on which to concentrate efforts beyond structural ones: key science domains, technology areas and application fields.

A third element concerns time. Any policy or strategy should target a given time frame, and the targets defined within this horizon should be both challenging and achievable while steps towards defining them need to be clearly defined.

Finally, foresight and STI policy strategy development should be embedded in a comprehensive framework of policy definition.

The approach combines thematically focused and systemic-structural foresight activities, on the one hand, and STI strategy propositions, on the other, implemented in a co-evolutionary manner:   

  • Foresight activities with the purpose of exploring the future development of the STI system at the national level and for specific key technologies, combining exploratory and normative approaches, and devising options and roadmaps for future action.
  • STI strategy propositions to “translate” the findings of foresight into position papers that can be easily fed into the development and formulation of the actual STI strategy. In turn, insights generated in the context of the STI strategy can be fed back into the foresight exercise.

In this approach, foresight activities and the development of the STI policy and strategy are closely intertwined, as shown in Figure 1.

246_bild1

Figure 1: Proposed Methodological Approach

To ensure a timely transfer of the knowledge generated by the foresight activities into the STI strategy development process, interfaces between the two processes must be carefully designed. Cross-membership between the working groups in charge of foresight and strategy development respectively is an important transfer mechanism, as is the preparation of well-fitted and targeted input papers (position papers) to feed strategy development at key points in time. For the application of the novel methodology five phases can be foreseen, as follows:

Phase 1: Analysis, positioning and exploration of the STI system

In this phase, the relative performance of the STI system is analysed, a preliminary SWOT analysis constructed, and the main current policies and strategies assessed in order to capture the country’s present situation. This phase also explores trends related to contextual local and international developments and drivers that are likely to affect the country’s STI system in the coming years; from these trends and drivers, first exploratory scenarios can then be constructed.

 

On top of these exploratory scenarios, a so-called “success scenario” needs to be developed in order to obtain a first normative orientation and a set of criteria to determine what a desirable future for the country’s STI system might look like. The success scenario also provides the basis for specifying criteria for the selection of technology areas to be analysed in more depth later in the process.

The result of this phase is resumed into a first informing position paper”, which is then fed into the strategy team.

Phase 2: Deepening of the exploration of the STI system using Delphi methodology

The second phase deepens the exploration of the STI system by way of a Delphi enquiry, which is used as a means to interact extensively with the expert and stakeholder communities and to collect further inputs and feedback on three main aspects: a) the trends identified, b) the exploratory and success scenarios developed for the STI system together with their main structural characteristics and deficits, and c) main technology areas of importance to the country.

The Delphi can be implemented in four main blocks: a) scenario assessment and perspectives on success in STI, b) national and international context of the STI system, c) structural challenges in the STI system and d) potential technology areas. As Delphi surveys are difficult to carry out in many developing economies, other types of consultative foresight techniques may be used as alternative options.

The assessments from the Delphi can then be analysed and interpreted in the light of the currently envisaged objectives and targets of the national development plan and strategy in order to trigger a debate to what extent there is actually the systemic capacity in place to achieve what has been formulated as targets.

This phase serves as the basis for preparing a second position paper to provide a deepened SWOT analysis of the STI system, together with first views on possible technology areas to focus on in the next module.

Phase 3: Exploring key technology innovation systems

This phase takes a limited number (5-6) of promising technology areas as its starting point. Based on suggestions from the second position paper and close interaction with the STI strategy drafting team, these areas can be defined with a view to achieving important socio-economic development goals. Apart from identifying and assessing key technologies in these areas, this analysis aims at exploring the systemic requirements that the area-specific STI systems in which these key technologies are embedded have to meet in order to ensure their successful development and application.

The key technology (4 to 5 per area) analysis can be based mainly on panel work and possibly on interviews with additional key experts. Depending on a country’s specific situation, criteria for the selection of key technologies could be, for instance, their relevance to industrial application and to the positioning of the country in international production networks, the relative strength of the country in this key technology or the potential to become an autonomous leader in this key technology as contrasted with being dependent on critical imports.

A third position paper takes into account the findings of this phase and elaborates on the opportunities and requirements in a selected set of key technology innovation systems

Phase 4: Vision and roadmap for STI systems

This phase moves from the analytical and exploratory perspectives adopted in the previous phases towards a more normative perspective on what a desirable future of the STI system could look like, and what steps may be needed to get there.

The panels established in the previous step develop visionary outlooks for the key technology innovation systems they have been dealing with. Building on the insights on requirements for key technology innovation systems, they sketch how these systems should look like within a given time horizon. Similarly, a previously established crosscutting panel should work on a vision at the level of the STI system.

Some harmonisation of the different visions is achieved by a joint workshop of the different panels because the STI system visions should build on sector visions and the sector visions should be framed by the STI system vision. The different visions can finally be compiled in a single document.

A final and fourth position paper can then be prepared to feed the visionary and roadmap-related elements into the policy and strategy development process.

Phase 5: Future-oriented agreements and their implementation

The final phase of the process deals with the conclusion of concrete agreements between actors and stakeholders to undertake specific joint action in line with the STI policy and strategy developed. This phase is already about making first steps towards the implementation of the strategy.

Application of the Novel Approach to the 2011 – 2020 Vietnamese STI Strategy

The main results of the application of this novel approach to the Vietnamese case, between 2010 and 2011 can be resumed as follows:

Phase 1: A STI system and policy diagnosis was obtained (UNIDO 2010b), and a trend analysis and scenarios completed (UNIDO 2010c). A first position paper informed the strategy drafting team on the main results of this phase, emphasising the internal trends and challenges to Vietnam.

Phase 2: A Delphi inquiry was conducted by e-mail, which received little response and was not used for further analysis. This situation restricted the exploration of key technology areas and technology innovation systems to be undertaken in Phase 3, but did lead to their discussion in the strategy panels as reflected in the first draft of the strategy prepared by the Ministry of Science and Technology of Vietnam (MOST) in mid-2011.

Considering the above limitations, position paper 2 put its emphasis on exploring the possibility of realising a success scenario and provided guidelines on how to achieve it.

Further considering that a draft strategy had already been developed by this time, position paper 3 provided inputs that would allow to better embed it into the Five-year National Development Plan (NDP) (2011–2015) that was being prompted for approval.

Position paper 4 identified key STI inputs needed to advance prioritised economic and social sectors, based on a set of priorities put forward in the draft version of the STI strategy of September 2011. The main idea of this position paper was to ensure that the STI strategy would be embedded in the NDP, drawing on the “vision” that had been constructed as part of the latter.

MOST adopted the STI Strategy in April 2012 with some of the limitations that were characteristic of previous strategies, such as its still too general character and lack of more specifically targeted priorities. Nonetheless, the novel approach to policy and strategy definition introduced in the project did incorporate several elements of importance into the final version of the document.

Parallel Foresight and Policy Design Process Most Promising

The social and economic developments that have taken place in Vietnam in the past years have provided a facilitating framework for a novel approach to STI decision-making, combining foresight tools with traditional programming methods.

The rather strong cultural context for policy definitions in Vietnam has limited the full application of the adopted methodological approach, but the process served as a powerful learning technique in the institutions dealing with policy and strategy.

Because of the complexity in the definition of public policies in fostering and strengthening indigenous capabilities to use, adapt, modify or create technologies and scientific knowledge, a parallel foresight and policy design process seems to be one of the most promising approaches to improve decision-making processes in developing countries.

Authors: Carlos Aguirre-Bastos   csaguirreb@gmail.com

Matthias Weber            matthias.weber@ait.ac.at

Sponsors: United Nations Industrial Development Organization, National Institute for Science and Technology Policy and Strategic Studies, Ministry of Science and Technology of Vietnam
Type: National foresight exercise
Organizer: UNIDO and AIT Austrian Institute of Technology
Duration: 2010 – 2011
Budget: n.a.
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No. 246_Foresight and STI Strategy Development for Vietnam

Sources and References

UNIDO (2010 a) Inception Report – Doc. STI-WP0-MOD2-001-v7-010610; 01 June 2010 (prepared by Matthias Weber)

UNIDO (2010 b) The Science, Technology and Innovation System and Policy Analysis – Doc. STI-wp1-MOD3-001-V.4-020610; 02 June 2010 (prepared by Carlos Aguirre-Bastos)

UNIDO (2010c) Trend Analysis and Scenario Development of the Vietnamese STI System – Doc. STI-WP1-MOD5- 012-V.1 – 151210 (prepared by José Miguel Fernandez Güell)

EFP Brief No. 239: Corporate Foresight – A Delphi Study

Friday, December 21st, 2012

The purpose of this paper is to provide new impetus to the design of strategy and innovation processes in companies. Its intention is to contribute to the discussion of methods of future studies and thereby to increase the practical relevance of future research in businesses. To this end, the specific requirements that these methods have to meet in order to be applicable in companies are presented and recommendations given both for companies and the profession of future research.

 

Looking into the Future: Methods of Future Studies

In every business, there is the need to gain insight into future trends to be able to respond to forthcoming challenges, but it is impossible to identify such trends without attempting to look into the future. As fantastic as it may seem, the application of the methods of future studies actually makes this look into the future possible. However, the use of the methods is often perceived as incompatible with the current workflow. Therefore, this study is primarily concerned with the question of how the methods of future studies can be best applied in business environments.

 

Making Strategy Processes More Profitable

The paper intends to give impetus to the discussion about methods both in the discipline of future studies and in businesses considering the specifics of future studies when applied to the business context. The main goal is to set the stage for improvements of the methodological quality of future studies when applied to businesses and to increase the relevance of future studies to businesses. It aims to supplement the discussion of methods in future research and thereby increase the practical relevance of future research in business. These requirements can serve decision-makers in companies and research to plan and evaluate the methods used to make strategy processes more profitable and efficient.

 

Methodological Background of Delphi

The methodology of this study consisted of a literature analysis, an empirical study and the deduction of theoretical and practical implications. The first step to answer the research questions was to examine the theoretical and conceptual background by means of a literature review. Subsequently, an empirical survey in the form of a preliminary and a main study was carried out. The preliminary study consisted of 15 expert interviews. Then a Delphi study was conducted in two rounds. The results of the empirical survey served to derive the requirements that the methods of future studies would have to meet in companies. Recommendations, both for the discipline of future studies and for companies, on how the methods can be modified so as to meet those requirements were described. The research project was based on the mixed-methods approach with an emphasis on qualitative research. In the preliminary and the main study, different qualitative methods were used. In the main study, quantitative data and qualitative data were triangulated.

 

Participants of the Study

A total of 204 experts were invited to participate in the study. Of those invitees, 58 took part in the first round of the consultation and 35 in the second round; 32 participants completed the entire survey. The experts chosen to participate in the survey were required to have wide experience in the use of methods of future studies in businesses. The goal was to involve experts with diverse professional backgrounds. Some experts had an academic background in areas of future studies and innovation management, some came from strategy and innovation departments of both SMEs and global corporations, and others from a background in management consulting and research and development departments.

Problems and Requirements in Applying Methods

The empirical results show that there are specific challenges in applying the methods of future studies in businesses. The methodological design and the implementation of the methods often prove to be difficult. Among the reasons for these problems are lack of knowledge, processes that take too long, limited human and financial resources as well as difficulties in communicating the results. The identification of these problem areas made it possible to derive a set of requirements that the methods of future studies have to meet so as to be applicable to businesses: they have to be easily learnable, transparent, motivational and easily communicable. Further, measurability, the capability to tie in with other methods, the scalability of the method and possibilities for collaboration are important.

Learnability, Transparency and Transferability

The methods have to be learnable with reasonable effort at different skill levels because there is often a lack of methodological knowledge in business settings and a knowledge gap between different hierarchical levels. The results of this study also show that there is not only a lack of knowledge about the necessary methodological steps but also uncertainty about the potential insight to be gained by applying the methods. Therefore, both the concepts of the methods applied and the ways in which they can be implemented have to be transparent. It is further necessary that the methods can be transferred both to and from other fields of application. This need arises from the ever-expanding range of methods, from limited human resources and from the diverse intentions that can motivate the use of the methods.

Motivational Potential, Communicability and Evaluation

The empirical data point to difficulties in motivating the people involved. Since it is crucial to produce and maintain motivation, the methods should satisfy the criteria of being motivational. The communicability of methods is also central in the corporate context. The study shows that there is scepticism about the discipline of future studies and its methods that needs to be addressed. Successful communication can also help to avoid false expectations, which otherwise are often perceived as serious obstacles. Another requirement is the measurability of the process and the outcome. The need arises because many experts believe that it is impossible to verify the outcome of the methods based on “hard data”. The results of the study show that many experts for this reason emphasise the value of the process itself.

Scalability, Flexibility and Collaboration

The empirical data show that the period for the implementation and evaluation of the methods is often perceived as being too long. This suggests that there is a need for temporal scalability. The length of the implementation period, and thus the costs, must be adaptable to the actual situation of the companies. Further, the methods should allow for joint implementation since knowledge from within the company has to be extracted and made explicit. The study reveals hurdles in this process; the involvement of all stakeholders is perceived to be difficult. An essential point of concern is the complexity of the research object, which requires that the chosen methods can be combined. The empirical evidence suggests that stakeholder participation is already used by many, but the potential is not yet exhausted in some places.

 

Overcoming Hurdles through a Joint Process of Methods Development

The study revealed a number of problem areas in the use of the methods. These problems can only be solved through a joint effort on part of the profession of future research and the companies. Focusing on methods only may prevent us from perceiving the limitations but also the opportunities in applying them in certain settings or situations. Therefore, the use of the methods can only be improved if we consider the specific requirements of the companies in question. On the other hand, looking at the operational procedures in a company only may in turn prevent the emergence of new perspectives. Concentration on daily routines may lead to ignorance of the world outside the company and therefore to missing new opportunities.

A joint process of developing and adapting methodology could result in devising methods capable of transferring and integrating knowledge and research results about the future instead of creating an abstract “methodology of future research”. The study allowed to derive suggestions for a potentially successful joint working process.

 

How Can the Hurdles Be Overcome?

The members of the profession need both strong methodological and excellent teaching skills to facilitate the learning of the methods. The methods of future research should be taught in different contexts: in higher education as well as in vocational training and further education programs at various skill levels. Companies should identify the knowledge gaps of their employees in order to address these specifically. In order to achieve transparency, it is necessary to disclose the processes involved and the criteria used for choosing a particular method. To satisfy this requirement in a company, it is possible to focus on internal transparency so that internal company knowledge does not have to be exposed to outsiders.

Practitioners of future studies need to be proficient in interdisciplinary and interface skills to promote the transfer of methods both from and to other fields of application. In addition, an intensive exchange between future studies, related disciplines and companies is very important. Expert knowledge about motivation is needed to motivate those involved in the use of future studies methods. Both the profession of future studies and the companies have to recognise the importance of motivation for the methodological process. Further, companies should enhance social and career-enhancing incentives to motivate employees involved in foresight processes.

The basis for the successful communication of the methods is a high level of expertise and communication skills of the practitioners of future studies. This includes both verbal communication itself and communication about communication formats. In addition, the professional management of expectations and individual communication concepts are important in dealing with stakeholders in the company.

Knowledge about evaluation concepts as used in the profession of future studies is necessary to be able to assess and measure the outcome. Reviewing the steps taken should be a natural part of every project. To be able to do so, businesses need to make structural adjustments such as define responsibilities and plan a budget for foresight processes. To make sure that methods can tie in with each other, it is necessary to be open to experimentation, extend the combination of methods and also to evaluate systematically.

For the profession of future studies this means that methodological approaches have to be extended with a focus on both internal and external methods of triangulation to create meaningful combinations of methods. In order to make sure that the methods can be implemented collaboratively, existing methodological concepts have to be expanded. Possibilities to collaborate
should be integrated in methods that have been unsuitable for collaboration so far.

Solid knowledge of project management is essential to be able to assure the temporal scalability of the methods. Therefore, practitioners of future studies need to be able to acquire such knowledge during their training. The profession should also actively participate in the discussion of how to adapt the time scale of the methods. A key aspect to improve the handling of methods could be the application of appropriate software solutions.

 

Limits and Areas in Need of Further Research

Whether such a thing as methods of future studies even exists is an issue that is still discussed controversially within the discipline of future studies. The lack of a scientific consensus both on the methodological canon and the classification of methods is responsible for the fact that this study could only provide a limited view on the application of methods of future studies in companies. It is impossible to presume that all participants of the preliminary and the main study would share a common understanding of the term “methods of future research”. Therefore, the range of existing methods is only inadequately presented and quantified.

The sample of this study is subject to restrictions: the fact that the participating experts were selected with a focus on their experience in strategy and foresight processes may potentially distort the picture. The reality of those companies that do not deal with strategy at all is not represented in this study either; hence the need for further research. The companies’ reasons for having only little contact with future studies or no contact at all have to be understood. This would be an addition to the results of the present study and might reflect even better on the individual perspectives of different protagonists.

Download EFP Brief No. 239_Corporate Foresight – A Delphi Study.

 

Sources and References

Ambacher, N. (2012): “Corporate Foresight – A Delphi study on the use of methods of future research, taking into account the needs of industry and research”, Master’s thesis at the Free University of Berlin, Berlin

For more information about the study and its results, please visit the project website: www.delphibefragung.de

EFP Brief No. 237: Creative Foresight Space (CFS) for Enhanced Work Milieux

Friday, December 21st, 2012

This brief presents the concept of Creative Foresight Space (CFS), which is an alternative workspace as well as a foresight methods-based processing platform for a new kind of proactive and innovative working culture. CFS is a concept to stimulate both creativity and futures thinking. It combines physical, digital, virtual and peer-to-peer collaborative approaches for innovative and social futuring in organisations. It is designed especially to meet the challenges posed by the transition from information society to a meanings society. CFSs also provide a diverse platform for special futures workshops – called Futures Cliniques. CFSs enhance work milieus, augment work motivation as well as strengthen futures thinking and foresight competence.

Linking Innovation to Foresight in Corporations and Organizations

Innovations are born where there is enough encouraging space for creativity. Companies and organisations striving for innovation are increasingly interested in creating workplaces and workspaces that promote interaction, creativity and innovation. Companies and organisations have an immense unused potential to develop creative and innovative work environments. Such development can be linked to the attraction of regions or towns.

As the operational environment of companies and organisations has changed, foresight has gained more ground in their operations. Companies should link foresight both to their strategy work and innovation processes. In order to bring systematic foresight and innovation processes into a company, the whole organisation needs to be committed to a new way of thinking. This, in turn, requires a new culture of managing as a part of a whole new working culture. Such new culture of managing may flourish if new kind of work milieus are enabled.

Creative Foresight Space (CFS) will provide a new type of work milieu as integrated into ordinary offices. CFS links innovation processes (creative thinking) to foresight processes (futures thinking).

The project on Creative Foresight Space was initiated to find out the possibilities of developing better work environments. This was sought for by supporting the processes of organisational change through a Creative Foresight Space that encourages creativity and futures thinking. In addition to developing the concept of creative foresight space, the project included a wider foresight process that concentrated on the knowledge and expertise needed in the future.

Enhancing Creative Work Milieux for Future Thinking and Well-being

The theoretical objective of the study was to develop a concept of an innovative and experimental working space to stimulate at the same time creativity, futures thinking and wellbeing at work.

The concrete aims of the study were to design visually stimulating Creative Foresight Space (CFS) 1) to host participatory foresight sessions, especially Futures Cliniques, 2) to provide a space for self-organised futures exploration, 3) to demonstrate and apply several methods developed in futures research for futures sense-making and innovative problem solving for companies, public institutions, regions and citizens. CFS and Futures Cliniques were designed as a structured process, employing user-friendly multisensory instruments for open futures learning.

Part of the study was to probe possible futures for societal development and for the future of work. This was conducted through literature surveys, interviews (https://sites.google.com/site/futuremediac/videos–presentations) and participatory foresight sessions held in two regional CFS pilots.

The ultimate purpose of CFS was to help decision-makers by opening up vistas and even unexpected prospects for future developments at a longer and broader perspective than standard strategy.

Futures Wheel, Table, and Window

Creative Foresight Space (CFS) is a methodological umbrella concept, developed at Finland Futures Research Centre (FFRC) within the project. It manifests itself as a futures gallery or social futures learning hub, to enhance working milieus in all kind of organisations. It also acts as a platform for participatory, co-creative foresight sessions. Such sessions were structured as special Futures Cliniques. In Futures Cliniques several foresight methods are used to probe futures for the subjects selected.

The methods demonstrated and applied in all Futures Cliniques included for example the Futures Wheel, which is an easily applicable and discussion-oriented tool, and the Futures Table. In particular, the Futures Window was used, which is a visual presentation of weak signals, stimulating the futures work to follow watching it (Heinonen & Hiltunen 2012).

On average, at least five different foresight methods are always being demonstrated and used within a Futures Clinique. The Futures Research Methodology CD Version 3.0 (Glenn & Gordon 2009) produced by the Millennium Project (http://www.millennium-project.org/) was also frequently employed. In addition, material from the iKnow project (Ravetz et al. 2011; http://community.iknowfutures.eu/) was used and further elaborated. Besides foresight methods, also several innovation techniques were being applied in Futures Cliniques, e.g. the method of de Bono’s (1985) Six Thinking Hats. The participants were not required to be familiar with any of the methods beforehand. Instead the idea was to enable futures learning – both content-wise and methods-wise.

The visual design and mood of the Creative Foresight Space is a method in itself, aiming at multi-sensory futures exploration. In some of the sessions, emphasis was laid on visualisation and visual material from cartoons to pieces of art were experimentally used to nourish the participants’ imagination (Heinonen & Kurki 2011).

Two concrete cases of CFS were installed for a certain period of time (ca. six months) for experimenting. During the experiments, all the results were carefully identified and documented. One of the cases was CFS set up in Helsinki City Library in 2010 (in Finland). The other case was implemented inside a technology Centre Innopark in Hämeenlinna region (in Finland).

The concept of CFS can be implemented in two separate modes: the Stimulus version or the Slow version. The Stimulus version aims to excite and explode imagination and through such stimulation enhance creativity. The Slow version, on the other hand, enhances creativity through elements soothing the visitor and letting time and space for new ideas or understanding to emerge. This kind of futures learning (Heinonen, Kurki & Ruotsalainen 2012) can be achieved through slow motion digital walls, or by providing niches for silence and solitary futures exploration.

Shift Toward Meaning Society

The most important socio-economic trend identified during the project was the shift from the information society towards the meanings society.

Applying this shift to work, the central findings were the need for new organization models, radical mixing of different industries and branches, as well as utilizing prosumerism (producers + consumers) in a new work paradigm.

Adding to these a set of new competences and skills were identified. The diamond of seven competences that are critical for future work life in 2020 was presented.

The future of work in ubiquitous interaction

The future of work and the future economy will be shaped especially by changes in two intermingling areas: the technologies used and people’s ways of life.

The guiding technology for the future will, quite unsurprisingly, be the Internet with its different applications and services. The Net will affect our culture deeply.   The values and norms of web 2.0 will spread to the entire society – and the workplace. Digital natives will take participation, bottom-up approaches, collaboration and sharing for granted. They are intrinsically motivated rather than extrinsically influenced.

Adding to this, people strive more and more for a life that is personally and individually meaningful. The source of meaningful experiences can be anything, be it consumption, work, arts, or social relationships.

The Internet and other key technologies and services (e.g. cloud computing, mobile devices, application services) together with the strengthening ethos of self-expression are leading away from the information society to a new societal form, the meanings society. This transition will have a significant impact on how we work and on the organizations in which we work.

Despite automation work will not disappear. People are simply doing what gadgets are not capable of – taking care of creative, non-routine and un-linear tasks. Nevertheless, by 2050, work can transform in such a deep way that one can declare the end of work as we know it. We might see a return to the roots of work, to the time before the institution of paid work.

Work per se is an act of creativity, which aims at satisfying our material and immaterial needs. People enjoy working, because it manifests their best qualities: creating, solving problems, using ones skills and crafts, developing one self. Working creates the experience of autonomy as well as binds people to each other through the division of labour. Work is an act of individualism as it is that of collectivism.

Instead of the institution of paid work under an employee, in the future self-organizing peer-to-peer production and prosumerism could form the basic framework for work institution. In the future, the ideal worker may not be a diligent toiler with narrow expertise, but an enthusiastic and ingenious amateur (Heinonen & Ruotsalainen 2012). Workers know well their field of expertise, but are curious and interested in a myriad of things. Engineers cherish the ideal of the Renaissance Man. Of the general work competences especially time competence, systems competence and meanings competence are needed.

Meaning Competence as a New Skill

Especially meanings competence can be of most crucial importance in the future. Production in the creative economy is in essence cultural meanings. Communication is carried out through meanings. Production aims more and more at products and services which aid in identity production and constructing a personally meaningful way of life. This is not solely a concern of the creative class, but all industries have to take into account this change in society and consumer demand.

Meanings competence is the ability to create and interpret meanings, construct and communicate social reality. Workers need meanings competence not only as tool, but also as a skill to construct one’s work as comprehensible, fulfilling and meaningful. Jobs will be less and less clearly defined, and workers must learn to “define” their jobs for themselves. Creating meanings competence is a social process, which calls for interaction competence: culture is by definition social, shared. Creativity, stories and innovations can only be created in socially livable environments, in which the interaction between individuals is fluid. Socially lively work means also taking consumers along in the production process: it is the best way to ensure that the products and services will be deeply meaningful. Essentially, meanings competence is not only a matter of work life, but people will increasingly strive at creating their life meaningful and purposeful.

Danger of Work Becoming too Big

The most important trend identified considering working life was not only the mixing together of different industries but different spheres, values and procedures: consumers becoming producers (and producers consumer-like), work becoming leisure-like (and vice versa).

This development has several benefits, as it helps making work more meaningful and products more demand-matching. However, it contains serious threats: instead of work becoming more meaningful and fulfilling, it can attain too big a role in our lives. Furthermore, these issues are linked with the emerging theme of the changes between public and private spheres.

Perhaps not by 2020, but most probably by 2050 technology has melted to become an inseparable part of our environment, but also of ourselves. Our thinking, communication, work and leisure are intermediated, supported and enhanced by technology. One of the most prominent effects of technologies is the dramatic fertilization of communication. Vivid communication promotes openness, which on its part promotes innovation. We are increasingly living a life of ubiquitousness and transparency. It is a matter of further investigation what are the pros and cons of this development.

Testing New Techniques, Products and Processes

Examples of the main topics that were dealt with in Futures Cliniques are:

  • Future Concepts of Urban Housing and Sustainable Multi-Locality
  • Radical Innovations on Combating Climate Change
  • The Future of Library
  • The Future of Technology Centres
  • The Intertwining Futures of Work and the Internet
  • The Utilization of 3D Worlds
  • Emerging Digital Culture
  • Meaning and Time Competence as Future Work Skills

Clients for recent Futures Cliniques conducted by Finland Futures Research Centre include for example the Finnish Ministry of the Environment, the Finnish Innovation Fund, Technology Centre Innopark and Helsinki City Library.

For each Futures Clinique the participants were selected to represent different industries, branches and fields. The heterogeneity of the participants and co-creative methods used resulted in various progressive and future oriented ideas. For example, the Futures Cliniques considering the futures of libraries helped in redesigning of the activities of Helsinki city library “Kohtaamispaikka” (Meeting Point).

The participating case organisations profited from the project in the form of new ideas for future development. In addition to the core concept (CFS), it was possible to test some of the tentative ideas, as well as the new techniques, products, services and processes of the participating organisations in the workshops. The participants also received all the material created in the project and in the Futures Cliniques conducted within the CFS.

The results of the project were also presented in the media, which both disseminated information and made the project more influential on local and even regional level, thus giving the participating organisations a means for marketing. The project also added to the wellbeing of the participating organisations’ employees. Visiting the Creative Foresight Space and attending Futures Cliniques were often regarded as legitimate out-of-official-role behaviour and relaxation with futures-oriented intellectual stimulation. Concrete input for regular work was provided by the ideas and innovation germs picked up from CFS, together with adoption of a more holistic and longer-term looking ahead.

Democracy and Participation to Profit from Creative Public Spaces

The project implicated the untapped possibilities of collaborative, co-creative and peer-to-peer foresight activities. Participatory foresight or planning methods could be used considerably more in policy and decision making processes. In government, each Ministry could have its own Creative Foresight Space. Large companies and organisations could have their own Creative Foresight Space, while smaller enterprises could share a common CFS, located e.g. inside a technology park, science hub or conference centre.

Another central issue is the planning and designing of public spaces. The concept of CFS could be implemented not only in corporations, but in public spaces and public enterprises too. This would not only improve work-related wellbeing but benefit democracy and participation. For citizens, libraries and educational institutes would be ideal places for futures learning through Creative Foresight Spaces.

Ubiquitous digital technologies and Internet-platformed solutions have a huge potential to provide for creative processes as well as participatory policy planning and democratic decision making. The potential of Internet-based technologies and services should be further examined especially in conducting virtual foresight workshops, cross-fertilised with face-to-face Futures Cliniques.

The project on Creative Foresight Space with the introduction of this hybrid concept for futures learning, and with its documentation of the results from two experimental cases is the first step. The second step is to disseminate the experiences of these cases to make a concrete call for further action. The concept of Creative Foresight Space and of Futures Cliniques could be revisited for involving policy-makers more directly in the foresight processes. These tools can be utilised to enable decision-makers, experts/researchers, planners, and citizens to collaborate − crowdsourcing the futures, “learning” the futures.

Authors: Sirkka Heinonen          sirkka.heinonen@utu.fi

Juho Ruotsalainen      juho.ruotsalainen@utu.fi

Sofi Kurki                       sofi.kurki@utu.fi

Sponsors: European Regional Development Fund, City of Helsinki, Technology Park Innopark
Type: single issue
Organizer: Finland Futures Research Centre, University of Turku, Future of Media and Communications Research Group, Sirkka Heinonen, sirkka.heinonen@utu.fi
Duration: 2009-2011 Budget: N/A Time Horizon: 2020 Date of Brief: 7.7.2012  

Download EFP Brief No. 237_Creative Foresight Space for Enhanced Work Milieux.

References

de Bono, Edward (1985). Six Thinking Hats.

Glenn, Jerome & Gordon, Theodore (ed.) (2009). Futures Research Methodology version 3.0. CD. Millennium Project. Washington D.C.

Heinonen, Sirkka & Hiltunen Elina (2011). Creative Foresight Space and the Futures Window: Using

visual weak signals to enhance anticipation and innovation. Futures vol 44, 248-256.

Heinonen, Sirkka & Kurki, Sofi (2011). Transmedial Futuring in Creative Foresight Space. In publication: Wagner, Cynthia G. (ed.) (2011). Moving from Vision to Action. Essays published in conjunction with the World Future Society’s annual meeting. pp. 119-128. World Future Society, Maryland.

Heinonen, Sirkka, Kurki, Sofi & Ruotsalainen, Juho (2012). Futures Learning for Future Work. From Know How to Know Why. Manuscript. Forthcoming.

Heinonen, Sirkka & Ruotsalainen, Juho (2012). Towards the age of neo-entrepreneurs. World Future Review, Journal of Strategic Foresight.

Ravetz, Joe, Popper, Rafael & Miles, Ian (2011). iKnow ERA Toolkit. Applications of Wild Cards and Weak Signals to the Grand Challenges & Thematic Priorities of the European Research Area. European Commission. http://community.iknowfutures.eu/pg/file/popper/view/11926/iknow-era-toolkit-2011

Website of the Research Group of the Future of Media and Communications (FMC), University of Turku

https://sites.google.com/site/futuremediac/

EFP Brief No. 235: Nanotechnology for Podlaskie 2020

Friday, December 21st, 2012

The general purpose of the project was to elaborate a strategy of nanotechnology development up to 2020 based on the desired priority directions of the Polish Podlaskie province development oriented towards the application of nanotechnologies and the identification of the key nanotechnology research trajectories.

Nanotechnology to Boost Disadvated Region

The project Technological foresight NT FOR Podlaskie 2020. Regional strategy of nanotechnology development was granted the financial support from the EU Operational Program „Innovative Economy 2007-2013” (Priority 1: „Research and development of new technologies”, Measure 1.1.: „Support for scientific research for the building of knowledge based economy”, Sub-measure 1.1.1: „Research projects with the use of foresight method”.)

The project is an attempt of breakthrough technologies promotion in situation when the development of the traditional sectors does not contribute to regional growth. It is located in one of the least economically developed regions of Poland (and of the European Union) with a low level of population’s economic welfare, little business competitiveness and low innovation intensity in the spheres of technology, processes and products. The project is based on the feed forward logic which assumes that the future changes of the environment will be effectively forestalled owing to the project results. This should allow the region to chart the development trajectory which doesn’t imitate others but heads in the direction where the leaders will be in the future. The assumed goals of the programme are:

  • elaborate a strategy of nanotechnology development in Podlaskie province till 2020
  • identify and mapp critical nanotechnologies up to 2020
  • identify the most important factors influencing the development of nanotechnologies
  • put forward scenarios of nanotechnology development
  • stimulate the process of regional vision building between the key stakeholders.

Nanotech Research Defined by Six Panels

Six panels defined the research priorities for the project:

  1. Nanotechnologies in Podlaskie economy (RF1)
  2. Nanotechnology research for Podlaskie developement (RF2)
  3. Key factors of nanotechnology development (RF3)

In addition to the three content-oriented panels another three focusses on methodologies: STEEPVL and SWOT panel (SSP), Technology mapping and Key technologies panel (TMKTP), Scenarios and Roadmapping panel (SRP) (figure 1).

The results of the six panels are integrated by the Key Research Team (KRT) which is also a platform of interaction and knowledge transfer between the panels.

From STEEPVL Analysis to Strategy

The methodology of the project is based on the intuitive logics school of scenario construction and comprises the following research methods and techniques: STEEPVL analysis, SWOT analysis, technology maping, key technologies, scenario method, roadmapping (figure 2). The main research methods are supported by brainstorming, moderated discussion and bibliometrics.

The selection of methods and techniques was conditioned by the aim of the project, planned funds, research duration and availability of data – both quantitative and qualitative.

One of the innovative elements of the project is the implementation of the concept of triangulation to experts’ recruitment in the aspect of researcher triangulation, data triangulation and theoretical triangulation.

Researcher triangulation was manifested in the project by the involvement of experts representing varied professional background, sex and age. Special attention was paid to the recruitment of women and young people (under 35) (min. 30%).

Data triangulation was achieved by involving experts representing different institutions as well as by drawing information about the factors shaping nanotechnology development via experts’ opinions verified by the existing published works (reports, books, publications, Internet sources on nanotechnologies).

Theoretical triangulation consisted in the involvement of experts representing different research fields, but still salient to the nanotechnology development in Podlaskie province.

Other innovative element of the project was the application of the two-dimensional assessment of STEEPVL factors taking into account (1) the influence and importance of factors and (2) the application of factor analysis in order to reduce the number of considered factors that shape the nanotechnology development.

Great attention in the project was paid to the development of technology mapping methodology, to the identification and the assessment of wild cards methodology and to roadmapping methodology.

Scenarios of Nanotechnology Development in Podlaskie Province

 

As a result of the conducted sequence of procedures four scenarios of nanotechnology development in Podlaskie province were developed. They were constructed along two axes, one of which related to the level of R&D in the region and the other to the level of collaboration among the actors from business, science and administration spheres (fig. 3).

Basic characteristics of the produced scenarios are presented in table 1. Further in the process, each scenario was enriched with a detailed description of the remaining 19 STEEPVL factors. Short descriptive visions were also written in each of the four cases.

  1. Megatrends

Scenarios formulation was preceded by a detailed characteristics of megatrends influencing the nanotechnology development. Following megatrends were identified:

  • technological progress,
  • ageing population,
  • increasing importance of alternative energy sources,
  • intensified activity of the states in the realm of security,
  • new patterns of social inequality,
  • shaping of the new economy,

All megatrends were further divided into branching trends.

  1. Priority technology groups

Additionally, seven priority technology groups for the Podlaskie region were identified by the experts:

  • nanomaterials and nanosurfaces in medical equipment (T20),
  • composite materials for dentist fillings (T17),
  • powder technologies in plastic, paint and varnish production (T31),
  • surface nanotechnologies in biomedicine (T21),
  • nanotechnology for cutting instruments and wood processing (T3),
  • nanotechnology for specialised textiles (T24),
  • nano-structuring of metals (T38).

The leading project experts attempted to embed the priority nanotechnologies into four scenarios by assessing the chances of each technology’s development in the context of a particular scenario. The results of that exercise are presented in fig. 4.

According to experts’ opinions in conditions of high R&D potential for nanotechnology and effective regional collaboration of business, science and administration, very high chances of development have five out of seven technologies, namely: powder technologies in plastic, paint and varnish production (T31), composite materials for dentist fillings (T17), surface nanotechnologies in biomedicine (T21), nanotechnology for cutting instruments and wood processing (T3), nanomaterials and nanosurfaces in medical equipment (T20). In S2 scenario high chances of development have only nanotechnologies for specialised textiles (T24). The situation in S2 and S3 scenarios changes fundamentally as there are no nanotechnologies of high chances of development.

For each identified key technology a roadmap of its development was elaborated comprising layers such as: resources, R&D, technology and applications.

Increasing R&D and Strengthening the Network

Technology foresight NT FOR PODLASKIE 2020. Regional strategy of nanotechnology development has allowed to identify the most important factors of the nanotechnology development in the region. In the course of the project, the participating experts identified key technologies that might contribute to creating a competitive advantage of the province. The scenarios presented will be the basis for developing the roadmaps of nanotechnology development and eventually for formulating a regional strategy to that end.
 
As the results of the project have shown so far, increasing the region’s R&D potential and strengthening the networks of entrepreneurs, scientists and authorities would create an environment most conducive to the development of nanotechnology in Podlaskie province. These two key factors therefore will be the vital elementsof the nanotechnology development strategy to be formulated at a later stage. The strategy, according to the project organisers, will set the direction for the introduction of nanotechnology into the economy of Podlaskie province and provide a sound proposal for a path towards the sustainable development of the region.
Authors: Anna Kononiuk a.kononiuk@pb.edu.pl

Lukasz Nazarko l.nazarko@pb.edu.pl

Joanicjusz Nazarko j.nazarko@pb.edu.pl

Joanna Ejdys j.ejdys@pb.edu.pl

Katarzyna Halicka k.halicka@pb.edu.pl

Urszula Glinska u.glinska@pb.edu.pl

Alicja Gudanowska a.gudanowska@pb.edu.pl

Sponsors: European Regional Development Fund, Operational Program „Innovative Economy 2007-2013”

Ministry of Science and Higher Education of the Polish Republic

Type: regional/technological foresight exercise
Organizer: Bialystok University of Technology

Joanna Ejdys j.ejdys@pb.edu.pl

Joanicjusz Nazarko j.nazarko@pb.edu.pl

Duration: Apr 2009-Jun 2013 Budget: 588,256 € Time Horizon: 2020 Date of Brief: Aug. 2012  

Download: EFP Brief No. 235_Nanotechnology for Podlaskie 2020.

Sources and References

Feasibility study of Technology foresight „NT FOR Podlaskie 2020”. Regional strategy of nanotechnology developement [Studium wykonalności projektu Foresight technologicznyNT FOR Podlaskie 2020”. Regionalna strategia rozwoju nanotechnologii], Białystok 2008.

EFP Brief No. 233: A Foresight Approach to Reshape Bogota’s Food Supply and Security Master Plan

Friday, December 21st, 2012

This forward looking exercise suggests a new approach to better structure Bogota’s fruit, vegetable and tuber supply chain by reviewing and reinforcing certain strategies stated in the Food Supply and Security Master Plan (FSSMP) in order to promote actions by the public sector and the stakeholders involved in this supply chain.

Food Supply at Affordable Prices

Bogota’s fruit, vegetable and tuber supply chain involves multiple actors, business models and interests, which are not yet aligned and can hardly be coordinated without both public and private involvement. In 2003, the City of Bogotá commissioned the CPTCIPEC Consortium to conduct a diagnostic study of the food supply chain system and the nutrition of the city’s inhabitants. This study served as input to the Food Supply and Security Master Plan (FSSMP) in 2006. From a nutritional perspective, it identified significant gaps in the intake of some foods, in particular fruits and vegetables, compared to an ideal diet. Concerning the operation of the supply system, it suggested eliminating massive product loss along the supply chain to increase the offer of these foods and reduce the number of middlemen in food markets as a means of lowering prices and making the products more affordable to the general public.

Logistics and Virtual Trade Platforms to Increase Food Supply

The FSSMP suggested the creation of a new food supply system that facilitates direct exchange among producers and retailers. The new organisation would be bolstered by introducing a virtual trade platform for products, a regional network of food consolidation centres and five logistics platforms in Bogota whose main role would be to facilitate cross-docking operations rather than product storage. Therefore, the FSSMP suggested to undertake efforts to establish groups of producers (supply) and retailers (demand) and advance the design and construction (or implementation) of a logistics and e-commerce platform. Despite all efforts, it has been difficult to convince producers and retailers to shift from traditional supply chains to the new scheme proposed in the FSSMP.

A Foresight Approach to Review FSSMP Strategies

New advances in logistics strategy and the first results of implementing the FSSMP show a lack of effectiveness of the strategies originally stated. Therefore, the current study reviewed the initial statements in the FSSMP based on a foresight approach. The foresight methodology used in this study consisted of five stages: pre-foresight, recruiting, generation, action and renewal (Miles, 2002; Popper, 2008b). First, the Master Plan served as input to define the objectives and scope of the exercise. Then, stakeholders and their relationships were identified. Later, system dynamics (SD) was used to model product, information and money flows along the fruit, vegetable and tuber supply chain.

As a result, two scenarios, for five products, are presented that discuss actions by the public sector and reactions to be expected throughout the whole food supply system. Finally, these outcomes are compared to the Master Plan’s objectives and some recommendations are made to improve its implementation. For this exercise, we consulted 247 market storekeepers, 15 experts in the production and trade of fresh products and urban logistics, 5 industry experts, personnel from the Corporación Colombia Internacional (CCI – the trade association of tomato, banana and plantain farmers), 5 managers from the Secretaria de Desarrollo Económico (SDDE) and researchers from MIT-CTL. More specifically, the stakeholders identified in the fruit, vegetable and tuber supply chain are represented in Figure 1:

System Dynamics Inputs: Material, Financial & Information Flows

The metrics of the SD model, such as flows, costs and prices, were defined from secondary sources such as regional and national studies, statistics, polls and governmental reports. Initially, the FSSMP included only material flows and nine scenarios that focused on identifying capacity problems in production, transport, distribution and inflows to Bogota. However, the new SD model developed in this study went further by including, to some extent, the flow of products, money and information of the five most important products (bananas, oranges, potatoes, plantains and tomatoes) in the fruit, vegetable and tuber supply chain.

Material Flow

The actors, represented in boxes, exchange food products. They will send – or ask for – a greater quantity of products through a certain channel depending on supply, demand, prices and costs (Figure 2). Every actor’s purchase and sales prices are determined by adding the previous actor’s costs per unit sold, fixed costs, variable costs, waste costs and expected monthly profit.

Financial Flow

The cash flows represented are costs of transportation, costs of distribution, costs of selection and prices. In addition, delays are depicted as money flows from purchases of middlemen, stores, wholesalers and supermarkets, which are paid in cash (Figure 3). Half of the money from wholesalers’ purchases is given at the moment of product delivery while the remaining half is due one month later. Supermarkets apply a 90-days payment policy to their suppliers, which means that total payment is completed three months after receiving the product.

Information Flow

We observed an exchange of information among stakeholders before the pricing point (represented by a dotted line in Figure 4). There is an exchange of information about purchase prices with the producers, on the one hand, while sales price information flows to the actors forward in the supply chain, on the other. The interaction of actors after price formation produces flows in two senses: information on demand that goes to wholesalers and logistics platforms and information on sales prices that goes to stores and customers.

Scenarios of Producers’ and Storekeepers’ Associations

After identifying these three flows that affect the supply chain under study and including them in the new SD model, eleven new scenarios were defined, but only four were elaborated in the SD model. However, in this work we present only two scenarios for the top five products in order to show the impact of storekeepers’ and producers’ associations. A set of variables in the SD model (tables 1 and 2) was grouped in the following categories: flow changes in distribution channels and variations in product volume, profits and prices. Thus, the model was run to observe the behaviour of these variables for the five selected products.

The first scenario measured the impact of producers’ associations on the supply system (Table 1). It revealed a reduction of transportation costs due to better use of transportation capacity, a wider distribution of products’ consolidation costs since they are divided among all producers and an increase in productivity because producers’ orders are centralised. The producers’ association scenario presents favourable results for the various variables along the supply chain for bananas, oranges and potatoes. However, the variables for plantains and tomatoes show no changes, which is explained by the fact that producers of these products generate enough profits to organise transportation to forward actors in the chain on their own.

The second scenario measured the impact of storekeepers’ associations on the supply chain (Table 2). In this scenario, there are cost reductions in the selection and distribution of products and reductions in sales prices across all five products sold by storekeepers to customers. The main obstacle to achieving an association of storekeepers is the creation of a scheme for stores that allows an agent to delegate the process of sorting fruits and vegetables to the storekeepers selling the products to the final consumers.

Reshaping FSSMP Strategy to Anticipate the Future

This forward looking exercise allowed the SSDE to better understand and implement the FSSMP. The two main scenarios depicted here as well as the SD model for the five products show, to some extent, the relationship between the actors, their interaction, and the structure and performance of Bogotá’s food supply system. The limitations of the model suggest that the food supply in Bogota cannot be studied without considering demand in the rest of the country or the economic feasibility of production. The following conclusions were drawn from the outcomes of this exercise:

1) The priority for products such as bananas and plantains should be to increase production to supply the city instead of reducing prices. The models reveal that the production of these two foods is quite low compared to demand. Nevertheless, food supply of the city should not be considered isolated from demand in the rest of the country.

2) Middlemen and wholesalers do produce value especially in case of products and trade channels with low trade volumes. The study showed that direct supply from producers to stores is more expensive than when other actors are involved. Higher costs arise because of the additional work involved in selecting the products required to replenish the stores. A detailed analysis showed that the cost gap between direct channels and other channels results from the selection costs incurred by stores when
buying directly from producers and from the size of the purchase order to be managed by the seller in-house.

3) Prices tend to even out between different channels. A balance of prices sets in because producers, looking for higher profits, will attempt to supply the channel that represents the highest profit, increasing the products offered through the respective channel. As a result, we can expect this not only to encourage a reduction in prices in this channel but also to reduce or increase existing shortages of products and costs in the other channels accordingly.

In order to reinforce the strategies and recommendations stated in the initial FSSMP and respond to the reality of food supply in Bogota, it is highly recommended

1) to acknowledge the diversity of stakeholders along the supply chain and develop operational or contractual schemes that allow to align efforts and deal with risks;

2) to tackle problems in the fruits and vegetables supply chain by individual product since each product responds to different dynamics of supply and demand;

3) to further develop and improve the SD model as a tool to collect and analyse information regarding the food supply system and further pursue the different research initiatives to accomplish the objectives stated in the Food Supply and Security Master Plan (FSSMP).

Download EFP Brief No. 233_Reshaping Bogota’s Food Supply and Security Master Plan.

Sources and References

Alimenta Bogota Program (2009a): Plan Maestro de Abastecimiento – SDDE. Recuperado el 17 de Febrero de 2011, de Plan Maestro de Abastecimiento – SDDE: http://www.alimentabogota.gov.co/index.php/sobre-alimentabogota/plan-maestro.

Bogota Program (2009b); Biblioteca | Caracterizaciones. Recuperado el 18 de Febrero de 2011, de Plan Maestro de Abastecimiento: http://www.alimentabogota.gov.co/index.php/biblioteca/cat_view/11-Caracterizaciones

Miles, I. (2002): Appraisal of Alternative Methods and Procedures for Producing Regional Foresight.

Popper, R. (2008b): How are foresight methods selected? Foresight 10 (6): 62-89.

EFP Brief No. 232: STRATCLU

Tuesday, December 4th, 2012

STRATCLU, the ‘entrepreneurial’ strategy process of the German ‘spitzen’-cluster (leading-edge cluster) MicroTEC Südwest meets the needs of multi-actor, multi-governance-level and multi-sector research and innovation (R&I) policies. The forwardand outward-looking process exemplifies how a broad range of regional R&I actors can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic R&I investments and collective actions, and focus their diverse competences in microsystems as a general purpose technology to tackle societal challenges and enter future markets globally.

Research & Innovation Programmes Addressing Challenges of the 21st Century

In line with a more systemic understanding of research and innovation (R&I) policy (OECD 2005), the respective support programmes introduced the perspective of global, societal challenges to be tackled by scientific and technological breakthroughs. The German government, for instance, launched its High-Tech Strategy 2020 (HTS 2020) in 2006 with the aim to make Germany a leader when it comes to solving global challenges (climate/energy, health/nutrition, mobility, security, communication) and providing convincing answers to urgent questions of the 21st century. The German Strategy for Internationalisation of Science and Research stresses that, to realise optimised solutions to these challenges, it is necessary to leverage science and innovation potential worldwide. In the same vein, the Europe 2020 strategy and its flagship initiative “Innovation Union” aim at refocusing R&I policy on the challenges facing society, and the EU Cohesion Policy 2014-2020 asks the member states and regions to develop innovation strategies for smart specialisation. The ‘entrepreneurial process’ of developing regional innovation strategies for smart specialisation (RIS3) (Foray et al. 2009) focuses on unique regional assets with a view to developing competitive products and services in international markets. If the different RIS3 are developed in alignment with the European context, synergies can be leveraged to further develop the European Research Area.

Against this backdrop, clusters as local nodes of global knowledge flows and ‘innovative hot-spots’ in globalised value chains provide the base not only for developing technological answers to the urgent problems of the 21st century but also for producing adequate, strategic knowledge for cutting-edge (and trans-regionally aligned) R&I programming (Sautter/Clar 2008). In 2007, the German government launched the ‘spitzen’-cluster competition as the flagship of the HTS 2020 and cornerstone of the national Strategy for the Internationalisation of Science and Research to support the development and implementation of future-oriented R&I strategies. The overall objective is to tackle key societal challenges and thus position the ‘spitzen’-clusters in the global knowledge economy and make them attractive for talented, creative people as well as innovative companies and forward-looking investors. MicroTEC Südwest in Germany’s south-western state of Baden-Württemberg and one of the winners of the competition started a forward-looking cluster strategy process inspired by the Strategic Research Agenda of the European Technology Platform on Smart Systems Integration (EPoSS), and focused on the priority fields of the German HTS 2020: climate/energy, health, mobility, security, communication.

‘Spitzen’-Cluster Strategy on Smart Microsystems Technology (MST) Solutions to Global Challenges

The MicroTEC Südwest cluster, closely linked withneighbouring parts of France and Switzerland, covers the competences needed along the value chain of the GPT (General Purpose Technology) miniaturised systems: from basic research, for instance in nano-, micro- or bio-technologies, to the design and production of smart microsystems, to the integration of such systems in ‘intelligent’ products (e.g. driver assistance systems in cars or point-of-care diagnostic systems in the healthcare sector). Besides global players like Bosch and Roche Diagnostics, the 350 actors involved in the cluster include top universities and research centres, and many small and medium-sized enterprises.

In order to focus the different competences on synergistic R&I investments, a ‘spitzen’-cluster proposal was developed with two application-oriented priorities to generate breakthrough innovations in global lead markets (health and mobility) and two technology-related priorities to develop and produce next generation microsystems for future fields of application. The funds (50-50 public-private) for implementation amount to nearly 90 million EUR, from national and regional ministries, regional bodies and enterprises.

The MicroTEC Südwest proposal was highly evaluated in the competition not only for the quality of its research projects but also for its additional structural projects on innovation support, qualification and recruitment, internationalisation and the STRATCLU strategy process.

From Ad-hoc Strategy Building to Systematic Learning Cycles

The STRACLU project has been set up to advance the successful ‘spitzen’-cluster project and to broaden and consolidate the participative decision-making process in the cluster. Stakeholder groups (cluster board, strategy panel etc.) have been established and strategic policy intelligence (SPI) tools combined in a learning cycle with three main stages:

· Stock-taking (incl. outward-looking): Review of cluster position in the global context (major SPI tools: audit, evaluation, benchmarking)
· Forward-looking: Longer-term perspectives & priorities (foresight, impact assessment)
· Action-planning: Roadmaps with milestones and specific joint actions (roadmapping, GOPP)

An operational learning cycle has been put in place as well to monitor the implementation of the joint actions. With these learning cycles, STRATCLU both guides individual actors in their strategic decision-making and develops MicroTEC Südwest itself into a learning ‘smart innovation system’, which continuously

· identifies global challenges and promising future markets,
· formulates long-term and ‘open’ RTDI strategies for smart MST-based solutions,
· builds local competences and capacities, looks for strategic partners along global value chains,
· encourages key local and global actors to join forces in common strategies and thus
· ensures long-term success in global competition.

MicroTEC Südwest AGENDA 2020+

Related to the national priorities of the HTS 2020, and based on detailed science and market analyses, the investigation and discussion of global trends and an assessment of their specific impacts along the strategic learning cycle (fig. 1), the MicroTEC Südwest strategy panel prioritised a joint AGENDA 2020+ with the following five major crosscutting priority fields for R&I, and an additional focus on cross-industry innovation and education and training.

These five R&I-related priority fields for smart MSTbased solutions address and leverage synergies across all key application fields (in particular with regard to the national priorities of the HTS 2020).

This topic was assessed as the most relevant. The renaming of the microsystems technology (MST) division of the German Ministry of Education & Research into Demographic Change: Human-Technology Interaction in the context of the German BMBF Foresight Process (Cuhls 2010) underlines the relevance of this issue. The big challenge is to develop smart MSTbased solutions adapted to people’s needs and providing them with real value added.

Here, the focus is on the integration of smart systems in superior systems: from smart systems to smart things like cars to comprehensive systems such as the transportation system (cf. cyber-physical systems or Internet of Things). The big challenge is to handle the increasing complexity that comes with a higher degree of system integration.

Energy converters (e.g. important for energy harvesting) and storage along with self-sustaining systems are preconditions to realise the systems-of-systems approach and to develop mobile and functional intelligent devices.

In the future, the production of smart systems and things has to be closely related to mass-customisation in order to provide the users (consumers) with wellcustomised and cost-efficient solutions.

Resource efficient production and consumption systems, total life cycle assessment (including the recycling stage) etc. are important issues in this priority field.

Roadmaps to Tackle Societal Challenges

Continuing along the strategy cycle, the AGENDA 2020+ provides the strategic framework for roadmapping exercises at multiple levels: Cluster actors develop R&I roadmaps towards market-focussed and MST-based breakthrough innovations to tackle societal challenges in prioritised joint action areas (e.g. in personalised medicine, factories of the future or green cars). These roadmaps will be aligned with other roadmaps, for instance of the European Technology Platforms EPoSS or MINAM, and integrated in the MicroTEC Südwest Cluster Roadmap 2020+, which involves also horizontal support measures like qualification, recruitment etc. and will be communicated to public and private investors (‘agenda setting’). Furthermore, the roadmaps will be transferred to SMEs in the cluster to support them in their own longer-term business development and R&I investment strategy.

Taking a Big Step Towards Smart, Sustainable and Inclusive Growth

The participative forward- and outward-looking strategy process in the German ‘spitzen’-cluster MicroTEC Südwest shows successfully how regional R&I consortia can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic investments and collective actions. By enabling actors to systematically develop future strategies together, to asses them and develop actorspecific, synergistic approaches to successful implementation, the overall risk of longer-term R&I investments can be reduced significantly, for the current participants and for foreign direct investment.

The strategy approach of MicroTEC Südwest meets the needs of (new) future-oriented, multi-actor, multigovernance level and multi-sector R&I policies in manifold ways. First, it focuses local competences in a general purpose technology on tackling grand societal challenges with the aim of entering global markets. Second, it strives to attract complementary competences and foreign direct investment from other regions, and to work together with strategic partners along global value chains. Third, it combines ‘bottom-up’ with ‘topdown’ activities by taking up and assessing external inputs from a regional perspective: for instance, the German High-Tech Strategy or the BMBF Foresights, European and other R&I policies and strategy processes, such as Joint Programming Initiatives or the Japanese NISTEP Delphis, respectively. Against this backdrop, the MicroTEC Südwest approach can be seen as a test bed for an ‘entrepreneurial process’ suggested by the European Commission to develop regional smart specialisation strategies and to capitalise on them to advance the European Research Area.

To fully benefit from the regional assets across Europe, strategic capacity building has to be strengthened, not only in Europe’s world-class clusters. If more clusters such as MicroTEC Südwest develop and align their longer-term strategies in order to raise, structure and optimise overall private and public (EU, national, regional) investments, with one focus on pooling forces and jointly tackling common challenges, a big step could be taken towards smart, sustainable and inclusive growth.

Download: EFP Brief No. 232_STRATCLU.

Sources and References

Cuhls, K. (2010): The German BMBF Foresight Process, in European Foresight Platform, EFP Brief No. 174.

Foray, D., David, P.A. and Hall, B. (2009): “Smart specialisation: the concept”, in Knowledge for Growth: Prospects for science, technology and innovation, Report, EUR 24047, European Union.

OECD (2005): Governance of Innovation Systems: Volume 1: Synthesis Report, OECD Publishing.

Sautter, B., Clar, G. (2008): Strategic Capacity Building in Clusters to Enhance Future-oriented Open Innovation Processes, in The European Foresight Monitoring Network, Foresight Brief No. 150.

Web links for more information:

www.microtec-suedwest.de

www.smart-systems-integration.org

www.minamwebportal.eu

www.era.gv.at/space/11442/directory/11767.html

www.steinbeis-europa.de/rsi.html

www.steinbeis-europa.de/stratclu_en.html

EFP Brief No. 228: Visions for Horizon 2020 from Copenhagen Research Forum

Friday, November 23rd, 2012

In January 2012, the Copenhagen Research Forum (CRF) gathered 80 European scientists to discuss the societal chal-lenges to be addressed by Horizon 2020, the next framework programme for European research and innovation, and consider how research could contribute the best solutions. This EFP brief explains the process behind the CRF and gives a summary of recommendations. It ends with a discussion on cross-disciplinarity and strategic partnerships as tools for organising research in order to solve complex societal challenges.

Visions for Horizon 2020 – from Copenhagen Research Forum

The EU Commission’s proposal for a new framework programme, Horizon 2020, is devoted to strengthening the strategic organisation of European research and innovation. The ambition is to mobilise excellent scientists across various branches of knowledge in order to provide solutions for complex societal challenges.

The Copenhagen Research Forum (CRF) set out to assemble a broad spectrum of leading European scientists to give their view on the Commission’s choice of societal challenges and possible ways of implementing Horizon 2020 as a means of tackling them. Approximately 600 scientists contributed throughout the process.

The CRF recommendations clearly affirm the EU Commission’s selection of societal challenges as well as the idea of supporting cross-disciplinary collaboration as a means to address crosscutting problems within and across challenges. The recommendations also send a strong signal of support for a framework where excellence, cross-disciplinarity and simplicity in administrative processes are key components.

The following pages provide an overview of the process behind the CRF, the main recommendations as well as a discussion of new instruments to be implemented to support cross-disciplinarity.

The CRF Process

The main idea behind CRF was to involve a broad spectrum of Europe’s top-level researchers in the making of Horizon 2020 since part of its preparation would take place during the Danish EU presidency in the first half of 2012.

The University of Copenhagen, Technical University of Denmark and the Capital Region of Denmark wanted the scientific community to provide unbiased input to Horizon 2020, with the aim of making Horizon 2020 as attractive as possible to researchers working in the areas covered by the six societal challenges. Professor Liselotte Højgaard was appointed as Chair of CRF.

The concept was finalised in the summer of 2011. The key issue was that CRF should convey ideas, visions and comments from outstanding researchers, all of whom were invited personally to join CRF. A full list of names of conference participants may be found in the CRF report (see link on the last page).

The process comprised several steps and organisational roles:

Chairship – This involved contacting researchers for the six groups and establishing a chairship comprised of one Dane and one European researcher for each challenge:

  • Health: Professor Liselotte Højgaard MD, DMSc and Professor Deborah Smith.
  • Food & Agriculture: Professor Peter Olesen and Director Kees de Gooijer.
  • Energy: Dr. Jørgen Kjems and Professor Kjell Hugo Bendiksen.
  • Transport: Head of Dept. Niels Buus Kristensen and Programme Director Dr. Christian Piehler.
  • Climate & Resources: Professor Katherine Richardson and Professor Johan Rockström.
  • Society: Professor Ole Wæver and Professor Loet Leydesdorff.

The six panel chairships were asked to invite up to 100 researchers to offer their views in a virtual discussion forum. Out of the invitees, 15 researchers from each group were also asked to meet at a workshop conference in Copenhagen on 16 January 2012 shortly after the Danish EU presidency began.

Virtual discussion forum – Divided equally between the six societal challenges, the 600 researchers were invited to comment on the draft text of Horizon 2020. The researchers were asked to contribute personal visions for the future as well as point out needs and possible solutions. They were also asked to suggest and comment on the technologies and the priorities within the given challenge as well as consider the instruments and implementation needed to ensure success as seen from a scientific perspective. Lastly, they were requested to contribute their ideas on how to secure the link between research and the innovation perspective stressed in Horizon 2020. All of the input was collected in a draft report that formed the basis of the aforementioned conference in Copenhagen.

Conference – On 16 January 2012, the six panels met and discussed the draft report, offering comments and adding new ideas inspired by the input collected in the virtual discussion forum. The aim was to reach agreement on (1) the views and recommendations in each of the six panels, (2) a joint statement during plenary sessions expressing the view on scientific issues cutting across all six challenges and (3) recommendations for the implementation of a challenge-oriented framework as a basis for excellent research and far-reaching solutions.

The Danish Minister of Science, Innovation and Higher Education, Morten Østergaard, attended the conference.

Outcome – The conference resulted in a condensed report offering ideas and solutions that could help form Horizon 2020 from a scientific point of view. The conclusions were presented to the European community in an open dialogue as explained in the following.

Dissemination – The CRF recommendations were presented to the EU Council of Ministers’ meeting in Copenhagen on 1 February 2012 and subsequently to the European Commission, the European Parliament as well as directly to Director General for DG Research and Innovation, Robert Jan Smits. The dissemination activities were closely connected to the Danish EU presidency.

In the following section, we provide key statements from the CRF panels’ recommendations. A full version can be found in the report.

Key CRF Recommendations for Each Societal Challenge

Health, Demographic Change and Wellbeing
  • Biomedical research and its implementation in clinical practice must be supported and accelerated. This requires a paradigm shift towards personalised medicine.
  • The global revolution in biomedicine is providing new technologies. Utilising those technologies requires vast efforts to expand and implement them.
  • A European platform engaging all key stakeholders to ensure discovery and delivery of these technologies will be crucial.
  • Establishment of a European Strategic Action for Healthier Citizens is also recommended to assist in strategic long-term healthcare research and planning, including preventive measures and the spread of best practice across Europe.

Food Security, Sustainable Agriculture, Marine and Maritime Research and the Bio-economy

  • Overriding challenges of increasing demand, competition for land use and other resource scarcities create massive pressure to produce significantly more per unit of a given resource.
  • Food, agriculture and land use must be seen in a complex and multi-directional value chain encompassing climate, available resources, environmental sustainability, transport, energy and health perspectives, not to mention social and economic requirements.
  • Key objectives are reductions in food waste and water consumption, valorisation of all bio-resources, including municipal bio-waste and agro- and bio-industrial side streams as well as the recycling of sufficient amounts of carbon and phosphor to maintain soil vitality.
  • Increasing prevalence of diet-related diseases and disorders calls for a balanced healthcare concept more geared towards prevention.
  • There is a need to create a collaborative innovation culture linking researchers, companies (especially SMEs), university education, NGOs and governments.
Secure, Clean and Efficient Energy
  • Horizon 2020 priorities should build on (1) a revised Strategic Energy Technology Plan (SET Plan), including a critical update of technology road maps and (2) a new, complementary systemic approach to combine technological, economical, political, social and cultural research to facilitate the transformation of the energy system as a whole.
  • Collaboration of social sciences and humanities with ‘hard sciences’ must be recognised as necessary and organised and funded accordingly to meet the challenges at the system level.
  • Coupling of educational efforts with research and innovation is critical for realising the ambitious plans for technology implementation and the overall system transition agenda.
  • Direct mobilisation of universities in addressing systemic challenges should be given high priority.
Smart, Green and Integrated Transport
  • The complexity of transport challenges requires closer cooperation across scientific domains and integration across universities, research institutions and industry than in the past.
  • Meeting the challenge of developing smart and green transport systems requires not only technological solutions but also a better understanding of transport behaviour and the use of innovative and effective policy instruments.
  • This calls for a more pronounced role for the social sciences than in previous framework programmes as well as for strengthening the integration of scientific domains.
  • Technological innovation will still be of paramount importance, including cleaner and safer vehicles for all transportation modes, cost-effective alternative fuels, advanced ICT for personalised real-time travel information with modal integration, metropolitan traffic management and smart payment systems.


Climate Action,Resource Efficiency and Raw Materials
  • Climate change constitutes one of the most urgent global resource challenges facing society, where the resource in question is our atmosphere as a receptacle for greenhouse gas wastes.
  • Development of actions and strategies for dealing with this challenge can potentially provide models for dealing with resource scarcity issues (biodiversity, ecosystem services, water, phosphorous, ores and metals etc.).
  • A general paradigm for dealing with resource scarcity is reducing the need for – and more efficient use of – the resource, combined with the adaptation of human activities to changed conditions and/or the recognition of resource scarcity.
  • In dealing with resource scarcity in general and the climate in particular, a major challenge is to channel the knowledge gained on the mechanisms of the Earth’s system into political and societal action. This requires cross-disciplinary approaches that integrate natural sciences with other disciplines.
  • The focus of Horizon 2020 should thus be to underpin societal responses to climate challenges by including research on systemic interaction, collecting baseline information and establishing monitoring activities of different mitigation and adaptation approaches.
Inclusive, Innovative and Secure Societies
  • The focus on ‘inclusive, innovative and secure societies’ provides a highly welcome challenge to the social sciences and humanities (SSH).
  • The Horizon 2020 proposal tends to focus on ‘hard’ technologies, especially statistics, assessments and measures of efficiency (evidence-based lessons), with a corresponding tendency to employ a technocratic definition of the nature of the challenges (e.g. in the security part, critical infrastructure protection is prioritised over international politics).
  • This represents a limited political and social vision that underestimates the power of citizens and communities to contribute to the realisation of inclusion, innovation and security.
  • Corresponding to a vision comprising a broader mobilisation of societal energies are forms of research that employ a wider selection of methodologies and theories to study the dynamics of society as productive and generative, rather than as the site of problems to be solved.
  • SSH can play key roles in the other societal challenges as well. It is important that researchers in the SSH engage scholars in the hard sciences in a joint effort to cultivate research-based innovation regarding the way expertise and democracy interact.

Excellence,Cross-disciplinarity and Simplicity

The ambition of using societal challenges as a means to organise European research requires new approaches. The message from CRF is to pursue this through a combination of excellence, cross-disciplinarity and administrative simplicity.

The CRF report signals a strong will among scientists to enter into cross-disciplinary collaborations in order to address complex challenges for which no single discipline has the solution. But this must not violate an equally strong need for administrative simplification and a continued effort to support excellence in all research activities. Without excellence as a fundamental requirement in all programmes, the cross-disciplinary ambition may become a hollow and strange add-on to ‘real’ science. Whenever a problem calls for a disciplinary approach, this should not be substituted with cross-disciplinarity. Timely application of new approaches must be a key priority.

Strategic Partnerships as Tools for Organising Cross-disciplinary Collaboration?

One of the ways in which cross-disciplinarity may enter the Horizon 2020 programme could be by establishing strategic partnerships devoted to delivering solutions to complex challenges. Strategic partnerships could be a way for the Horizon 2020 programme to nurture new constellations of fields of expertise without establishing very detailed road maps or other guidelines ‘from above’. It would be important to involve industrial and civil society actors in the formulation of strategic objectives in order to ensure that strategic partnerships become platforms for linking strategic priorities from science, policy, industry and other actors and that these partnerships organise collaboration accordingly.

A key feature of implementing strategic partnerships should be to provide them with sufficient operational freedom so as to secure flexibility and entrepreneurship in how partnerships pursue their goals at the project level.

Strategic partnerships should be an invitation and challenge to European research to explore new models of collaboration. This corresponds also with a clear recommendation from the CRF advocating the setup of strategic platforms connecting long-term visions with mid- and short-term investments in a dynamic way.

The advantage of a partnership-based organisation of strategic research is that it allows coordinating a variety of fields and actors while creatively linking actors who would otherwise not establish collaborative ties. Coordination and connection are thus key aspects of well-functioning strategic partnerships – but only if the model builds on principles that afford strategic partnerships sufficient degrees of freedom in organising collaboration projects. Otherwise, the risk of reproducing fragmentation and the resulting problems known from FP7 cooperation will be substantial.

The CRF epitomises an interest among scientists to engage in shaping the framework conditions of research and innovation. Beyond the scope of specific recommendations, the CRF may serve as a source of inspiration for how to establish a direct dialogue between the scientific community and policymakers.

The CRF report was followed up by a ‘CRF II’ process during which the chairship of CRF put together a set of recommendations for the implementation of Horizon 2020 in light of the CRF report. The resulting paper (Højgaard, L. et al. [2012a]) focuses on recommendations for implementing measures to promote excellence, cross-disciplinarity, simplicity and impact. The recommendations for implementation along with the CRF report can be found at the CRF homepage (crf2012.org).

Authors: Brenneche, Nicolaj Tofte                   ntb.lpf@cbs.dk

Højgaard, Liselotte      liselotte.hoejgaard@regionh.dk

Sponsors: Capital Region of Denmark

Technical University of Denmark

University of Copenhagen

Type: European research and innovation policy, Horizon 2020
Organizer: Capital Region of Denmark, Technical University of Denmark, University of Copenhagen

Contact: Anne Line Mikkelsen, amik@adm.dtu.dk

Duration: 2011 – 2012
Budget: n.a.
Time Horizon: 2020
Date of Brief: November 2012

Download: EFP Brief No. 228_Visions for Horizon 2020.

Sources and References

Højgaard, L. et al (2012): Visions for Horizon 2020 – from Copenhagen Research Forum.

Højgaard, L. et al (2012a): Copenhagen Research Forum II. Recommendations for an optimized implementation of Horizon 2020.

Both are available at www.crf2012.org.

EFP Brief No. 224: Technology Radar: Early Recognition of New Business Fields in Future Markets

Tuesday, October 23rd, 2012

New technologies are changing the market. All the more important it is for a company not to miss any relevant future technology. In the years 2009 and 2010, a global German high technology company used the support of the FutureManagementGroup AG to identify the ten most important emerging technologies in each of its four business units. The technologies should lie outside the current core technologies. The goal of the project was the early recognition of future markets in these technologies. For this purpose, we used a broad toolset in accordance with the Eltville Model of future management.

Future Management

The FutureManagementGroup AG (FMG), founded in 1991, is an international group of experts specialised in future management and the early recognition of opportunities in future markets. Using the “Eltville Model” and various future management methods and tools, we built a methodological bridge from management practice to futures research and back to daily business. Future management comprises the entirety of all systems, processes, methods and tools for early perception and analysis of future developments and their inclusion in strategy.

226.biledaaaaaaa

Figure 1: Future management as a bridge

Future management makes it easier, and in many cases possible at all, to use the results of futures research as a resource for orientation and inspiration in a business context.

The Five Futures Glasses

We use the “Eltville Model”, which offers a set of five distinctive and clear views on the future. We call them “the five futures glasses”. Each of the five futures glasses has its own specific characteristics, principles and modes of thinking:

  • The blue futures glasses look at the probable future → assumption analysis.

The guiding question is: How will our market(s), work and living environments change in the next five to ten years?

  • The red futures glasses look at possible surprises in the future → surprise analysis.

The guiding question is: How should we prepare for possible surprising events and developments in the future?

  • The green futures glasses look at the creatable future → opportunity development.

The guiding question is: Which opportunities for new markets, products, strategies, processes and structures will arise from these changes?

  • The yellow futures glasses look at the desired future → vision development.

The guiding question is: What does our company need to look like in five to ten years time in the sense of a strategic vision?

  • The violet futures glasses look at the planned future → strategy development.

The guiding question is: How do we need to design our strategy to realise the strategic vision?

The five futures glasses form the process model of the Eltville  Model. You cannot wear all five futures glasses at the same time or the future will remain unclear and confusing. You need to put your different futures glasses on one after the other to form a effective working process.

The second essential component of the Eltville Model is the results model, a semantic network of objects of thought that are used (future factors, assumptions, surprises, opportunities etc.)

The Eltville Model has been developed through research and in more than a thousand workshops and projects with leading corporations as well as with non-profit organisations around the world. It is a unique model that consistently resolves the confusion concerning the future, creates clarity and provides a productive way of working with sound insights and results.

Looking for Amazing Technologies

The most important goal of the project was to identify “amazing technologies” outside a client’s current capabilities but with a potentially high impact on the existing business of the client. We were asked to evaluate the exact relevance of these technologies for the client’s business to deduce new market opportunities of these technologies and evaluate their potential.

Our solution to accommodate these needs was a “future business radar”. The focus was on the blue futures glasses (assessment of technologies) and the green futures glasses (development of opportunities). Less focus had been given to the yellow futures glasses (assessment of opportunities and decision, which opportunities should be pursued). Not included were the violet futures glasses: With the completion of the project, the business units have individually taken responsibility for developing the strategy to enter the future markets that were identified as relevant to their business.

Technology Radar: the Project Process

Function Maps

After the definition of the project goals and the project timeline, the first step was the analysis of functions delivered by the four business units. In contrast to a product or a solution, a function describes the effects that a product is actually bought for. Questions to think about to identify the functions of a product are:

  • What is it that your customers actually pay for when they purchase your product?
  • What is the actual use that your customers would like to obtain from your product?

Concentrating on the functions opens up completely new business opportunities even for the combination of products with other products from outside the current portfolio. Functions can be described at three levels:

  1. Super-functions: Functions that are indirectly fulfilled by a product or service, for example through integration into other products (e.g. personal mobility in case of all automotive parts)
  2. Primary functions: Core functions of a product or service for which it was invented. The main reason for its existence (e.g. sealing).
  3. Secondary functions: Additional functions the product or service fulfils beyond its core use. They often are the decision criteria of customers if several products can fulfil the primary functions reasonably well (e.g. convenience, cost saving).

224_bild2

Figure 2: Levels of functions

The relevant functions were developed in a workshop with the project team consisting of representatives of all business units and enhanced through independent analysis by FMG. The functions were then transferred to visual maps, reviewed by the business units and jointly further developed by FMG and the project team.

Long List of Technologies:
Which Ones Are Potentially Relevant?

The long list of technologies was developed from extensive secondary research. All technologies that are described in current literature as emerging and/or as gaining importance in the future where considered for the long list. The single selection criterion for inclusion in the long list was the existence of a conceivable relation to a single function of one of the business units. The connection of a technology to a function is a valid indicator for its potential relevance. It shows that the technology can change the way in which the function is performed in the future. It can provide new solutions and products as well as change business models, thus changing value creation in the market. A total of 180 potentially relevant technologies have been identified.

An important source in the desk research was the FMG-FutureNet, a semantic database of futures knowledge. It is a knowledge network, modelled on the human brain, in which items of future information are saved and linked. We structure the available future knowledge and evaluate, summarise, substantiate and meaningfully link the individual items of futures information. In addition, we add information gained in our projects. As a result, the FMG-FutureNet has become a unique database of future markets.

For the technology radar project, we additionally evaluated websites, studies, books and magazines.

Short Lists of Technologies:
Evaluation of Technologies

The technologies from the long list were evaluated along two criteria: “impact on industry” and “reasonable time horizon”. The initial evaluation was done by representatives from the business units on a 9-point scale. A second evaluation was performed by FMG leading to some technologies with low rankings to be reconsidered. After a structured discussion process, each business unit selected ten technologies for deeper analysis. In total 32 different technologies were analysed and the results summarised in technology briefings.

Identification of Future Market Opportunities

A future market is a solution for important future problems or desires of certain people that develops or will generate significantly more revenue in the future. Examples of future markets include augmented reality glasses for smartphone users, robots that carry luggage and equipment for the military, or affordable space tourism for adventure travellers. The difference between a future market and a future trend or future technology is that one can additionally imagine which concrete solution people would actually be prepared to pay for and how you can make a profit out of it.

Future market opportunities were developed through analytical and creative thinking, including input like future factors and methods like meta-opportunities, which we would like to introduce here briefly.

Future factors are trends, issues and technologies that act as the driving forces of future change and allow us to collect knowledge about the future. They are based on existing knowledge of experts and futurists on possible and probable future developments. Future factors give indications on what, why and how the future is changing. Two types of future factors are important for the early recognition of future markets:

  1. Future factors in nature, society, business and politics that change the needs of end consumers. Examples are climate change, feminisation, entrepreneurisation, flexibilisation or globalisation
  2. Future factors in technology and science that will change processes and methods as well as products, services and solutions. Examples are nanotechnologies, dematerialisation, informatisation, micro-system technology, robotics or neurotechnologies.

Future factors primarily represent the view through the blue futures glasses but can also be used as a technique to support creative thinking. This is especially fruitful when future factors have no direct relation to the client’s industry.

Meta-opportunities are repetitive patterns that are recognisable in many future opportunities. These patterns are recipes and shortcuts for opportunity recognition. They illustrate models of best-practice thinking and stimulate the search for opportunities. Through the use of meta-opportunities, productivity and the value of opportunity development can be increased considerably.

Subsequently, the identified and developed future market opportunities were set in relation to the business units and to the functions fulfilled by the business units in particular. In addition, the technologies were analysed for the interrelations among each other. From 98 raw future market opportunities, ten were selected for each business unit to be described in a short portrait. The criterion of choice was the estimated market potential. The selected future markets were described following four main questions:

  1. Which problem is solved? Which desire is fulfilled?
  2. What is the solution?
  3. Whom is the solution delivered to?
  4. How is the solution special?

Finally, the time horizon of the future markets was evaluated from a technical and a demand perspective; the markets were classified in terms of their distance from current capabilities.

A Strong Case for Function-based Technology Assessment

An important goal of the project was not to miss any relevant technology. This was ensured by an overview scan and the analysis of the results of futures research concerning the emergence and further development of new technologies. Simultaneously, the technology radar served as a future business radar, as it identified the most promising future markets that lie in the most important technologies. Out of 180 technology candidates that were included in the long list, we created 41 differentiated and in-depth future market portraits.

The project has shown how function-based technology assessment can contribute to identify relevant technologies outside current competencies and businesses – an essential requirement to recognise potentially profitable future markets.

The most promising of the recognised future markets needed to be explored in more detail. Future markets can only be considered as realistic if there are enough arguments for their future market potential. Therefore, the next step for each business unit was to do detailed future markets research for selected markets. The future

224_bild3

Figure 3: Map of results

markets research provides a solid analysis of market prospects, key challenges and possible business models. It thus allows sound investment decisions for the development of a future market.

Authors: Enno Däneke             ed@futuremanagementgroup.com

Stefan Schnack          st@futuremanagementgroup.com

Sponsors: A German high technology company
Type: Sectoral forward-looking analysis
Organizer: FutureManagementGroup AG, Eltville, Germany
Enno Däneke, ed@futuremanagementgroup.com
Duration: 2009 – 2010
Budget: n.a.
Time Horizon: 2020
Date of Brief: July 2012

Download: EFP Brief No. 224_Technology Radar Eltville

Sources and References

Mićić, Pero (2010): The Five Futures Glasses: How to See and Understand More of the Future with the Eltville Model. Houndsmill, Basingstoke, Hampshire: Palgrave McMillan.

Mićić, Pero (2007): Phenomenology of Future Management in Top Management Teams. Leeds: Metropolitan University.

Mićić, Pero (2006): Das ZukunftsRadar. Die wichtigsten Trends, Technologien und Themen für die Zukunft, Offenbach: GABAL-Verlag.

For further information on future management, the Eltville Model and the Five Futures Glasses, please visit: http://www.futuremanagementgroup.com/en.html