Archive for the ‘Socio-economic sciences and the humanities’ Category

EFP Brief No. 263: The Future of Aging in Upper Austria

Thursday, September 1st, 2016

The foresight study aimed at exploring what technological solutions and social innovations for ambient assisted living (AAL) can offer widest coverage in a demographically-challenged rural area such as the Mühlviertler Alm (Upper Austria). To increase the acceptance of the identified findings among the local population and the success of the implementation of the AAL solutions in a potential follow-up project (e.g. as a model test region), strong emphasis was put on the integration of potential users and other stakeholders throughout the whole study.

Active and Assisted Living (AAL): Intelligent Technologies for the Elderly

The social foresight was part of the project
“WEGE2025: Our ways to an age-appropriate region 2025 – Living independently in the Mühlviertel” as part of the Austrian national funding programme “ICT of the Future: benefit – Demographic change as a chance” (project no. 846222).

For the last decades life expectancy has been increasing continuously throughout Europe due to improvements in life conditions and healthcare. Meanwhile, the share of elderly people (aged 65 and over) among the total population has reached an average of 18.5% across the EU-28 and 18.3% in Austria (EUROSTAT 2015). For 2050, it is expected that these numbers will double. This demographic change often goes along with changing family structures (e.g. reduced family sizes with fewer potential family carers for the older people at hand) and limited numbers of available local care facilities. Consequently, new and innovative solutions are necessary to ensure an independent living of the elderly in their own home for as long as possible.

Intelligent technical solutions have a huge potential to meet the upcoming healthcare challenges of aging societies and become an important pillar in the personal healthcare and care of elderly people in the years to come. Active and Assisted Living (AAL), an emerging multi-disciplinary field, specifically aims at providing technical aids and technology-assisted services to the elderly as well as care givers by exploiting information and communication technologies (ICT). However, the overall success and acceptance of AAL systems in practice will crucially depend on how well the new technological solutions can address the needs of the elderly and maintain or improve their quality of life. Therefore, it is vital to know the specific needs of the elderly in their respective living environments and how innovative solutions can be tailored to both the needs and the living environment.

AAL in a rural region

So far, AAL solutions have mainly been developed for users with a focus on specific indications, independent of their place of residence and hardly ever for an entire region. In particular, for rural areas there are hardly any visions on how to improve the attractiveness of the region for an independent life for senior citizens and their needs in their third and fourth phases of life. Rural areas and the people that are growing old there have to cope particularly with the rural depopulation of young people and are confronted with a general decrease in public utility infrastructure.

Mühlviertler Alm

The Mühlviertler Alm is an association of ten municipal communities situated in the north-east of Upper Austria. Agriculture is the predominant economic sector. Each community consists of between ten and 20 villages, each of which consists of a densely populated village centre as well as numerous individual, scattered farmsteads far from the village centres. Consequently, the region is characterised by long supply routes and require high mobility in the daily life of the residents.

The Mühlviertler Alm is currently undergoing a process of demographic change. An increasing number of elderly people is opposed to a decreasing share of younger people. The highest pressure is expected in the coming decades when the baby-boom generation retires. At the moment, about 18.000 people live in the region Mühlviertler Alm. Some 4.000 of them are already older than 60 years. Until 2030, it is expected that this number will rise by 50%.

Active and independent aging is an important topic in the region. Since 2010, the communities have been actively facing the demographic change with local projects. They consider the demographic change a chance for a new social interaction.

Aiming to Become Model of the Future

The project WEGE2025 analysed what AAL solutions can offer the widest coverage in a rural area such as the Mühlviertler Alm. The major question was therefore what AAL technologies and social innovations can be implemented for a maximum of end-users and will also be applied by secondary users, such as managed care organisations.

As a result of the project, the region Mühlviertler Alm is expected to become a model for the future development of a test region for active and assisted living solutions.

Exploring the Potential for AAL in a Rural Region

A major focus of the project was on the methods used for the exploration of AAL test regions. While ongoing test region projects in Austrian are mainly technologically driven, the WEGE2025 project pursued an interactive stakeholder approach. Within a comprehensive future-oriented stakeholder process, both project partners, AIT and Verband Mühlviertler Alm, together with some 100 stakeholders (end users, medical staff, and providers of services in the general interest and other stakeholders) from the region worked together to explore future needs for an attractive life during old age and to assess by means of scenarios, a roadmap and a vision of the future the potential for implementation of the suggested solutions in real life. The interactive approach included personal interviews and large group settings (workshops) with stakeholders and was preceded by a qualitative background research.

This project provided the unique opportunity to include a whole region in the preparation for a test region and to make allowance for the needs and views of their residents on active and independent living and aging. This approach should increase the success and the participation rate in the follow-up test region.

Exploring the Framework Conditions of the Region

A series of qualitative interviews with 15 residents of the Mühlviertler Alm working either professionally or as volunteers in healthcare and care for the elderly were made to explore the framework conditions and major needs of the region. The interviewees highlighted the following key challenges of the region Mühlviertler Alm:

  • Peripheral geographic location
  • Demographic change
  • Lack of awareness of the aging
  • Increasing number of people suffering from dementia
  • Increasing professional activity by all family member (resulting in a lack of family member carers)
  • Increasing need for new forms of neighbourly help
  • Lack of social activities for people with physical impairment
  • Decrease in the public transport
  • Lack of comprehensive provision of medical care (e.g. medical specialists)
  • Lack of available places in institutional care and support facilities
  • Lack of a network of providers of care and nursing institutions
  • Lack of a central contact point for information (e.g. regarding healthcare and other care)

With respect to the potential implementation of AAL solutions in the region, the interviewees expressed reservations as regards technologies in general and pointed out the lack of suitable infrastructure (e.g. poor mobile phone coverage, lack of access to high-speed broadband services).

Future-Oriented Stakeholder Process

To identify the needs of the elderly in the region and to define the requirements for AAL solutions, a foresight exercise was implemented. In four workshops, potential end-users, representatives of companies, for services of general interest, and research organisations discussed together what it needs to be able to lead an independent and age-appropriate life in a rural region such as the Mühlviertler Alm.

Stakeholder Workshop I – Visioning

In this workshop the participants worked on the megatrends of the future and developed a common vision 2050 of the Mühlviertler Alm. Megatrends are influential, global developments with long-term effects, which can change the future and should therefore be considered in strategy and policy development processes. Among the megatrends discussed in the project were climate change, demographic change (aging), social and cultural inequalities, urbanization, digital culture and knowledge-based economy. Guided by these megatrends, relevant external factors (drivers), which impact the living at Mühlviertler Alm were discussed for five areas: social, technological, economical, environmental and political developments (STEEP factors), and the most important influencing factors were identified. The findings were summarised in seven fields of actions:

  • Autonomy and health
  • Occupation, education and recreation
  • Communication (social, ICT)
  • Accommodation and public space
  • Mobility
  • Infrastructure (traffic, energy and ICT)
  • Environment and resources

For the development of a common vision of the Mühlviertler Alm for 2050, the workshop participants worked in small groups on the fields of action as well as on additional “disaster” fields of action and drew together representative pictures. In follow-up discussions, objectives were derived for each field of action and prioritised. A visual facilitator compiled the most important objectives in a new picture, which now depicted the common vision 2050 for the Mühlviertler Alm.

As a preparation for the second workshop, small groups developed three different types of scenarios: a) business as usual, b) sustainability, and c) disaster. To anchor the scenarios in daily routine activities the groups built their scenarios around a selection of different personas:

  • 35-year old top manager and mother of a handicapped child
  • 87-year old, wealthy widow
  • 53-year old, nursing male relative
  • 24-year old, female student in Cambridge

The project team subsequently added to the scenarios the trends and drivers that had been previously identified by the workshop participants.

Stakeholder Workshop II – Scenarios and Roadmap

Some volunteers among the workshop participants worked out the central turning points of each of the scenarios and presented them by means of improvisation theatre to the plenary audience.

Based on the visual and emotional impressions that the theatre play created in the audience, further objectives were derived and discussed within the frame of four key topics: health awareness, services of general interest & coordination office, diversity & inclusion and change process (politics & infrastructure).

As a result, for each key topic up to three main objectives were selected. The necessary actions for their implementation were defined and the most relevant actors singled out. These sets of measures were placed along a timeline and compiled to a roadmap according to the estimated time of implementation.

Stakeholder Workshops III & IV – Services & Action Plan

During an evening event the roadmap was presented to and discussed with regional service providers and other economic operators in order to add practical ideas for AAL solutions in the following areas: social interaction, information & education, occupation, mobility, health & wellness, hobbies, care at home, supply of everyday consumer goods & support with household tasks, and safety & privacy. Ultimately, four key topics could be identified as the core topics of Mühlviertler Alm:

  • Mobility
  • Social inclusion
  • Health incl. telemedicine
  • Comfort & living

In the fourth stakeholder workshop these topics were taken up and defined more specifically concerning objectives and contents in action plans. By means of “collaborative mapping” all relevant services and actors of the region that could be relevant for a follow-up project were gathered and visualized on a map.

Approaching the Needs of the Elderly

Mobility

Remaining mobile even in old age is of uttermost importance in rural areas that are characterised by long-distance ways for daily routines. Mobility is often also a prerequisite for social inclusion of old and impaired people and participation in social life. There is a need for a wide variety of individual transport for elderly and impaired people. Transport services need to be flexible in terms of booking services and availability, e.g. with short waiting times. Building up a network of transport service providers is therefore essential. Information on the availability of barrier-free busses, their timetables and existing boarding aids and wheelchair accessibility on vehicles as well as shared taxis for quick and flexible trips (e.g. to physicians or for leisure time activities) could be provided via mobile apps and ICT-supported lift-sharing exchange. All offers could also be collected on a simple internet platform for mobility offers.

Social Inclusion: Information Platform & Coordination Office

The local communities want to have access to and be able to exchange information in the best possible way. For issues concerning care and nursing, a coordination office (e.g. for multi-professional services) would ensure an optimal information transfer to the public, when needed. The office should be located centrally and could also serve as a hub for telemedicine services. A web-based platform could constitute another source of information for the population. It can serve as a market place for supply and demand of various sorts, e.g. meetings for senior citizens, midday meals organised as social events, or other cultural, sportive leisure time activities. Such an events calendar ideally embeds functions for registration for the events as well as for mediation of shared lifts in private cars or shared taxis and buses that offer also transportation of wheel-chairs, etc. It can also provide information and booking facilities for mobile care and nursing services, experts and delivery of goods. A crucial prerequisite for the acceptance of such a platform is the simple operation and intuitive handling of the platform by the users.

Health incl. telemedicine

Establishing structures which ensure the care and medical surveillance / monitoring of health data and alarm functions for threatening deviations is also important for the region. Such structures would particularly help people with chronic diseases to live longer in their own homes. To benefit of telemedicine services it will be important to develop a system that integrates already existing measuring devices such as blood pressure monitors, blood glucose meters or warning devices in case of falls. Simple operation of such telemedicine devices is again the key to widespread use. Tying in with the idea of a coordination office the residents of the region also wish for immediate help in emergency situations. A competent medical phone service with decision-making competency that is available around-the-clock and linked to a medical care network could be based in the coordination office and compensate for physicians off duty.

Comfort & Living

Autonomous living with comprehensive care in one’s own home is of major importance in the region. Medical care should be available across the region and flexible enough to cater for the needs of the residents. There is also need for social networks of neighbourly help, including support for household tasks and help in the garden. Supply of everyday goods should be ensured by means of service providers that could be contacted via mobile app. In addition, homes should be “smart” and provide a system of automatic components, such as door openers, automatic night lights, fall alarms, as well as assistance systems for automatic notification of attendants in emergency situations. IT professionals and other service providers should be available in the region to ensure installation, maintenance and repair work when needed.

Authors: Manuela Kienegger    manuela.kienegger@ait.ac.at
Sponsors: FFG – Austrian Research Promotion Agency
Type: Social Foresight as part of an exploratory study for a test region for ambient assisted living
Organizer: AIT Austrian Institute of Technology, Verband Mühlviertler Alm
Duration: 2015 Budget: € 126,000 Time Horizon: 2025 (2050) Date of Brief: August 2016

 

Download EFP Brief No. 263: The Future of Aging in Upper Austria

Sources and References

This foresight brief is based on the final report of the Project WEGE2025.

Kienegger, M. et al. (2016). WEGE2025 – Unsere Wege in eine altersgerechte Region 2025 – Selbstbestimmt leben im Mühlviertel. Endbericht zum Projekt Nr. 846222 im Auftrag der FFG. AIT-IS-Report, Vol. 119

EUROSTAT (2015). Population age structure by major age groups, 2004 and 2014 (% of the total population). [Accessed 28/07/2016]

EFP Brief No. 260: Building Regional Foresight in Antofagasta, Chile

Friday, March 25th, 2016

The foresight programme was part of a broader joint project, which had an overall objective to enhance innovation-driven sustainable economic development of the Antofagasta region. The main purposes of the foresight project were 1) improving the foresight capability in the region, especially for the partner organisations, 2) enhancing collaboration between the industry, government and research organisations and 3) supporting the creation of a strategic research agenda for the region on a topic chosen by the partner organisations.

Pact for Regional Development and Innovation in Antofagasta Region

In March 2008, various public and private actors signed the “Pact for Regional Development and Innovation in Antofagasta Region” answering to the challenge of regional economic development. The main objectives of the agreement are to generate economic growth and equality, generate better jobs, and pave a path towards a sustainable development in the region. Those who signed the pact recognize that this can be achieved only by increasing human capacities in the region, particularly in organizations that support research, development and innovation activities.

Chilean Foreign Ministry selected Finland as one of six countries to be studied in the “Like-Minded Countries Project”, which started in 2005. Especially the transformation of the Finnish economy from a resource-driven economy into knowledge-driven economy was considered a source of inspiration to Chilean national and regional aspiration. Chile considers Finland as a prime global example on how resource-driven economies can develop into knowledge-driven economies when development strategies and policies are correctly selected. Eventually Chile will exhaust its natural resources, as did Finland, in the case of copper. Antofagasta region will need to develop significant alternative industries.

Extreme risk area for ecological changes

In addition to the structural economic shifts, Antofagasta Region is an extreme risk area for ecological changes. Global climate change and contamination from the mining activities have had a high and lasting effect especially in the regional water supplies. Melting glaciers and overuse of groundwater will require a significant redesign of water use and many other aspects that affect the environment. However, responding to the challenges, the region will need to rely on foreign expertise.

A collaborative project called “Innovation Capacity in the Antofagasta Region” was set up in 2011 between Mining Technological and Scientific Research Centre CICITEM in Chile and VTT Technical Research Centre of Finland with the aim of transferring international best practices to strengthen the capacity of CICITEM to support economic, social and environmental devel-opment in the region. The main objectives for the pro-ject were:

  • Capacity building in the field of institutional leadership and knowledge management, innovation culture, and innovation capabilities.
  • Create self-sustained innovation capacity at CICITEM.
  • Capability to create strategic vision for the re-gional innovation activities and facilitate joint innovation activities in the mining cluster.

Foresight activities were an integral part of the project. They were aimed to increase the foresight capability of CICITEM and other regional actors by conducting a collaborative foresight exercise between industry and regional stakeholders and demonstrating how fore-sight can promote regional co-operation. The activities included gathering training material, designing fore-sight approaches suitable for the region, holding a foresight training and conducting a foresight pilot called “Water in Antofagasta 2040”.

Enhancing Foresight Capabilities

The foresight activities consisted of two parts. The first was a hands-on training on futures thinking and the methods of foresight. This was done as a three-day workshop in Antofagasta. A learning package with glossary was distributed beforehand to the participants, and a website was set up to facilitate communication and exchange of information. The workshop included brief presentations by VTT experts on key methods such as scenarios, roadmapping and Delphi, as well as exercises, where the participants had a chance to briefly test the methods with key issues of the region. The workshop ended with a group work of planning a foresight project that could be implemented in the region.

Based on the group work results a topic of “Water in Antofagasta 2040” was chosen for a foresight pilot project in a planning meeting between VTT and CICITEM. The topic was chosen based on its importance and relevance for different stakeholders. In addition to planning meetings, the activities of the foresight pilot project included scenario and roadmapping work that consisted of a conference, two stakeholder workshops, a stakeholder survey, interviews with mining companies and a reflection discussion with the CICITEM experts.

VTT experts provided guidance and support for the process, but the main emphasis was on learning by doing for the CICITEM experts. In addition to people from VTT and CICITEM, the process also included researchers from the local universities, representatives from local SMEs, government officials and mining companies.

Four-layer Framework

Although the foresight activities were mainly aimed at increasing the foresight capability in the region, they contributed also to the creation of new knowledge about alternative futures and to the networking between key actors in the regional innovation system. Based on the process and existing foresight literature, we developed a multi-layer framework for analysing these contributions of the process. The layers describe the level in which foresight contributes: landscape, innovation system, organisation and individual. We describe the main findings from the process using the layers as a structure.

1.Landscape layer: connecting to the global context

Although the overall focus of the project was on enhancing the innovation capacity of the Antofagasta region, it was important to understand the developments in the global level: how the region is connected to the rest of Chile and the world, how global developments influence the region and how that might change. The aim was to help the participants to see the region as part of a larger, global system and come up with the pathways to increase the capacities of the region to find its niche in the global market.

2.Innovation system layer: building shared vision

The foresight activities were part of a larger process which aimed to enhance the innovation capacity of the region. Their role was to support the joint strategy formulation and the creation of a shared vision for the region. During the process different perceptions to the proposed foresight project topics were explored through stakeholder analysis. Anticipating the different expectations of stakeholders helped choose a suitably controversial topic that would be interesting and beneficial for all the stakeholder groups, which in turn would aid in committing the stakeholders to the foresight process.

3.Organisational layer: building organisational future-orientation

CICITEM researchers were closely involved in the design and implementation of the foresight activities. This resulted in new ideas about the role of CICITEM and its mission. As the organisation was fairly small and young, the foresight pilot project influenced the social dynamics within the organisation. Not every researcher at CICITEM saw the benefit of the project and some were reluctant to participate. Thus there was a risk of creating an “in” group of persons more heavily involved in the process. What is needed in a situation like this are “bridge builders” between the “foresighters” and the “reluctants”. This is a good example of how a foresight process is connected to the organisational dynamics, even though the focus might be on enhancing the innovation system.

4.Individual layer: learning by doing

The foresight activities aimed to give the skills to do foresight via “learning by doing”. This includes the specific methods, but also experience in scoping, designing, implementing and documenting the foresight process. A CICITEM researcher commented during the final reflection, that he learned how to bring the ideas high up in the sky down to earth and make them actionable. In addition to specific skills and methods, the process enhanced the capability for future-oriented thinking by challenging existing worldviews and mind-sets and understanding others’ viewpoints and perceptions.

Individuals are the Key

We can draw the following implications for policy making:

  1. Design with multiple layers in mind; especially individual

For practitioners designing and conducting foresight the layers provide a checklist on the effect and influence of foresight. In our experience the layers help design foresight exercises that 1) are relevant and interesting to the individuals involved, 2) contribute to the capabilities of the organisation, 3) shape the system to enable the desired future and 4) capture the most recent advances and create new knowledge on the topic. We especially want to emphasise the individual layer, since effects of foresight are often not thought about on the level of individuals participating in the process. However, individuals are the key to creating a change within an organisation and subsequently on the innovation system. This can be a consequence of changing mindsets and worldviews through learning.

  1. Take into account that the nature of foresight effect varies from layer to layer

The layers emphasise different foresight contributions. On the landscape and system layers there is a bigger emphasis on the knowledge produced, whereas the individual and the organisational layer put more emphasis on the capabilities gained during the process. This is because the focus of knowledge is usually on the developments in the operational environment and the users of that knowledge are individual members of an organisation. Therefore the content and effects of the foresight exercise gain more attention on the innovation system and landscape layers, whereas the learning i.e. gaining of capabilities during the process is seen as important especially on the organisational and individual layers.

Foresight, however, contributes to knowledge also on the individual layer and to capabilities on the landscape layer. On the landscape layer the capability of the society as a whole to adapt to changes might be enhanced by foresight. On the individual layer, the knowledge produced is tied to the learning process and may include the translation of alternative futures to own worldviews, reflection on the perspectives of other participants and the interpretation of trends and weak signals to the day-to-day life. The layers thus provide alternative views to the knowledge, capabilities and relations created in a foresight project.

  1. Use the layers to structure the effects of foresight

A foresight process might have different emphasis on which layer is seen as the most important, but often foresight contributes to all layers, either by design or unintentionally. However, what is more important than the individual layers is the movement of focus across the layers. Looking at the layer “above” and ”below” aids in understanding what the layer consists of and what it is a part of. For example, an innovation system is embedded in the inter-systemic developments of the landscape layer, and consists of different organisations, which in part consist of individuals. The layers demonstrate that there is more to foresight than just the immediate tangible outcomes. A successful foresight process might change the capacity of an organisation or a community to anticipate the future and through that even create a regional transformation.

 

Table 1. Description of layers and the contribution of foresight

Layer Description Foresight effects
Landscape The external developments that affect the innovation systems but are hardly affected by any single measure Anticipating global developments, trends and/or wild cards, and enhancing future-orientation of the society
Innovation system The structure and dynamics of  intertwined innovation sub-systems consisting of organisations Increasing the capacity to reconfigure the innovation system to respond to future developments by exploring alternative futures and supporting networking between stakeholders
Organisation The organisational culture and allocation of resources Creating organisational future-orientation and triggering the creation of organisational responses to the anticipated changes in the operational environment
Individual Individual capacities and capabilities Enhancing future-oriented thinking and increasing capacities and capabilities related to anticipating possible futures

 

 

Authors: Mikko Dufva                  mikko.dufva@vtt.fi

Totti Könnölä                totti.konnola@if-institute.org

Raija Koivisto                 raija.koivisto@vtt.fi

Sponsors: Ministry for Foreign Affairs of Finland
Type: Regional foresight exercise
Organizer: VTT Technical Research Centre of Finland, Juha Oksanen, juha.oksanen@vtt.fi
Duration: 2011 – 2013
Budget: € 470,000
Time Horizon: 2040
Date of Brief: March 2016

Download EFP Brief 2016: Building Regional Foresight in Antofagasta, Chile

Sources and References

VTT & CICITEM, 2015. Desafios de innovación en la Región de Antofagasta / Innovation capacity in Antofagasta Region.

Dufva, M., Könnölä, T. & Koivisto, R. 2015. Multi-layered foresight: Lessons from regional foresight in Chile. Futures, 73, 100-111.

EFP Brief No. 256: F212.org Online Platform. Imagining the Future through Social Media as a Tool for Social Innovation

Friday, December 6th, 2013

F212.org is a virtual think tank of university students interested in sharing ideas on how to face main future challenges. It describes the results of a comparative study about the images of the future found among young students from Haaga Helia University of Applied Science (Finland) Tamkang University (Taiwan); and University of Alicante (Spain).

The Study of Images of the Future

The studies focused on images of the future date back to the second half of the twentieth century and have their origins in the fields of sociology and psychology. After the growing interest in this area which arose during the early 1990s, the study about images of the future –and more specifically about images of the future among young people– has consolidated within the framework of social sciences in general and, particularly, in the context of Sociology during the late 1990s and the first years of the twenty-first century.

According to Polak’s definition, “an image of the future is made of associated memories and expectations. It is a set of long-range goals which stress the infinite possibilities open to a person. Thus, an image of the future can be defined as a mental construction dealing with possible states. It is composed of a mixture of conceptions, beliefs, and desires, as well as observations and knowledge about the present. This affects a person’s choice both consciously and unconsciously and is derived from both reality and from imagination. It ultimately steers one’s decision-making and actions”. Therefore, the reflection about the expected impact of these images on the determination of our present actions and our attitude towards the future allows us to see the need for a systematic approach to study such images.

Nevertheless, the research into such images carried out during last century tended to be relatively sporadic and never had a predominant role in the context of futures research. As far as Sociology in particular is concerned, many works which attempt to identify and explain the concerns most commonly found among this population segment basically seek to answer the following question: how do young people expect their future to be?

However, it is far from easy to find studies where the approach consists in trying to find an answer to the question: what do young people want for their future? Therefore, there is arguably a lack of new approaches which can integrate aspirational parameters and enable a greater involvement of youths in the process of defining alternatives for the future.

For this reason, public and private institutions are now apparently taking a greater interest in identifying and understanding citizens’ expectations and wishes, which has led them to promote actions in line with the new paradigms of Social Innovation and Open Innovation that provide a more active, direct and continuous citizenship in governance, close to the concept of participatory democracy. In fact, this is something which currently seems much more feasible than not so long ago thanks to aspects such as technology development, the spreading of internet access and the increasingly high popularity of social online networks.

Therefore it is perfectly feasible to complement the descriptive approach to a ‘diagnosis of the future’ with images of the future and creative proposals directly defined and developed by young people, giving voice and prominence to them thanks to:

  1. the proliferation of communication channels that allow for immediate and continuous feedback (2.0 platforms, social networks) with the user/citizen; and
  2. the development of ‘participatory’ foresight methodologies in both institutional and private sectors.

The conceptual basis behind this approach leads participants to consider themselves as key actors in the task of defining their own future –through an active participation in the construction of shared images of the future. It could consequently prove much more motivating for young people to interact within these processes if participants are given some space to share and create.

Tool Set for the Future

The project presented here is based on a previous study (Guillo, 2013) which involved a total of 56 university students from the Haaga Helia University of Applied Science (Helsinki, Finland) and the University of Alicante (Alicante, Spain).

Based on the overall results and on the feedback provided not only by participants but also by the students and teachers involved, it was possible to highlight the following 4 points with the aim of achieving an improvement in subsequent studies:

  • Hard-to-understand / answer questionnaires: the students found the process hard to complete (too many categories and questions) and sometimes even confusing.
  • Lack of interaction: the platform suffered from a lack of technological tools, which always make it easier for users to interact with one another.
  • Overlap between groups: the selected categories proved useful to organise the responses to some extent but participants found numerous overlaps between the topics discussed in every category.
  • Hard to analyse: the scenario format gave us (as researchers) very valuable material to analyse. Nevertheless, a more precise way to express expectations, fears and wishes about the future is badly needed to improve interaction.

Taking into account the 4 points mentioned above, a new study was designed which included three significant changes with respect to the previous one, all of them oriented to improve users’ experience within www.f212.org:

Removing the division into categories: the categories from the previous study (economy, culture, politics, ecosystem, security) were abandoned in order to build an easy-to-complete questionnaire. Since the information-collecting tool was going to be an online survey (embedded in the platform), it became essential to provide a short, clear and quick-to-answer questionnaire.

Changing narrative scenarios by keywords: In this case, the change also had to do with the difficulty found by participants when completing the process. Therefore, a decision was made to replace the initial idea of describing a future scenario (150 words) with the choice of keywords to describe their future scenario (10 words). This would additionally allow us not only to process participants’ responses much faster –almost in real time– but also to update the tag clouds inserted in the platform, which could largely improve the level of interaction within the platform too.

Using a clearer language: the feedback received from the previous study led us to modify the instructions given for the completion of the different questionnaires –using a more straightforward language. Various levels of information were offered, including more detailed information (tutorials and FAQs) in case users needed a higher degree of detail.

Thus, the design of our new study started by restructuring the platform in the following sections:

  1. RATINGSFeelings about the future in 2030. Participants were asked the question “are you optimistic or pessimistic about the future?” in this section. This allowed them to position themselves in terms of pessimism/optimism, on a scale from 10 (totally optimistic) to 0 (totally pessimistic). Three different dimensions were taking into account: World (global level), Country (national level) and Myself (personal level).

 

  1. FORECASTS – Probable future in 10 words.Participants had to write a maximum of 10 words about the main features which, in their opinion, will characterise the world in 2030.

 

  1. SKILLS – Self-evaluate your references about the future in 2030.The ratings and forecasts given by participants were subjected to self-evaluation through these three questions (to be answered on a scale from 0,  the worst,  to 10, the best):
    • Are you concerned about the future?
    • To what extent are you prepared to face the future?
    • What is your level of knowledge about global change processes?

    Participants were additionally asked to complement their self-evaluations by naming some of the sources (books, webpages, magazines, journals, etc.) that they usually consult and on which their visions of the future are based.

  1. WISHES – Future you want in 10 words.In this section, participants had to write a maximum of 10 words about the main features that, in their opinion, should characterise the world in 2030.

 

  1. IDEAS – Open Discussions.This section was included as a meeting place to share creative ideas on how to face future challenges.A total of 378 university students (between 20 and 32 years old) took part in this study by accessing the open platform.

Images of the Future of Spanish, Taiwanese and Finnish Students

RATINGS – How do you feel about the future in 2030?

A remarkable difference exists in the images of the future found at a national level among the participants from Spain (median 4), Taiwan (6) and Finland (7). In the case of Spain, the differences become even more evident when comparing the three levels considered: global (7), national (4) and personal (7). However, such results should actually “come as no surprise” within the current context of social and economic crisis in Spain, which also shows a high degree of inconsistency as far as images of the future are concerned. Another interesting finding is the widespread high degree of optimism with regard to the personal level (7).

FORECASTS – The probable future in 10 words: Females show more optimism

Seeking to make the platform as interactive as possible, tag clouds were generated with the participants’ responses in this section. These tag clouds – including the 50 words with the highest repetition frequency among respondents- were available online, and a allowed us to draw some general conclusions:

− High consensus on the key factors that define the probable future by 2030. The words which show a higher repetition frequency were technology, globalisation, competitiveness, artificial, connected, energy, ecology and war. These words can be regarded as part of the main speech about the future, presented in the general, mass media as part of a globally shared image of the probable future.

− Females show more optimism than males. A marked difference could be perceived in the degree of optimism shown by females and males among participants from Spain and Taiwan (and also among those from Finland, though to a lesser extent). That is why participants from Spain and Taiwan show a higher repetition frequency in words such as opportunities, hope and ecology.

SKILLS – Self-evaluate your references about the future in 2030_ Homogeneous use of TV as information source

The results in this section show a high level of preparation and knowledge, along with a lack of diversity in the sources considered (mainly TV and general-information newspapers). On the whole, participants from Spain, Taiwan and Finland see themselves as ‘experts’ in the topics under discussion: the median is 5 or higher in every case. Nevertheless, when asked about the kind of sources that they usually resort to, only a few of them mention access to specialised journals, reports, databases, etc. Information availability also helps us understand the aforementioned conclusion about the globally shared image of the probable future.

One important finding when comparing across countries is that participants from Finland showed the worst self-evaluations, a point below self-evaluations of participants from Spain. These results contrast with the overall Education results observed in both countries during the last years.

WISHES – The future you want in 10 words: Different perceptions on ‘Love’ and ‘Community’

Significant differences regarding how they describe their probable futures. Words like technology, global and connected, which had a strong weight in Forecasts, are now losing repetition frequency. This can be interpreted as reflecting an attitude of rejection towards today’s ‘hyper-connected’ world (a shared vision for the probable future). On the contrary, words like opportunities or work have a stronger weight in these desired futures, which can be explained by young people’s professional aspirations.

A lack of specific, creative terms to describe the desired future. On the whole, no breaking ideas are found in the words given by the students. Thus, the most often repeated words within this section are equality, peace, respect, ecology or freedom, which, in our opinion, form part of what can be described as a utopian and very broad vision about the society of the future. This lack of specific and breaking ideas can also be related to the fact that young people find it hard to visualise all the possibilities ahead of them.

Few differences between males and females. The biggest visible difference between males and females refers to the word love (whereas no males mention this word as part of their desired future, it stands out as one of the words with the most weight among females).

Few differences between countries. The most interesting finding in this respect is the word communal, only present among Finnish respondents. In the cases of Spain and Taiwan, despite the appearance of words such as equality or peace –which clearly suggest an idea of cooperation with one another in their meaning– the complete absence of this specific word seems very meaningful to us, and could be interpreted as a weak signal regarding social life in the countries represented.

Online Participatory Foresight Processes

The comparison between the results obtained in this study and those from the previous experience (Guillo, 2013) leads us to highlight the findings below:

  • Simplicity encourages participation. A decision was made to remove the division into categories in our study this time, which made it easier and faster for respondents to complete the whole process. This resulted in a much higher participation: 378 respondents (as opposed to 56 in the previous study).
  • More interaction means enriching our own images of the future. Respondents consider the possibility of exchanging ideas about the future with young people who have different cultural backgrounds very interesting. Thus, the international connection with other students from different parts of the worlds was seen as an extremely positive factor. Moreover, the integration of the section Ideas makes it possible for them to directly interact with other correspondents, which was also highlighted as a very positive point (more than 300 replies were registered in the open discussions started in this section).
  • Motivation is a key point. Two different mechanisms were designed for the purpose of involving people in the platform. One of them was the development of future workshops, where students received explanations on the basics of futures thinking and were encouraged to participate in the process. The other mechanism was the creation of a brief presentation, available on the platform and easy to use for e-mail communications. In this sense, a higher degree of participation was found among the students who took part in futures workshops and were personally motivated to sign up for the platform.
  • A more straightforward language and better design elements help understand large amounts of data. Technologically speaking, tag clouds were the best way available for us to show the results from Forecasts and Wishes to respondents. These graphs allowed users to have a slight –but also very clear– idea about the image of the future generally shown by respondents. The same approach was applied to other aspects of the platform, such as the design of the slide presentation and the presentation dossier or the instructions contained in every section of the platform, among other things.

As a general conclusion, it could be stated that improving interaction tools, designing better communication elements and opening the platform to an international university-student context have all had a strong positive impact on this study. Thus, the results collected in www.f212.org helped us achieve a better understanding of the mechanisms behind social media involvement.

 

 

Authors: Mario Guillo (PhD Candidate)    mario.guillo@ua.es

Dr. Enric Bas                           bas@ua.es

Sponsors: FUTURLAB – University of Alicante

FECYT – Spanish Foundation for Science & Technology

Type: International think tank
Organizer: FUTURLAB – University of Alicante, Mario Guillo, mario.guillo@ua.es www.futurlab.es
Duration: 2011-2012
Budget: n.a.
Time Horizon: 2030
Date of Brief: October 2013

Download EFP Brief No. 256_F212.org Online Platform

Sources and References

  • Guillo, Futures, Communication and Social Innovation: Using Participatory Foresight and Social Media Platforms as tools for evaluating images of the future among young people, Eur J Futures Res (2013) 15:17. DOI 10.1007/s40309-013-0017-2
  • Reinhardt, (ed.) United Dreams of Europe, Primus Verlag, Darmsdat, 2011.
  • Bas, Future Visions of the Spanish Society, in: U. Reinhardt, G. Roos, (eds.) Future Expectations for Europe, Primus Verlag, Darmsdat, (2008) 214-231.
  • Ono, Learning from young people’s image of the future: a case study in Taiwan and the US, Futures, 35 (7) (2003) 737-758.
  • Rubin, The images of the future of young Finnish people, Sarja/Series, Turku, 1998.

EFP Brief No. 251: VERA – Forward Visions on the European Research Area

Wednesday, February 13th, 2013

The VERA project provides relevant strategic intelligence for the future governance and priority-setting of the research, technology, development and innovation (RTDI) system in the EU and for better adapting science, technology and inno-vation policy to the shifting global environment and upcoming socio-economic challenges. For this purpose VERA carries out an in-depth stocktaking of RTDI related forward looking activities in Europe and internationally and a thorough review of trends and drivers of long-term change of European RTDI governance. On the base of these insights VERA develops scenarios on the evolution of the European Research Area, assesses the critical issues for the ERA’s future capabilities emerging from these scenarios, explores subsequent strategic options and ultimately generates a set of policy recommendations for responsive and future oriented multi-level, multi-domain RTDI policy strategies. As VERA will run until 2014 we will present some intermediary results of the first two work packages in this Brief.

Changes and Tensions within ERA

Recently, ERA has undergone many relevant changes from inside. First of all, research and development became a domain of shared competence between the member states and the EU as a result of the new Lisbon Treaty in 2009. The subsequent strategic processes, such as the Lund Declaration, the Ljubljana Process, the Europe2020 Strategy and the Europe 2020 Flagship Initiative Innovation Union, have provided a solid mandate for a strong and open European Research Area that is highly responsive to societal challenges and provides excellent research and innovation activities in open exchange with the international RTI landscape.

However, in order to realise this ambitious agenda, the share of integrated research expenditure needs to be significantly increased. Furthermore, new coordination mechanisms are required to allow for flexible identification of ERA priorities, mobilisation of the critical mass of funding, and governance of its implementation.

In the last few years, a number of integrative instruments have been developed and implemented, such as:

  • Knowledge and innovation communities (KICs) selected within the European Institute of Innovation and Technology (EIT)
  • ERA Net and ERA-Net Plus allowing for joint funding of EU and member states
  • Joint technology initiatives (JTIs article 187) developed through the European technology platforms (ETPs)
  • Joint programming in research (JPIs)
  • Public private partnerships (PPP)
  • Joint research programmes (article 185)
  • European research alliances
  • European innovation partnerships

Thus a number of opportunities and experiences for more integration and pre-allocating significant chunks of EU funding to joint priorities do exist. At the same time, there are many tensions associated with the implementation of these strategies.

A key challenge and opportunity for ERA development is its relation to and integration with the wider world. The production and composition of knowledge have become globalised. While science always has been international, the scope of actors and the need for coordination and cooperation across the globe has changed dramatically in the face of global challenges. At the same time, there is an increasing specialisation of knowledge production and exploitation. Global division of labour and connecting the global centres of excellence that have emerged is a key requirement of the future. In addition, many of the problems European societies face are either the same as for other societies (obesity, demographic change) or transnational in nature (climate change, pollution, security) while the EU is just one among many international players. The overarching challenge of decoupling economic growth from the depletion of the ecosphere and preserving natural capital demands an unprecedented alignment of efforts on a global scale.

There are a number of changes in the way research and innovation is being embedded in the societal context. Changing values and lifestyles are giving rise to new societal expectations of research and innovation. Changing economic and institutional contexts introduce new rationales into knowledge production. Established boundaries, such as basic and applied research or users and producers of innovation and knowledge, are blurring. New actors such as NGOs, citizens and user groups are increasingly playing relevant roles in the realm of research and innovation.

The need for research and innovation to address the grand challenges in realms such as health, food, security and sustainability is not only increasingly advocated but also poses new kinds of challenges. Transformative socio-technical pathways rather than isolated key technologies need to be explored. Social innovation, service organisation and organisational innovation need to be aligned with breakthrough technological innovation. Experimental approaches are gaining relevance for successful innovation trajectories, in particular when transitions are at stake. These changes make it imperative to situate ERA in the global context.

Identifying the Grand Challenges of the Future

In order to generate custom-made strategic intelligence for the future of ERA, the starting point was, first, to identify Grand Challenges (GC) and, secondly, to do so in relation to research sectors that are relevant to the ERA. The GC were identified based on existing EU documents and discussion papers that had been published in the context of pertinent foresight and horizon scanning projects. These GC were classified into relevant research sectors, for instance health, energy, environment and civil society. This approach allowed a thematic clustering of topics, which then served as a basis for broadening the scanning of FLAs. Ten sectors and more than 760 GC in total from a stock of 71 sources were identified.

The stocktaking was designed so as to collect information that would help reach the objective of the work package, i.e. to answer questions such as,

  • What Grand Challenges in the fields of economy, environment, geopolitics, society and ethics, technology and health are the documents and projects under consideration concerned with?
  • Do these documents and projects represent the discourse on Grand Challenges in the European Union and in other parts of the world?
  • What conclusions can we draw from these documents concerning the future governance needs of the ERA? And what do they tell us about the future requirements of RTI governance?

Sixteen Grand Challenges

The VERA team managed to identify 16 Grand Challenges from the analysis and clustering of 760 individual issues from the inventory and interviews with individual STI experts:

  1. Uncertainty is arising from a multipolar world

Increasing polarisation and regionalisation are driving towards a multipolar world. Possible evolutions and implications of or even solutions for this multi-aspect and multi-level challenge are still hardly understood.

  1. Values and attitudes are changing globally

Attitudes and values are changing globally; societies and particularly policy need to respond to these changes.

  1. The traditional role of the state is challenged

A number of developments require new models of governance that go beyond the traditional model of the state.

  1. The world is becoming more interconnected and thus more vulnerable

The more the world becomes interconnected and interdependent, the more new forms of crime and security threats are interlinked and have far-reaching consequences at all levels of society.

  1. Health concerns of an aging society are rising

The ageing of populations has diverse implications for science, technology, economy and society that are proliferated in the context of new health risks and ineffective health systems.

  1. A risk of financial system failure is emerging

In the financial sector the risk of systemic failures is increasing.

  1. Current non-sustainable economic models come under scrutiny

A growing unease with the current model of economic growth calls for alternative approaches to societal progress at the macro level. At the same time, environmentally sustainable business models are required in all sectors of economic activity.

  1. Migration requires responses

The challenge of migration takes many forms as a consequence of other challenges such as climate change, food and water shortages, natural disasters, pandemics etc., each of which requires a specialised and coordinated response at various levels of governance.

  1. Education is struggling to cope with new demands

The education and training systems in Europe need to be modernised. A more specific demand defines the need for education systems capable of promoting sustainability, innovation and solidarity values, and new professions require highly skilled craftsmanship.

  1. The health situation in deprived regions is deteriorating

Impoverished regions around the world are struggling with acute and virulent health issues.

  1. Climate change is causing new diseases

New health problems are arising globally due to climate change.

  1. Providing basic resources for increasing global demands becomes difficult

Without ecologically, economically and politically sustainable solutions, scarcities of basic resources may lead to extensive and serious social and political problems in some areas of the globe.

  1. Material resources are becoming increasingly scarce

Demand for metals and minerals is growing dramatically, especially due to the fast growth of emerging economies and increasing strategic demand for minerals in industrialised economies.

  1. Our modes of energy supply and use are threatening the survival of humankind

Adopting sustainable forms of energy production and consumption is one of the key means for mitigating climate change.

  1. Transportation systems are coming under strain

Environmental and health impacts from emissions, mitigation of climate change, urbanisation, the need for traffic safety and security, and avoidance of traffic jams are among the drivers pushing towards the reinvention of mobility and full-scale transition of existing transportation systems.

  1. EU competitiveness is endangered

The fragmentation of Europe, poor education and skills as well as rising costs and declining labour force participation caused by demographic change may prevent effective exploitation of Europe’s research and innovation potential.

Facing the Grand Challenges to the Future of Europe Means Facing the Global Ones First

From the analysis of a broad range of sources on Grand Challenges, it becomes clear that we cannot take a European perspective only. Especially not when attempting to identify ways of dealing with the Grand Challenges, or at least some of them. The most pressing challenges are globally interconnected and require global action. Topics like Our modes of energy supply (14), Providing basic resources for increasing global demands (12) and The world becoming more interconnected (4) are the ones most frequently discussed. They also show the need to accept shared responsibility on a global scale, which implies that the EU countries cannot lay back and point to other countries to take action. On the contrary, from a European perspective, European countries are among the major contributors to the drivers of the Grand Challenges and among the major countries affected as well, although the impacts of the Grand Challenges are more widespread globally than the drivers are.

The sixteen clusters identified and discussed above also seem to be the ones that call for policy action most immediately and represent the cases where such action could make a substantial difference if planned and executed in a systemic way.

To face the Grand Challenges to the future of Europe, most of all we need to cope with the global ones. If we make a major contribution to the global ones, we will be better equipped to cope with the challenges that lie ahead for Europe.

What we as Europeans have to face is that our lifestyle and the underlying economic model must be considered the root of fundamental problems with devastating global consequences. Many studies and independent resources have pointed this out before. It is of course not only the European lifestyle but also that of all developed economies. At the same time, the global interconnectedness that seems to make this lifestyle transferable to emerging, lagging and, in the long term, even to undeveloped economies also makes societies vulnerable to shocks in many respects.

Facing the Grand Challenges means to introduce fundamental changes in many areas of our lives and activities, thereby affecting global liaisons as well. Even if radical changes are unrealistic, the changes required in tackling the Grand Challenges will be felt by every European citizen. Policy-makers are in a crucial role as these changes will not occur without fundamental and coordinated policy measures in almost every policy area.

Furthermore, it becomes clear that the scope of these Grand Challenges is in essence societal. We need to take this into account when we talk about policy action, for example in the area of research, technology and innovation policy – in the respective work packages of the VERA project and beyond. We especially need to consider what the impact of that societal scope is with regard to the systemic character of handling the Grand Challenges.

Text Analysis and Discussion with “ERA Thinkers”

The second set of tasks performed was to synthesise the existing insights on trends, drivers and key dimensions of change in European RTDI governance. A computer-assisted analysis helped to characterise the body of discourse on ERA in a systematic and quantitative manner. The analysis of text data on ERA was expected to allow interpretations and descriptions of the attitudes, structures, values and norms that currently dominate STI governance. In view of the large quantities of data in textual form, text analysis provided an important means of discovering obscured meanings and unveiling hidden relationships. The computer-assisted analysis took as a point of reference a pre-understanding of ERA constituencies gained through literature review. Following the digitisation of the entire corpus, linguistic analysis software was used for cleaning and formatting, unitising and indexing. The development of categories and dictionaries, as well meaningful associations, relied on qualitative analysis techniques.

Quantitative text-analysis software allowed to produce an aggregation of unit-level coding. Statistical and network analysis software was used to highlight frequencies, trends, comparisons, networks and maps of relevant factors influencing STI governance.

Subsequent interviews with ERA “thinkers” served to obtain additional types of information (i.e. narratives, accounts, fronts, stories and myths).

Relevant factors identified by means of discourse and interview analysis provided the basis for a so-called key-factor workshop with key stakeholders. The insights on potential key factors were synthesised into a background document.

Based on these insights, VERA developed scenarios on the evolution of the European Research Area. VERA’s uniqueness is grounded in the systematic knowledge base it creates, for example, by stocktaking exercises such as the one on Grand Challenges described above. They are publicly accessible and intended to be used widely. At the same time, the results of these exercises feed the scenario process, the subsequent assessment of the scenarios, and the exploration of strategic options. Another distinct feature of VERA is that it pays particular attention to the assessment and policy implications of the scenarios, which will help to make scenario results useful for policy-making and thinking about the future of ERA.

Authors: Susanne Giesecke         Susanne.Giesecke@ait.ac.at

Philine Warnke             Philine.Warnke@ait.ac.at

Effie Amanatidou           effie.amanatidou@mbs.ac.uk

Sponsors: European Commission, DG Research, Social Sciences and Humanities Programme
Type: Multiple issue brief
Organizer: Fraunhofer Gesellschaft – ISI, Karlsruhe Germany, Stephanie Daimer, Stephanie.Daimer@isi.fraunhofer.de
Duration: 2012-2014
Budget: € 1,940,000
Time Horizon: 2030
Date of Brief: Decemeber 2012

Download EFP Brief No 251_VERA

Sources and References

References

The Lund Declaration (incl. its addendum), July 2009; available for download at

http://www.vr.se/download/18.7dac901212646d84fd38000336/ Lund_Declaration.pdf

Links to further results of the VERA project at http://www.eravisions.eu

The inventory contains 726 individual Grand Challenges named by the 67 screened FLAs. It has been submitted in an independent report and can be downloaded at http://vera.dev.zsi.at/stocktaking/list

EFP Brief No. 250: Mediating Different Stakeholder Levels in an “International Cooperation Foresight” Process

Friday, February 1st, 2013

The purpose of the New Indigo foresight process was firstly to identify the most important and most relevant drivers of current S&T cooperation between India and Europe. Its second aim was to engage relevant stakeholder groups in a structured discussion on what this cooperation should look like in 2020. Thirdly, long-term and short-term policy-recommendations for shaping this future have been developed.

Fostering Multilateral Research Cooperation between India and Europe

As one of the BRICS countries, India is among the biggest and most dynamic emerging economies worldwide, which increasingly excel in the area of science and technology (S&T). In her address to Parliament on 4 June 2009, India’s President declared the period from 2010 to 2020 as the “Decade of Innovation”. The main aim of the declaration is to develop an innovation eco-system to stimulate innovation and to produce solutions for societal needs, such as healthcare, energy, urban infrastructure, water and transportation. Although the gamut of innovation is vast and includes efforts in many sectors, the underlying emphasis is to boost advances in S&T. Focusing on the same time horizon, the European Union introduced the “Innovation Union”, a flagship programme of the Europe 2020 Strategy to be implemented from 2014 to 2020 to secure Europe’s competitiveness and face major societal challenges at a global level.

The European Commission and the European countries perceive India as an important future partner when it comes to S&T, as is evidenced by the fact that India was chosen to be the target country of the first pilot initiative of the Strategic Forum for International Science and Technology Cooperation (SFIC), an advisory body to the Council of the EU and the European Commission.

One of the EC funded instruments targeting S&T cooperation between India and Europe is the ERA-NET New INDIGO. The project fosters multilateral cooperation between the two regions by supporting the bi-regional policy dialogue, networking different stakeholders in the field of S&T cooperation, analysing current cooperation, identifying common priorities and implementing multilateral (networking and research) projects.

Following a participatory approach leading to policy-recommendations, the project conducted a one-year foresight study on the future of this cooperation between India and Europe. The consortium agreed to envisage a 2020 perspective, in line with the Europe 2020 strategy and the Decade of Innovation announced by the President of India in 2009.

The similarity of the political initiatives in both regions was the background against which a success scenario-based foresight study was conducted: a desirable scenario of what S&T cooperation should look like in 2020 was developed and respective instruments were identified that might be of help in turning the normative success scenario into reality.

From Bibliometric Research  to Delphi Analysis

The main methodologies used where Delphi analysis, scenario building, expert workshops and a bibliometric analysis. The methodological setup of the New Indigo foresight process is based on the idea that three main stakeholder groups are the most relevant for future EU-India S&T cooperation: policymakers, programme owners and scientists. The policymakers design the framework conditions within which S&T cooperation takes place and decide upon support structures. The programme owners/managers adopt an intermediary position between policymakers and scientists. They know both worlds, co-develop and implement dedicated programmes and, thus, are engaged in the actual implementation of S&T internationalisation policies. The scientists, finally, are the ones actually performing research cooperation. They are the ultimate target group and main beneficiary of all internationalisation policies.

The New Indigo foresight exercise started at the end of 2010 with preliminary desk analyses on drivers of S&T cooperation and EU-India co-publication trends. On this basis, evidence on the current status and thematic focus of S&T cooperation between India and Europe could be provided as an input to the foresight and wider policy processes. Furthermore, in a series of online consultations as well as expert workshops, factors (‘drivers’) have been identified that are likely to influence what future collaboration might look like in the year 2020. Figure 1 (p. 3) describes our implementation model that can roughly be divided into two phases: one before and one after the first draft of a success scenario. The scenario development phase spans from the preparatory analyses via driver identification by literature analysis, email consultations, online Delphi for driver identification and validation, and expert workshops leading to a draft success scenario. The second scenario validation phase involves consultations on the validity and viability of the success scenario for different stakeholder groups, backcasting activities trying to indicate paths towards the success scenario, as well as the development of instrument and policy recommendations.

Assessment of Stakeholder Groups

In order to gather data and opinions from the three core stakeholder groups as mentioned above as well as include and engage them in the process of thinking about future S&T cooperation between the two regions, we opted for a twofold data collection approach: In the case of policymakers and programme owners, we arranged for physical workshops in the framework of the New Indigo project and beyond. By contrast, we approached the scientists by means of an open email consultation followed by a Delphi survey.

The main reason behind these different ways of approaching the stakeholder groups is the fact that policymakers and programme owners concretely concerned with (and thus knowledgeable about) this form of cooperation are few in number. For these few, however, our preparatory analyses and project experience suggested that they have a good overview of the current state of programmes and future plans. Thus, it makes sense to try to investigate their expertise in more depth and engage them personally, not least because they have a major stake in designing the political framework conditions for the future they are reflecting upon in the foresight analysis.

As regards the programme owners, again, their number is limited, and several of them who are engaged in EU-India cooperation in their national contexts also act as policymakers (especially in the smaller EU member states and in India). It was this group of stakeholders that was most easily accessible via the New Indigo project as they formed part of the consortium as partners or members of the steering committee.

The scientists, however, are a much larger stakeholder group. We avoided to randomly approach large groups of Indian or European scientists and did not invite small groups to give us their individual and, given the large size of the population, unrepresentative views either. Instead, we considered it most reasonable to approach those scientists who already have cooperated. We decided to revert to co-publications as a proxy for cooperation experience, i.e. we looked for scientists from each of the regions who have already published with scientists from the respective other region and engaged them via an online consultation and Delphi survey.

The whole exercise dealt with the constraints proper to international S&T cooperation foresight (cf. Degelsegger, Gruber and Wagner 2011 in EFP Brief 201): increased complexity due to the bi-regional perspective combined with very limited time resources of and difficult access to policymakers. Moreover, members of this stakeholder group are, as said above, in a position not only to assess but to significantly shape the future we aim to look at, which again adds complexity to the process as few relevant variables can be considered totally external. Regarding the scientific community, it is not easy (due to time constraints on their side and negative experiences with policy consultation processes or simply disinterest) to attract those scientists to the foresight exercise who are excellent in their field, willing to cooperate and knowledgeable about science cooperation (and willing to adopt a meta-perspective on what they are doing).

Mediating Different Stakeholder Levels

As depicted in Figure 1 (p. 3), the different stakeholder groups were firstly assessed in parallel and the assessment results of one group then fed into the subsequent discussions in the other group(s): For example, drivers identified by scientists were categorised and prioritised by programme owners and policymakers. In a second Delphi round, the results of these discussions were again presented to the scientists for validation. This implementation method proved very fruitful regarding the participatory aspect of the foresight exercise: while, for example, some of the drivers identified by scientists seemed rather obvious to programme owners or policymakers, usually experts in the field of STI cooperation policy, discussions showed a growing understanding of the scientists’ problems and triggered some revised viewpoints. At the same time, the scientists, confronted with the success scenarios (based on programme-owner assessments of urgent and feasible drivers), came to harmonise and translate their expertise and experiences in a way that the latter could inform recommendations on policy instruments. With regard to the mediation of different stakeholder levels, one of the lessons learnt is that taking the time for a kind of ‘preparatory’ discussions is a necessity. Such discussions are yet not focused on a concrete set of drivers or scenarios but target the topic of cooperation rather openly. While such time may be perceived as wasted on side topics or general statements, it is actually necessary for the group members to align their thinking and experiences with each other and in view of the expected output of the meeting. Even later in the foresight process, participants (not all of whom had participated in the process from the start) had to be given time to start discussions “from zero”. The task of the workshop leader is to pull together and harness the discussions reasonably without frustrating individual input while building understanding for different levels within S&T cooperation.

250 New Indigo Foresight

Figure 1: Relation of different stakeholder levels within the foresight process

 

Another lesson learnt – which is actually well-known but became quite apparent in this particular international cooperation foresight – is the contradiction of the participatory (integrating all inputs to the extent possible) and the strategy building aspect of success scenario-based foresight: Involving a broad range of stakeholders makes it difficult to avoid a fairly general wish list of success indicators; at the same time, reasonable recommendations beyond commonplace solutions had to be developed. Again, it is upon the process designers and workshop leaders to guide discussions towards an agreed but still fairly concrete selection of instruments.

Outcomes and Impact

New Indigo has had the opportunity to present the results of its foresight study, particularly the short-term programme recommendations, not only in form of a deliverable to the European Commission, but in front of a high-level political stakeholders audience during the regular session of the India Pilot Initiative of the Strategic Forum for International S&T Cooperation (SFIC-IPI) in Vienna on 30 November 2011. The presentation was followed by comments and a discussion with the SFIC-IPI members and contributed to contextualising and complementing the short-term programme recommendations. Additional perspectives were considered in the discussions, for instance regarding the challenges the implementation of the programme recommendations faces in different national contexts, as well as regarding new forms of support to bi-regional collaboration (Networks/Virtual Centres of Excellence, part-time academic personnel exchange etc.). The most prominent outcome of the process is the integration of results into the draft EU-India Joint Strategic Agenda (currently in preparation, see: http://ec.europa.eu/research/iscp/index.cfm).

In addition, the results and outcomes, particularly the short-term recommendations, have been presented at the second EU-India S&T Cooperation Days in Vienna on 1 December 2011, a multi-stakeholder conference that gathered over 150 participants from India and Europe. The results are available to the public on the New Indigo website (www.newindigo.eu)

Funds for Mobility and Platforms for Joint Research

Finally, long- and short-term recommendations towards a 2020 horizon were deducted from the success scenario developed as part of the exercise. In its complete textual form, this success scenario reads as follows:

“By 2020, success in EU-India S&T Cooperation has been achieved by support to activities in each of the three areas of facilitating, funding and training.

With regard to the facilitation of cooperation, researchers have funds and fora available to meet their Indian/European counterparts. A significant number of established multidisciplinary networks of groups and senior scientists form the core of ongoing cooperation. Research funding schemes offer dedicated project top-up funds for mobility. Barriers for short and long-term mobility such as burdensome visa procedures have been removed and, at the same time, brain circulation channels have been opened that also facilitate career development.

Common standards are in place together with a standardisation in the area of IPR, allowing for fair treatment of each partner in bi-regional consortia and avoiding additional administrative efforts for the coordinators of joint projects. Formalised institutional cooperation has increased, for instance in the form of agreements between standardisation agencies (standardisation, joint testing, measurement, data, samples, etc.). Evaluation of collaborative projects and ex-post evaluation of project outcomes is uniform and transparent.

As regards funding, the availability of dedicated public as well as philanthropic financial resources is significantly higher in 2020 than it was in 2010, coupled with an increased and explicit donor commitment. Regular bi-regional calls for proposals with real joint funding (as well as virtual common pot funding programmes complementing bilateral programmes), complemented by co-funding from the European Commission, are in place. Scientists benefit from exchange schemes in the frame of specific research infrastructure in both regions as well as from access to joint infrastructure. In order to allow scientists to quickly find information and access to EU-India S&T cooperation funding, a single entry point information hub (e.g. in form of a website) for all Indian-European research funding offers is available. The results of successful joint multi- and bilateral S&T cooperation are presented to an interested business community in dedicated showcasing conferences, facilitating academia-business-society linkages. Society is involved in designing cooperation policy, priorities and the goals of collaborative research, while science itself applies a transparent and rigorous peer review mechanism.

R&D activities of small and medium enterprises (SMEs) are scanned both in India and Europe and showcased in both regions. Successful or potentially research-performing SMEs are routinely approached to be updated on possible public research partners.

Finally, dedicated funds are available (as part of wider S&T cooperation funding) for hiring outside PhDs who can support the creation of and stabilise long-term exchange between senior scientists. Two-way short-term mobility of postdocs, postdoc exchange schemes supporting young scientists to come back to their home institutions (and countries), and similar programmes are also facilitating brain circulation.

When it comes to training, a central virtual platform exists for preparing, accompanying and motivating multilateral joint research as well as for the development of joint degrees and the exchange of PhDs in sandwich programmes. Activities and results are presented in actual workshops once a year. These support structures trigger significant brain gain in combination with mobility schemes mentioned above, for instance when an Indian fellow spends two years of his/her PhD in Europe and the rest of the time in India or vice versa.

There are mechanisms in place for the development and quality control of joint PhD programmes. Joint programmes take advantage of online and virtual learning systems” (Blasy, C. et al., 2012: 31-32).

 

Authors: Cosima Blasy       blasy@zsi.at

Alexander Degelsegger degelsegger@zsi.at

Sponsors: New Indigo, co-financed by the European Commission (FP7 )
Type: International (S&T) Cooperation Foresight
Organizer: Centre for Social Innovation (ZSI), Alexander Degelsegger, degelsegger@zsi.at
Duration: 2010 – 2011
Budget: € 80,000
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No 250_New Indigo Foresight 2012

Sources and References

New Indigo Project website: www.newindigo.eu/foresight

Blasy, Cosima; Degelsegger, Alexander; Gruber, Florian; Lampert, Dietmar; Wagner, Isabella (2012): New Indigo International S&T Cooperation Foresight: A study of S&T cooperation future(s) between Europe and India. Project Deliverable 4.5 to the European Commission, online at http://www.newindigo.eu/foresight; last accessed on 13 October 2012.

Degelsegger, Alexander; Gruber; Florian (2010): S&T Cooperation Foresight Europe – Southeast Asia, in: Форсайт (Foresight), 4(3), 56-68.

ipts/Joint Research Centre of the European Commission (2007): Online Foresight Guide. Scenario Building, online at http://forlearn.jrc.ec.europa.eu/guide/3_scoping/meth_scenario.htm; last accessed on 13 October 2012.

UNIDO (2005): Technology Foresight Manual. Volume 1 – Organization and Methods, Vienna: UNIDO.

Technopolis Group et al. (2008): Drivers of International Collaboration in Research. Background Report 4, online at http://ec.europa.eu/research/iscp/pdf/drivers_sti_annex_4.pdf, last accessed on 24 July 2011.

Georghiou, Luke; Cassingena Harper, Jennifer; Keenan, Michael; Miles, Ian; Popper, Rafael (2008): The Handbook of Technology Foresight. Concept and Practice. Great Britain: Edward Elgar Publishing Ltd.

EFP Brief No. 247: Delphi-based Foresight for a Strategic Research Agenda on the Future of European Manufacturing

Tuesday, January 29th, 2013

This follow-up brief recapitulates the foresight exercise of the “Manufacturing Visions – Integrating Diverse Perspectives into Pan-European Foresight (ManVis)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned. We ask what the mid-term and long-term implications of this foresight exercise are, specifically how effectively the Delphi method was deployed to examine a wide spectrum of aspects underpinning the future trajectory of European manufacturing with a particular emphasis on the elaboration of scenarios that provide a broad basis for public discussion on the future of European manufacturing. This follow-up brief draws particularly on the lessons learnt from the organisers’ perspective.

Creating a Vision of the Future of European Manufacturing

The central purpose of the ManVis project was to inform a continuous process of policy development to enhance the competitiveness of the European manufacturing industries through a structured foresight exercise. In particular, the ManVis project was expected to contribute to completing the picture of the socio-economic dimensions that shape the technology dynamics in European manufacturing industries.

The policy relevance of the ManVis project was essentially linked to its role as one of the central strategic foresight studies in which the preparation of a more detailed Strategic Research Agenda (SRA), aimed at paving the way for the definition of research priorities to be implemented via the EU’s future RTD Framework Programmes, was anchored. The ManVis foresight was launched in response and complementary to the results obtained from previous foresight exercises and empirical surveys indicating that manufacturing in Europe needed to strengthen its innovation capacity in an environment where manufacturing is increasingly being relocated to locations outside Europe. Together with the FuTMaN (“Future of Manufacturing in Europe 2015-2020 – The Challenge for Sustainable Development”) project, the ManVis project was a central pillar of the Manufuture European Technology Platform, composed of high-ranking representatives of European industry and the scientific community, that was initiated in December 2004 with the explicit purpose of elaborating specific technology roadmaps, both horizontal and sectoral, to define the priorities for the first calls for proposals of EU’s Sixth Framework Programme (FP6).

In sum, the ManVis project addressed the following questions:

(a) Which technologies will be relevant to European manufacturing?

(b) What role will European manufacturing play in a more competitive world?

(c) Is European manufacturing prepared to meet the challenges of knowledge-based manufacturing?

(d) Which visions and challenges emerge for European manufacturing?

The ManVis Foresight Approach:
Delphi and Demand-side Scenarios

Delphi is a long-established methodology to create consensus among a wide range of opinions as a basis for developing an informed view on visions and alternatives in the setting of priorities in controversial or complex fields of science and technology policy. The ManVis Delphi survey collected the views of more than 3,000 manufacturing experts in 22 European countries as well as those of stakeholders and overseas experts that were collected during workshops and through interviews.

The Delphi survey covered developments of all relevant aspects of manufacturing from technological dynamics to organisational concerns and issues related to sector-specific developments. In parallel to the survey, scenarios on the future development of the demand side of manufacturing were elaborated.

Flexible Automation Instead of Unmanned Factory

The following key messages on technological dynamics in European manufacturing were derived from the ManVis Delphi survey:

(a) Micro-electromechanical devices, smart materials and products using nano-coatings represent long-term developments of new types of products with the potential to disrupt markets.

(b) New manufacturing technology principles, such as bottom-up manufacturing technologies are only expected in the long run. Manufacturing technologies using biotechnologies to create and manipulate inorganic material and products, such as nano-manufacturing, should be on the long-term “radar” of RTD policy.

(c) Micro-electromechanical systems (MEMS) as well as flexible organisation and automation strategies combined in reconfigurable manufacturing systems supporting flexible business strategies are important topics on the short-term research agenda. However, as a particular aspect, the experts surveyed viewed the unmanned factory with skepticism. Instead, they forecast that humans working with flexible automation solutions will play an important role in creating flexibility.

(d) Only long-term automation visions comprise human-machine interfaces such as man-machine speech recognition, self-learning systems and co-bots.

From these key messages the following implications were derived for the role of manufacturing research in combining the long-term horizon in technology trajectories with the short-term needs of firms to innovate successfully: Basic manufacturing research needs to prepare for new challenges, whereas applied manufacturing research should focus on the adaptation and transformation of existing technologies and organisational processes. Considering the functions of manufacturing research, it has been suggested that these key messages on future technology dynamics be discussed using the concept of the combined science-technology cycle of innovation (see Figure 1).
bild1

Figure 1: Manufacturing-related technologies on the sci-ence-technology cycle for macro innovations (Source: ManVis Report No. 3, Delphi interpretation report)

Integrating Non-technological Aspects

The ManVis Delphi survey covered many aspects of knowledge-based manufacturing related to the working environment. In particular, organisational concerns as they are linked to new challenges of product development were examined. In one of the interviews conducted for this follow-up, however, one of the organisers of the foresight process highlighted that – although the ManVis project was considered a “creative pool” for the construction of the Manufuture platform – contributors to the platform were skeptical concerning several of the organisational challenges. This was explained by a lack of interest in issues of work organisation at the company level, in particular on part of the predominantly larger industrial firms represented on the platform (SMEs were not represented). In addition, the organisers stated that the ManVis foresight contributed greatly to the integration of non-technological aspects in the debate on the future drivers shaping technological dynamics and on the demand for skills and competencies.

Furthermore, the interviewee argued that the Delphi results had the intended wide-ranging impact because the survey did not focus on sector issues alone. Although this impact was important in consolidating the field of manufacturing research, the foresight results were not followed up by more in-depth indicator-based (e.g. patents) research with a greater focus on sectoral issues. This was, however, not considered a methodological constraint but rather a weakness in following up on the Delphi results.

In addition, the organisers mentioned two methodological aspects as particularly important in shaping the results of the Delphi survey:

(a) The organisers’ interventions during several workshops at the national level, held to prepare the Delphi survey, played a central role in condensing the themes and elaborating the Delphi statements. As in any Delphi survey, the heterogeneity of the participants assured the validity of the results. In particular, the responses to the survey highlighted the facilitator’s role in coordinating the pool of heterogeneous expertise coming from a great diversity of technological and non-technological fields during the initial workshop, at which a list of 100 statements on a wide range of manufacturing topics was generated, as very important for the final outcome of the Delphi process.

(b) With regard to the stability of the responses to obtain a consensus among the participating experts, the summary feedback of aggregated responses of the second round did not generate any significant new changes. Under efficiency considerations, it could therefore be argued that the survey administration could have used statistical methods to analyse the data from the first round to assess whether any subsequent rounds were needed and, if not, terminate data collection after the first round.

Direct and Indirect Achievements of the ManVis Foresight

The ManVis Delphi survey results provided a broad basis for public discussion on the future of manufacturing in Europe. In particular, by complementing previous foresight studies intended to improve the self-understanding of the European manufacturing industry, it constituted an important pillar in the development of a strategic manufacturing research agenda at the European level. Several of the issues that were highlighted by ManVis, such as the need to explore the implications of user-driven innovation for manufacturing systems, were taken up in FP6.

Beyond its intended effects, the ManVis foresight also had some important unintended effects such as making a central contribution to the definition of research needs of the new member states that joined the European Union during the 2004 enlargement. Another central achievement of the ManVis foresight process was also an unintended side effect, namely to involve these new member states in the development of a Strategic Research Agenda on manufacturing in Europe.

Effective Dissemination of the Results under Budget Constraints

Since the financial budget for dissemination activities was cut significantly during the negotiation phase with the European Commission, the ManVis dissemination approach was under strain from the beginning of the project. Nevertheless, the project reported the results of the foresight to a wide audience of industry and governmental stakeholders at the Bled Conference in October 2005. This conference, which would not have been realised without the national resources of the Slovenian ManVis partner, provided a strong signal of interest in and relevance of identifying the manufacturing research needs in the new eastern member states.

Reaching the Policy Level

The ManVis key messages have been disseminated at the policy level to a wide set of stakeholders and actors of the European Commission, the member states, and industry. During the interviews for this follow-up brief, the communication with European policymakers was described as very good and the interaction with the EC as very supportive, in particular with regard to the central goal of feeding the results of the foresight exercise into key European initiatives such as the Manufuture European Technology Platform.

In sum, the outcomes of the Manvis project served to bring manufacturing experts with different national and professional backgrounds together to discuss the visions and the possible paths for securing the future of manufacturing in Europe. The results of the ManVis project have been fed into the EU’s Seventh Framework Programme.

Learning about the Manufacturing Research Needs of the New Member States

It was reported during one interview with the organisers of the foresight that a central achievement of the ManVis project was to involve the new member states in the development of a Strategic Manufacturing Research Agenda at this particular time. While the EC only had partial knowledge about key institutions and actors shaping policy development processes in areas related to manufacturing, it was an important indirect achievement of the ManVis foresight initiative to involve many experts and policy stakeholders from the new member states in defining and assessing the manufacturing research needs at the European level. In this sense, the networking effect, particularly during the Delphi preparation workshops, was highly appreciated by European policy stakeholders because they provided a unique opportunity to get acquainted and build strong relationships with key experts from these countries and to use the foresight initiative to define priorities for the first calls for proposals for the upcoming Seventh Framework Programme.

In this sense, the direct involvement of the new member states in the definition of research topics to be supported was stated as one of the most important, yet unplanned and indirect, contributions of the ManVis foresight process. The research topics thus identified are considered to have real industrial relevance and the potential to produce measurable impacts in terms of marketable products and services or more efficient manufacturing methods in the context of the catch-up process that these countries are undergoing.

Contributions to EU Enlargement

The ManVis foresight process made an important contribution to completing the picture of technology dynamics in manufacturing. At the particular time of realisation, i.e. in the aftermath of the 2004 EU enlargement, the Delphi survey not only set out several possible trajectories for developments of future manufacturing processes and policy scenarios, but it also helped to define the R&D position of 22 EU countries. In the context of the shifting comparative advantages due to the salary increases to be expected particularly in the new member states, the ManVis foresight provided an important platform to learn about manufacturing research priority topics and the adaptations needed at the level of companies and innovation systems. Beyond the identification of research needs, a concrete achievement of the ManVis foresight lies in the strong integration of key stakeholders from both public policy and industry of the new member states in the long-term planning of European research funding for manufacturing.

Authors: Dirk Johann             dirk.johann.fl@ait.ac.at

Elisabetta Marinelli   elisabetta.marinelli@ec.europa.eu

Sponsors: European Commission (Directorate General Research)
Type: International foresight activity (Specific Support Action) covering the enlarged European Union, focusing on the thematic area of manufacturing
Geographic coverage: Europe
Organizer: Fraunhofer ISI Karlsruhe, OPTI,  JRC-IPTS, Cambridge University, IVF Sweden and national correspondents in 22 European countries
Duration: 2003 – 2006
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: July 2012

Download EPF Brief No. 247_ManVis_Follow-up

Sources and References

Dreher, C. et al. (2005), ManVis Report No. 3 – Delphi Interpretation Report, Deliverable D15, Contract No. NMP2-CT-2003-507139-MANVIS

Dreher, C. et al. (2005), ManVis Report No. 6 – Manufacturing Visions – Policy Summary and Recommendations, Deliverable D17, Contract No NMP2-CT-2003-507139-MANVIS

European Commission (2006), Manufuture Strategic Research Agenda – Assuring the Future of Manufacturing in Europe – Report of the High-level Group, European Commission, Directorate-General for Research: Brussels

Jung-Erceg, P. K. Pandza, H. Armbruster, C. Dreher (2007), “Absorptive Capacity in European Manufacturing: A Delphi Study”, Industrial Management & Data Systems, Vol. 107, 1, 37-51

Link to the original Foresight Brief No. 53 “European Manufacturing Visions – ManVis 2020”: http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-53-European-Manufacturing-Visions-ManVis-2020.pdf

EFP Brief No. 246: Foresight and STI Strategy Development in an Emerging Economy: The Case of Vietnam

Tuesday, January 29th, 2013

With the purpose of supporting the definition of the Science and Technology Strategy 2011 – 2020 by the Ministry of Science and Technology of Vietnam, a novel approach to policy and strategy development was introduced, combining foresight techniques alongside traditional strategy programming tools. This novel approach is considered useful for application in developing countries with strong planning traditions.

Challenges to STI Policy Definitions in a Developing Country

Vietnam has one of the fastest evolving economies among developing countries. GDP growth was around 7% in the last decade and should continue growing if the country moves beyond the current model based on low labour costs and intensive capital investment. In spite of advances, strengthening competitiveness and productivity presents a key challenge. In social terms, poverty decreased from 58% (1993) to 14% (2008), indicating the capacity of the country to achieve the Millennium Development Goals. There remains, however, a large and increasing income gap. Advances in education and health have been important, but problems of coverage and quality associated to the services provided also remain as challenges.

Recognising the importance of science, technology and innovation (STI) as instruments of development, Vietnam has given them high priority and has defined and implemented corresponding policies and strategies for several years. The process followed an approach consistent with the country’s political context, i.e. based on a strong planning culture, a top-down policy approach and weak monitoring and evaluation systems.

The outcomes of this approach have been mixed. Demanding policies and strategies were defined but had a varying degree of success in terms of extent and quality of implementation and impact.

Recognising the challenges imposed by today’s accelerated technological change, the growing complexity of research and innovation, and obvious limitations of traditional approaches used in policy and strategy formulation, Vietnam requested support from UNIDO to formulate the 2011/2020 STI strategy and better meet its development goals.

The Novel Approach to Policy and Strategy Definition

Responding to the above request, the project developed and applied a novel approach to policy and strategy definition by using foresight as a focusing and policy informing tool, aiming to support, step by step, the preparation of a fully-fledged national STI strategy (UNIDO 2010a) and facilitate the institutional embedding of the foresight and strategy process. Very few cases of foresight exercises are known to focus explicitly on the future shaping of the whole STI system.

The application of the novel approach to shape the STI system requires its components and functions to be explicitly identified. On this basis, it is of crucial importance to ensure, first of all, an effective and efficient operation of the STI system in structural terms (“structural priorities”). More specific priorities can only be tackled if the main STI system functions operate properly.

A second element playing an important role in the context of the definition of policy and strategy are three types of thematic priorities on which to concentrate efforts beyond structural ones: key science domains, technology areas and application fields.

A third element concerns time. Any policy or strategy should target a given time frame, and the targets defined within this horizon should be both challenging and achievable while steps towards defining them need to be clearly defined.

Finally, foresight and STI policy strategy development should be embedded in a comprehensive framework of policy definition.

The approach combines thematically focused and systemic-structural foresight activities, on the one hand, and STI strategy propositions, on the other, implemented in a co-evolutionary manner:   

  • Foresight activities with the purpose of exploring the future development of the STI system at the national level and for specific key technologies, combining exploratory and normative approaches, and devising options and roadmaps for future action.
  • STI strategy propositions to “translate” the findings of foresight into position papers that can be easily fed into the development and formulation of the actual STI strategy. In turn, insights generated in the context of the STI strategy can be fed back into the foresight exercise.

In this approach, foresight activities and the development of the STI policy and strategy are closely intertwined, as shown in Figure 1.

246_bild1

Figure 1: Proposed Methodological Approach

To ensure a timely transfer of the knowledge generated by the foresight activities into the STI strategy development process, interfaces between the two processes must be carefully designed. Cross-membership between the working groups in charge of foresight and strategy development respectively is an important transfer mechanism, as is the preparation of well-fitted and targeted input papers (position papers) to feed strategy development at key points in time. For the application of the novel methodology five phases can be foreseen, as follows:

Phase 1: Analysis, positioning and exploration of the STI system

In this phase, the relative performance of the STI system is analysed, a preliminary SWOT analysis constructed, and the main current policies and strategies assessed in order to capture the country’s present situation. This phase also explores trends related to contextual local and international developments and drivers that are likely to affect the country’s STI system in the coming years; from these trends and drivers, first exploratory scenarios can then be constructed.

 

On top of these exploratory scenarios, a so-called “success scenario” needs to be developed in order to obtain a first normative orientation and a set of criteria to determine what a desirable future for the country’s STI system might look like. The success scenario also provides the basis for specifying criteria for the selection of technology areas to be analysed in more depth later in the process.

The result of this phase is resumed into a first informing position paper”, which is then fed into the strategy team.

Phase 2: Deepening of the exploration of the STI system using Delphi methodology

The second phase deepens the exploration of the STI system by way of a Delphi enquiry, which is used as a means to interact extensively with the expert and stakeholder communities and to collect further inputs and feedback on three main aspects: a) the trends identified, b) the exploratory and success scenarios developed for the STI system together with their main structural characteristics and deficits, and c) main technology areas of importance to the country.

The Delphi can be implemented in four main blocks: a) scenario assessment and perspectives on success in STI, b) national and international context of the STI system, c) structural challenges in the STI system and d) potential technology areas. As Delphi surveys are difficult to carry out in many developing economies, other types of consultative foresight techniques may be used as alternative options.

The assessments from the Delphi can then be analysed and interpreted in the light of the currently envisaged objectives and targets of the national development plan and strategy in order to trigger a debate to what extent there is actually the systemic capacity in place to achieve what has been formulated as targets.

This phase serves as the basis for preparing a second position paper to provide a deepened SWOT analysis of the STI system, together with first views on possible technology areas to focus on in the next module.

Phase 3: Exploring key technology innovation systems

This phase takes a limited number (5-6) of promising technology areas as its starting point. Based on suggestions from the second position paper and close interaction with the STI strategy drafting team, these areas can be defined with a view to achieving important socio-economic development goals. Apart from identifying and assessing key technologies in these areas, this analysis aims at exploring the systemic requirements that the area-specific STI systems in which these key technologies are embedded have to meet in order to ensure their successful development and application.

The key technology (4 to 5 per area) analysis can be based mainly on panel work and possibly on interviews with additional key experts. Depending on a country’s specific situation, criteria for the selection of key technologies could be, for instance, their relevance to industrial application and to the positioning of the country in international production networks, the relative strength of the country in this key technology or the potential to become an autonomous leader in this key technology as contrasted with being dependent on critical imports.

A third position paper takes into account the findings of this phase and elaborates on the opportunities and requirements in a selected set of key technology innovation systems

Phase 4: Vision and roadmap for STI systems

This phase moves from the analytical and exploratory perspectives adopted in the previous phases towards a more normative perspective on what a desirable future of the STI system could look like, and what steps may be needed to get there.

The panels established in the previous step develop visionary outlooks for the key technology innovation systems they have been dealing with. Building on the insights on requirements for key technology innovation systems, they sketch how these systems should look like within a given time horizon. Similarly, a previously established crosscutting panel should work on a vision at the level of the STI system.

Some harmonisation of the different visions is achieved by a joint workshop of the different panels because the STI system visions should build on sector visions and the sector visions should be framed by the STI system vision. The different visions can finally be compiled in a single document.

A final and fourth position paper can then be prepared to feed the visionary and roadmap-related elements into the policy and strategy development process.

Phase 5: Future-oriented agreements and their implementation

The final phase of the process deals with the conclusion of concrete agreements between actors and stakeholders to undertake specific joint action in line with the STI policy and strategy developed. This phase is already about making first steps towards the implementation of the strategy.

Application of the Novel Approach to the 2011 – 2020 Vietnamese STI Strategy

The main results of the application of this novel approach to the Vietnamese case, between 2010 and 2011 can be resumed as follows:

Phase 1: A STI system and policy diagnosis was obtained (UNIDO 2010b), and a trend analysis and scenarios completed (UNIDO 2010c). A first position paper informed the strategy drafting team on the main results of this phase, emphasising the internal trends and challenges to Vietnam.

Phase 2: A Delphi inquiry was conducted by e-mail, which received little response and was not used for further analysis. This situation restricted the exploration of key technology areas and technology innovation systems to be undertaken in Phase 3, but did lead to their discussion in the strategy panels as reflected in the first draft of the strategy prepared by the Ministry of Science and Technology of Vietnam (MOST) in mid-2011.

Considering the above limitations, position paper 2 put its emphasis on exploring the possibility of realising a success scenario and provided guidelines on how to achieve it.

Further considering that a draft strategy had already been developed by this time, position paper 3 provided inputs that would allow to better embed it into the Five-year National Development Plan (NDP) (2011–2015) that was being prompted for approval.

Position paper 4 identified key STI inputs needed to advance prioritised economic and social sectors, based on a set of priorities put forward in the draft version of the STI strategy of September 2011. The main idea of this position paper was to ensure that the STI strategy would be embedded in the NDP, drawing on the “vision” that had been constructed as part of the latter.

MOST adopted the STI Strategy in April 2012 with some of the limitations that were characteristic of previous strategies, such as its still too general character and lack of more specifically targeted priorities. Nonetheless, the novel approach to policy and strategy definition introduced in the project did incorporate several elements of importance into the final version of the document.

Parallel Foresight and Policy Design Process Most Promising

The social and economic developments that have taken place in Vietnam in the past years have provided a facilitating framework for a novel approach to STI decision-making, combining foresight tools with traditional programming methods.

The rather strong cultural context for policy definitions in Vietnam has limited the full application of the adopted methodological approach, but the process served as a powerful learning technique in the institutions dealing with policy and strategy.

Because of the complexity in the definition of public policies in fostering and strengthening indigenous capabilities to use, adapt, modify or create technologies and scientific knowledge, a parallel foresight and policy design process seems to be one of the most promising approaches to improve decision-making processes in developing countries.

Authors: Carlos Aguirre-Bastos   csaguirreb@gmail.com

Matthias Weber            matthias.weber@ait.ac.at

Sponsors: United Nations Industrial Development Organization, National Institute for Science and Technology Policy and Strategic Studies, Ministry of Science and Technology of Vietnam
Type: National foresight exercise
Organizer: UNIDO and AIT Austrian Institute of Technology
Duration: 2010 – 2011
Budget: n.a.
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No. 246_Foresight and STI Strategy Development for Vietnam

Sources and References

UNIDO (2010 a) Inception Report – Doc. STI-WP0-MOD2-001-v7-010610; 01 June 2010 (prepared by Matthias Weber)

UNIDO (2010 b) The Science, Technology and Innovation System and Policy Analysis – Doc. STI-wp1-MOD3-001-V.4-020610; 02 June 2010 (prepared by Carlos Aguirre-Bastos)

UNIDO (2010c) Trend Analysis and Scenario Development of the Vietnamese STI System – Doc. STI-WP1-MOD5- 012-V.1 – 151210 (prepared by José Miguel Fernandez Güell)

EPF Brief No. 242: Quality and Leadership for Romanian Higher Education

Friday, December 21st, 2012

The project “Quality and Leadership for Romanian Higher Education” (QLHE) aimed to elaborate a vision of Romanian higher education in 2025 and a strategy consisting of specific policy guidelines to achieve it. Based on a large participatory foresight exercise, the project sought to contribute to improving the strategic management of universities and achieving a wide national consensus on the development of the Romanian higher education system.

Transforming the Higher Education System

The project was to help transform the framework of Romanian higher education, as it has been repeatedly stated that the system lacks a vision and long-term strategy. The Presidential Commission on Education issued a report claiming that “education in Romania is ineffective, irrelevant, and low in quality”. The whole reform process has been incoherent, ineffective and has lacked a long-term, shared vision of the future. Therefore, the education system was in urgent need of change. The transformation had to be endorsed by the academic community, policymakers, stakeholders and public opinion. In order to achieve broad consensus, the project carried out a foresight exercise – a large participatory exercise involving a substantial number of people from various target groups and a wide range of ideas, possible future scenarios, solutions, policy options etc.

The higher education system has been repeatedly evaluated as homogeneous, lacking diversity, outdated and out of tune with the realities of the dynamic and interconnected world around it. Prior to developing and achieving the final results, the project carried out activities to analyse the context and identify the major challenges and drivers of change in order to generate a clear and encompassing view of the environment, its needs, the existing obstacles and the potential opportunities. Panels of experts elaborated a series of studies concerning the analysis of the current state of Romania’s universities in relation to various aspects of society, the existing challenges, and the drivers of change in light of the main features of the Romanian social system. The resulting documents served as a point of reference for the subsequent activities.

Creating a Shared Vision

The goals of the project were to create a shared vision and a set of strategic recommendations for Romanian higher education and, in doing so, to develop the prospective analysis and leadership capacities of key actors through a series of workshops and training sessions on various topics of interest.

Another challenging objective was to develop and sustain a foresight community by creating an environment that would enable the emerging community to interact and exchange opinions. Thus, the project designed a web-based collaborative platform, The Foresight Wiki. The name indicates that the platform uses the wiki technology for developing collaborative websites and Web 2.0 technologies. This allows members of the future studies and foresight communities to write articles that any other member can edit. The platform represents an innovative tool providing a user-friendly interactive setting.

Bucharest Dialogues

The platform was not the only step to advance the development of the foresight community; a series of ten international debates, the Bucharest Dialogues, provided the platform with information and knowledge and gave the participants the opportunity to gain experience in the foresight process. These mutual learning workshops were designed as variations on the Bohm dialogues where experts can get together and discuss fundamental aspects of foresight. The Bucharest Dialogues invited foresight practitioners, managers and policymakers in a setup following David Bohm’s principles of dialogue. During a Bucharest Dialogue, key speakers would represent distinct voices within the foresight community, speaking on a broad, preestablished topic.

Mutual Learning Workshops

Both the Mutual Learning Workshops and the Bucharest Dialogues offered a great opportunity for knowledge, skills transfer and learning by allowing the Romanian experts to closely collaborate with more than one hundred international experts. Among the international experts that participated in the Romanian foresight exercise were representatives of institutions such as Fraunhofer ISI, The Institute for Prospective Technological Studies (IPTS), European Universities Association or UNESCO-CEPES (the European Centre for Higher Education), which acted as partner institutions, different international institutions, such as SAMI Consulting, UNIDO, and well-known individual experts, such as Murray Turoff, Roxanne Hiltz, Riel Miller, Peter Bishop, Ozcan Saritas, Denis Loveridge, Ziauddin Sardar, Wendy Schulz and others (for a full list of participants, see the ForWiki platform).

Large-scale Participative Approach

The context and the challenges addressed by this project and the objectives pursued were suited for a large-scale, participative, systemic foresight exercise. As mentioned above, such an approach was necessary since the lack of a systemic approach to change in higher education has not only generated a mélange of reforms but, more importantly, has also resulted in the absence of a clear vision of the future bearings of Romanian higher education.

The exercise started with a nomination/co-nomination process to identify the key stakeholders. It went on to combine panel work, workshops and online interaction. All these activities involved hundreds of participants who provided knowledge, feedback and recommendations during every step of the project.

A series of workshops and trainings were organised for the stakeholders. They focused on various topics of interest, such as foresight and strategic planning, public policy elaboration in higher education, public policy analysis, introduction to the Delphi method or critical thinking and helped to develop skills and abilities so that the whole transformation would actually occur from within the system and would represent a sustainable process, accepted and widely supported by the stakeholders. All these events were chaired by outstanding international experts.

The whole process highlighted interactivity and focused on sharing experience and new knowledge in an international context. One of the key features of the process was empowering stakeholders to contribute to a shared vision. There were two International Advisory Board meetings, international surveys, and various workshops and trainings facilitated by foresight experts. All the outputs were widely disseminated and constantly tested beyond the initial groups with the help of focus groups and a number of online surveys. At the same time, all results were presented to all participants and stakeholders in an appealing way, using films, attractive websites and platforms.

Following a bottom-up approach, the process started with expert panel analyses, which served as a starting point for the creation of four success scenarios on Romanian higher education in 2025. They were used as frameworks for the transformation of the system and expressed the most relevant and desired changes: University of Life and Jobs, Knowledge Constellation, Atheneum and Blue Ocean.

The scenario building was a vast process that combined three renowned and thoroughly tested methods: World Café, Cards and Integral Matrix Analysis. The scenario workshop was designed as a collaborative process in which the members of the expert panels and the invited stakeholders worked in a World Café setting with more than 70 participants. The participants and stakeholders “played” with the main concepts provided by the previously elaborated documents. They used cards and extracted
the most creative ideas. The goal was to outline a final vision for the higher education system, which was tested and altered in order to meet the requirements and desires of the community.

Elphi Platform

The project was innovative not only in carrying out the first foresight exercise on higher education in Romania but also in creating an adapted version of a Delphi questionnaire tailored to the needs of the Romanian higher education context. The questionnaire was provided on the online platform Elphi, which gave the stakeholders the opportunity to actively participate and in the shaping of the Romanian higher education strategy. A large number of respondents from academic, business, social
and policymaking environments participated. They analysed a series of policy proposals that had previously been drafted by nine different panels of experts in relevant areas. Experts were invited to provide arguments and dynamic rankings; their feedback was essential to improving the initial proposals in order to yield the most desirable policy proposals, adapted to the realities of Romanian higher education, while at the same time being future-oriented and bold enough to spur transformation.
The online platform was innovative in introducing a system of dynamically ranking arguments, providing respondents with an opportunity to refine their views and reach a final consensus. The involvement of a large number of experts also legitimised the recommended policies. Later on, these policies formed the core of the White Paper on Romanian Higher Education in 2015, the strategy document whose recommendations charted the first steps to be made towards the 2025 vision.

Measures of Change

The White Paper was to support the vision by suggesting concrete measures and policy proposals for change, designed for the medium term (2011-2015) and for immediate implementation. The first step in formulating the White Paper was to elaborate a series of policies that were tested and initially integrated into a Green Paper on Romanian Higher Education in 2015 by a group of experts – an intermediate step in developing the White Paper. The Green Paper proposed an approach in waves, in which the interest expressed by individual universities constituted the premise of transformations. According to this proposal, the process of transformation should be supported by financial assistance throughout a transition phase and strongly oriented towards autonomy, leadership and responsibility. Romanian higher education is currently perceived as an administrative service, with the state having the right to intervene in the universities’ internal affairs. Thus, university autonomy is weak and subject to administrative, fiscal and financial restrictions. As a potentially significant opportunity, participating universities should be offered the option to change their legal status. Universities must maintain their public interest status, but, at the same time, enjoy economic and fiscal freedoms specific to educational and research services.

The Green Paper was a consultative document; a large online consultation was opened around the key statements, and several university rectors and vice-rectors were interviewed. The integration of the opinions and comments expressed during this process by over 300 respondents supported the development of the White Paper.

Personalisation, Diversification, and Transparency as New Values

The vision and the White Paper were the products of a broad and complex process whose first stages were described in the sections above. Reflecting the success scenario elaborated by stakeholders, the 2025 vision document describes a future of Romanian higher education based on the values of personalisation, diversification and transparency. In short, the three principles describe the desired changes the system should undergo. Personalisation means more options for students in terms of flexible educational pathways that can be fit to their individual plans for the future. Diversity means institutional structures and a systemic configuration that allow for distinct trajectories for institutions with different missions and goals. Transparency highlights the importance of comprehensive, relevant and easily accessible information about the education system while working towards a reputation system for universities.

Innovative Aspects

In Romania, using the foresight methodology to build a vision of the higher education system and develop strategic recommendations (White Paper) represented an innovative approach. The Romanian higher education foresight exercise was the second national foresight process in this country. Such a toolkit had never been used in higher education before and, as such, it represented a major challenge to the team implementing it.

The foresight exercise was the preferred methodology because the project strove to go beyond the limits of common expertise and the traditional policymaking process in Romania, which had led to inconsistent higher education strategies. Moreover, the need for a systemic approach was implicit in the complexity of an education system that engages a variety of actors and their relationships and eventually influences the life of every citizen. Another innovative aspect was the use and adaptation of the online roundless Delphi, which was adjusted to the specific needs of the project and led to the creation of the Elphi platform.

Reform Approaches Find Society’s Consent

The process and the results were designed to raise awareness about the fact that the Romanian higher education system needs to be changed and that Romanian society supports this transformation. By participating in the process, a variety of actors and stakeholders legitimised the vision document and the strategy-setting White Paper. These two documents, together with the
workshops, training sessions, dialogues and debates organised throughout the three years of the project, set out an appropriate framework for the transformation of higher education. They supported a long-term vision designed to draw the picture of a desirable future, generate and stimulate forward-looking thinking about future challenges, provide the basis for decision-making in the present, and mobilise individual and collective action.

Although these ideas, solutions and policies were embraced by the key actors and stakeholders in the education system, the actual transformation of course requires more than visionary documents or the will of the actors involved. While, to date, there has been no official commitment to carry through with the proposed changes in law, a number of follow-up projects are currently empowering the universities in accordance with the principles set out in the vision (improving the system’s transparency, encouraging the collaboration of universities, and capacity-building for differentiation).

Download EPF Brief No. 242_Quality and Leadership for Romanian Higher Education.

 

Sources and References

Andreescu, L., Curaj, A., Gheorghiu, R. (2011): Unleashing individualization. Challenges for Personalization in Tertiary Education, Proceedings of the 7th International Conference on the Management of Technological Changes, ed. C.

Rusu, Greece, Alexandroupoli: Democritus University of Thrace.

Andreescu, L., Gheorghiu, R., Proteasa, V., Curaj, A. (2012): Institutional Diversification and Homogeneity in Romanian Higher Education: The Larger Picture, in Curaj, A. et al. (eds.): European Higher Education at the Crossroads, Dordrecht, Heidelberg, New York, London: Springer, pp. 863-885

Andreescu, L., Gheorghiu, R., Zulean, M., Curaj, A. (2012): Systemic Foresight for Romanian Higher Education, in Curaj, A. et al. (eds.): European Higher Education at the Crossroads, Dordrecht, Heidelberg, New York, London: Springer, pp. 995-1017

Andreescu, L., Gheorghiu, R., Zulean, M., Curaj, A. (2012): Understanding Normative Foresight Outcomes: Scenario
Development and the ‘Veil of Ignorance’ Effect, Technological Forecasting and Social Change, available online 26 October
2012 ISSN 0040-1625, http://dx.doi.org/10.1016/j.techfore.2012.09.013. (http://www.sciencedirect.com/science/article/pii/S0040162512002399)

www.edu2025.ro, last accessed 17 September 2012.

www.forwiki.eu, last accessed 17 September 2012.

 

EFP Brief No. 240: BMBF Foresight

Friday, December 21st, 2012

The aim of the BMBF Foresight process that ran from 2007-2009 was to identify long-term priorities for German research and innovation policy with an emphasis on crosscutting systemic perspectives. The foresight process was meant to complement the German High-Tech Strategy, which had defined mission-oriented priority fields with a medium-term horizon. After the finalisation of the foresight process in 2009, an implementation phase with several interacting activities was launched in order to feed the results into other strategic processes. As a next step, BMBF set up an embedded, continuously learning foresight system with dedicated phases that will be repeated by all subsequent processes. Within this framework, the second foresight cycle was launched in early 2012.

Complementing the High-Tech Strategy

Before the first cycle of BMBF Foresight started in 2007, the German High-Tech Strategy (BMBF 2012a) had established a number of priority fields for research and innovation policy with a time horizon of 5-10 years. The foresight process was launched by the BMBF strategy department with the following main objectives:

· complement the High-Tech Strategy with a longer-term perspective on emerging technologies and potential priorities,

· identify emerging issues across established research and innovation fields,

· explore in which areas strategic partnerships might be required.

At this point in time, BMBF had not carried out any overarching foresight process since the FUTUR process (Giesecke 2005), which had been finalised in 2005. As some actors within BMBF had a rather critical view of FUTUR, an important additional objective of the new foresight process was to (re-)establish trust and confidence in foresight within the ministry. Accordingly, high emphasis was placed on communication within the ministry and early-on involvement of all BMBF departments that were potentially affected by the foresight outcomes. The foresight process was accompanied by a process and impact evaluation carried out by the Institut für Technologie und Arbeit (ITA).

Adopting a Technology Push Approach

As described in detail by Kerstin Cuhls in the preceding brief No.174 and in recent publications (Cuhls et al. 2009a), the methodology of the foresight process combined several elements. The most prominent approaches were

· environmental scanning including a literature survey and bibliometric analysis and

· expert interaction through interviews, workshops and a national online survey.

In parallel, a monitoring panel composed of international top experts was interviewed twice in the course of the process.

As requested by the ministry, the foresight process adopted a ‘technology push’ approach. In the first phase in particular, the process concentrated on identifying emerging technologies with long-term relevance to the German economy and society within the established realms of research and innovation. The criteria to assess ‘relevance’ were established in interaction with the ministry.

In the second phase, the emphasis of the foresight process was placed on a second set of objectives: the identification of key issues emerging across these established technology fields. For this purpose, the results emerging from the technology push analysis were systematically reviewed and mirrored against major societal challenges such as sustainability and health. In this way, the seven ‘new future fields’ were developed as described in the previous brief. These fields are characterised by a highly dynamic development at the interface of emerging solutions and societal demand.

Sharpening the Research Dimensions

Participants

In line with the science and technology push orientation of the foresight process, the participants were mainly research and technology experts, however, from diverse organisational and professional backgrounds. Along with the numerous national experts, ca. 20 highly renowned international experts from the key science and technology fields under investigation were involved through the international monitoring panel. In one of the conferences that focused on innovation policy instruments, practitioners and researchers in the realm of innovation policy were gathered. In the final phase, when developing the ‘new future fields’, more and more social scientists were involved. So, for instance, in the case of ‘humantechnology interaction’, a workshop with philosophers and sociologists, on the one hand, and engineers and programmers, on the other, was carried out to sharpen the research dimensions (Beckert et al. 2011). Finally, there was intense interaction with actors from various BMBF
departments particularly in the later phases of the process in order to validate and enrich the foresight findings.

Intended Users

The first cycle of the BMBF Foresight process addressed two main user groups. First of all, the process sought to maximise its usefulness to the various departments within BMBF that are responsible for steering the BMBF support to research and innovation in their respective domains. The main benefits envisaged for the departments were the possibility to mirror their own perceptions against the foresight findings, gain an overview of each other’s activities, develop overarching perspectives, and identify potential linkages and possible blind spots. Secondly, the foresight was meant to serve the wider innovation system by providing long-term anticipatory intelligence for orienting strategy building within and among diverse organisations.

Crosscutting New Future Fields

The tangible output of the foresight process consisted of two core reports (Cuhls et al. 2009b and c). One report listed the selected themes with high long-term relevance in fourteen established research and innovation fields. The other report spelled out the seven crosscutting ‘new future fields’ and provided an analysis of key actors in the German innovation system as well as recommendations for policy action within these fields.

Dissemination

The reports were first disseminated within the BMBF and later widely throughout the innovation system starting with a large public conference. Within the ministry, the uptake of the findings was actively supported through dedicated workshops where the project team members presented the findings and discussed the implications with the departments.

Implementing Strategic Dialogues

In order to further facilitate the uptake, two follow-up projects were launched: The first was the ‘strategic dialogues’ where innovation system actors who had been identified in the foresight report jointly discussed options for implementing the findings. In one case (Production-Consumption 2.0), several other ministries, such as the ones dealing with the environment or food and agriculture, were involved in this debate. In a one-day workshop with more than 30 participants, diverse stakeholders debated the transdisciplinary research around the transition towards sustainable production and consumption that had been proposed by the foresight process. Secondly, the ‘monitoring system’ was set up in order to keep track of the evolution of the new future fields and inform the ministry in case further action was needed.

Direct Impact

Within the ministry, the uptake of the foresight results differed according to the type of outcome. In case of the future topics in the established fields, there was initial reluctance within the ministry’s departments as these findings seemed to trespass on their own domains of activity. In several cases, however, the departments perceived the availability of findings from an independent process as a mirror for their own strategic thinking as useful. Several of the topics proposed by the foresight
process were taken up by subsequent BMBF funding initiatives.

In the case of the ‘new future fields’, there was a general appreciation of the ‘bird’s eye view’ across established domains of ministerial activity that the process provided. Several attempts were made to take up the proposed perspectives. As the new fields did not match the existing organisational structures of BMBF, the implementation was not straightforward. This, however, was seen as an asset rather than a problem by the strategic department as the crosscutting perspectives were viewed as long-term guidance for strategic thinking within the ministry rather than an agenda for immediate implementation.

In case of the future field ‘human-machine cooperation’, a new department was created in order to pursue the transdisciplinary perspective proposed by the foresight process. For ‘ProductionConsumption 2.0’, a few smaller seed projects were launched to explore some of the core issues. In both cases, several aspects inspired the BMBF programmes in domains such as production,
environment, security and ICT. Finally, several of the core findings of the foresight process were fed into the strategic debate around the renewal of the High-Tech Strategy, which was taking place in parallel.

In addition, several of the foresight’s suggestions entered the strategic debates in the wider German innovation system. The project team received numerous requests from the governments of the Länder (German states), research institutes and companies to discuss the implications of the ‘new future fields’ on their own strategies.

At the European level, the ‘new future fields’ were recognised with interest as well. At the time, the European Union was seeking to orient its research and innovation activities towards the grand challenges of our time in a systemic manner. In a special event that was organised by the Social Sciences and Humanities (SSH) foresight group, findings from several foresight processes that sought to connect key technologies and grand challenges in a systemic manner were reviewed, among them the German case (EC 2011). In the context of an EU expert group on the future of Europe 2030/2050, suggestions for such systemic priorities from several countries were compared (Warnke 2012). The review revealed that the German ‘new future fields’ were among the most far-reaching suggestions for integrating technological and societal dynamics into systemic ‘transformative priorities’. At the same time, it was noted that exercises in other countries, such as the ‘Netherlands Horizon
Scan’, had defined some areas that were well in line with some of the ‘new future fields’, such as sustainable living spaces and human-technology cooperation. Nevertheless, the analysis suggested that there are no ‘onesize-fits-all’ systemic priorities as each cultural contextrequires its own specific framing of the issues at stake.

Furthermore, the foresight process attracted considerable international attention, partly due to the fact that there had been substantial involvement of international experts through the monitoring panel and two conferences with international participation. After the process was finished, several countries around the world expressed their interest in both content and methodology.

Finally, within the academic community concerned with the governance of research and innovation and forward-looking activities, the German foresight experience was widely published and presented. In particular, the challenge of generating truly systemic sociotechnical perspectives and feeding such perspectives into governance structures, which are organised according
to their own rationale, created wide interest and debate (cf. e.g. Warnke 2010).

Indirect Impact

As outlined above, paving the ground for embedding foresight into BMBF strategy building was an important objective of the process. The evaluation report confirmed the substantial progress made in this respect. Several actors in the ministry felt that they had benefitted from the foresight process and expressed their renewed openness and positive attitude towards foresight approaches.

Follow-up: Embedding Foresight

As a consequence of the perceived success of the first foresight process and in following up on the recommendations of the evaluation team, the ministry decided to establish foresight within the ministry as a continuous anticipatory learning process.
For this purpose, a ‘foresight system’ was designed and implemented (BMBF 2012 c). This system cyclically evolves through the following phases: scanning, analysis, implementation and preparation of the next cycle. The previous foresight process was considered a pilot for the first cycle.

Furthermore, it was decided that the second cycle should focus on the demand side of research and innovation and therefore primarily explore relevant societal changes that could then be linked to the technological trajectories suggested by the first cycle.

Based on this framework, a call for proposals for the second foresight cycle was launched. A consortium of the VDI Technologiezentrum and Fraunhofer ISI was selected to carry out the project, which started in May 2012 with a new ‘search phase’. Again, the project is being accompanied by an evaluation process conducted by ITA to keep track of lessons learned and to optimise the communication processes. This time, a board comprised of actors from key organisations of the German
innovation system has been set up to accompany the foresight process. From the beginning, the approach and findings are discussed with the BMBF departments on a regular basis. A separate EFP brief will be issued in order to describe this new process in detail.

Download EFP Brief No. 240_BMBF Foresight.

Sources and References

Beckert, Bernd; Gransche, Bruno; Warnke, Philine and Blümel, Clemens (2011): Mensch-Technik-Grenzverschiebung Perspektiven für ein neues Forschungsfeld. Ergebnisse des Workshops am 27. Mai 2009 in Karlsruhe im Rahmen des BMBF-Foresight Prozesses ISI-Schriftenreihe Innovationspotenziale. Karlsruhe

BMBF (2012a) http://www.hightech-strategie.de/en/350.php (accessed 15 November 2012)

BMBF (2012b) http://www.bmbf.de/en/18384.php (Foresight Cycle 1) (accessed 15 November 2012)

BMBF (2012c) http://www.bmbf.de/en/18378.php (Foresight System) (accessed 15 November 2012)

BMBF (2012d) http://www.bmbf.de/en/18380.php (Foresight Cycle 2) (accessed 15 November 2012)

Cuhls, Kerstin; Beyer-Kutzner, Amina; Bode, Otto; Ganz, Walter and Warnke, Philine (2009a): The BMBF Foresight Process, in Technological Forecasting and Social Change, 76, p. 1187–1197

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009b): Foresight-Prozess im Auftrag des BMBF. Zukunftsfelder neuen Zuschnitts, IRB Verlag, Karlsruhe/ Stuttgart. http://www.bmbf.de/en/18384.php

Cuhls, Kerstin; Ganz, Walter and Warnke, Philine (eds.) (2009c): Foresight-Prozess im Auftrag des BMBF. Etablierte Zukunftsfelder und ihre Zukunftsthemen, IRB Verlag, Karlsruhe/ Stuttgart.

European Commission (2011): EUR 24796–European forward-looking activities: Building the future of ‘Innovation Union’ and ERA. Luxembourg: Publications Office of the European Union http://ec.europa.eu/research/socialsciences/books50_en.html

Giesecke, Susanne (2005) Futur – The German Research Dialogue. EFMN Foresight Brief No. 1.

Warnke, Philine (2012): EFP Brief No. 211: Towards Transformative Innovation Priorities, http://www.foresightplatform.eu/wp-content/uploads/2012/04/EFP-Brief-No.-211_Towards-Transformative-Innovation-Priorities.pdf (accessed 15 November 2012)

Warnke, Philine (2010): Foresight as tentative governance instrument-evidence from Germany. In: International Conference ‘Tentative Governance in Emerging Science and Technology – Actor Constellations, Institutional Arrangements & Strategies’, 28/29 October 2010, Conference Booklet, p. 113.

EFP Brief No. 237: Creative Foresight Space (CFS) for Enhanced Work Milieux

Friday, December 21st, 2012

This brief presents the concept of Creative Foresight Space (CFS), which is an alternative workspace as well as a foresight methods-based processing platform for a new kind of proactive and innovative working culture. CFS is a concept to stimulate both creativity and futures thinking. It combines physical, digital, virtual and peer-to-peer collaborative approaches for innovative and social futuring in organisations. It is designed especially to meet the challenges posed by the transition from information society to a meanings society. CFSs also provide a diverse platform for special futures workshops – called Futures Cliniques. CFSs enhance work milieus, augment work motivation as well as strengthen futures thinking and foresight competence.

Linking Innovation to Foresight in Corporations and Organizations

Innovations are born where there is enough encouraging space for creativity. Companies and organisations striving for innovation are increasingly interested in creating workplaces and workspaces that promote interaction, creativity and innovation. Companies and organisations have an immense unused potential to develop creative and innovative work environments. Such development can be linked to the attraction of regions or towns.

As the operational environment of companies and organisations has changed, foresight has gained more ground in their operations. Companies should link foresight both to their strategy work and innovation processes. In order to bring systematic foresight and innovation processes into a company, the whole organisation needs to be committed to a new way of thinking. This, in turn, requires a new culture of managing as a part of a whole new working culture. Such new culture of managing may flourish if new kind of work milieus are enabled.

Creative Foresight Space (CFS) will provide a new type of work milieu as integrated into ordinary offices. CFS links innovation processes (creative thinking) to foresight processes (futures thinking).

The project on Creative Foresight Space was initiated to find out the possibilities of developing better work environments. This was sought for by supporting the processes of organisational change through a Creative Foresight Space that encourages creativity and futures thinking. In addition to developing the concept of creative foresight space, the project included a wider foresight process that concentrated on the knowledge and expertise needed in the future.

Enhancing Creative Work Milieux for Future Thinking and Well-being

The theoretical objective of the study was to develop a concept of an innovative and experimental working space to stimulate at the same time creativity, futures thinking and wellbeing at work.

The concrete aims of the study were to design visually stimulating Creative Foresight Space (CFS) 1) to host participatory foresight sessions, especially Futures Cliniques, 2) to provide a space for self-organised futures exploration, 3) to demonstrate and apply several methods developed in futures research for futures sense-making and innovative problem solving for companies, public institutions, regions and citizens. CFS and Futures Cliniques were designed as a structured process, employing user-friendly multisensory instruments for open futures learning.

Part of the study was to probe possible futures for societal development and for the future of work. This was conducted through literature surveys, interviews (https://sites.google.com/site/futuremediac/videos–presentations) and participatory foresight sessions held in two regional CFS pilots.

The ultimate purpose of CFS was to help decision-makers by opening up vistas and even unexpected prospects for future developments at a longer and broader perspective than standard strategy.

Futures Wheel, Table, and Window

Creative Foresight Space (CFS) is a methodological umbrella concept, developed at Finland Futures Research Centre (FFRC) within the project. It manifests itself as a futures gallery or social futures learning hub, to enhance working milieus in all kind of organisations. It also acts as a platform for participatory, co-creative foresight sessions. Such sessions were structured as special Futures Cliniques. In Futures Cliniques several foresight methods are used to probe futures for the subjects selected.

The methods demonstrated and applied in all Futures Cliniques included for example the Futures Wheel, which is an easily applicable and discussion-oriented tool, and the Futures Table. In particular, the Futures Window was used, which is a visual presentation of weak signals, stimulating the futures work to follow watching it (Heinonen & Hiltunen 2012).

On average, at least five different foresight methods are always being demonstrated and used within a Futures Clinique. The Futures Research Methodology CD Version 3.0 (Glenn & Gordon 2009) produced by the Millennium Project (http://www.millennium-project.org/) was also frequently employed. In addition, material from the iKnow project (Ravetz et al. 2011; http://community.iknowfutures.eu/) was used and further elaborated. Besides foresight methods, also several innovation techniques were being applied in Futures Cliniques, e.g. the method of de Bono’s (1985) Six Thinking Hats. The participants were not required to be familiar with any of the methods beforehand. Instead the idea was to enable futures learning – both content-wise and methods-wise.

The visual design and mood of the Creative Foresight Space is a method in itself, aiming at multi-sensory futures exploration. In some of the sessions, emphasis was laid on visualisation and visual material from cartoons to pieces of art were experimentally used to nourish the participants’ imagination (Heinonen & Kurki 2011).

Two concrete cases of CFS were installed for a certain period of time (ca. six months) for experimenting. During the experiments, all the results were carefully identified and documented. One of the cases was CFS set up in Helsinki City Library in 2010 (in Finland). The other case was implemented inside a technology Centre Innopark in Hämeenlinna region (in Finland).

The concept of CFS can be implemented in two separate modes: the Stimulus version or the Slow version. The Stimulus version aims to excite and explode imagination and through such stimulation enhance creativity. The Slow version, on the other hand, enhances creativity through elements soothing the visitor and letting time and space for new ideas or understanding to emerge. This kind of futures learning (Heinonen, Kurki & Ruotsalainen 2012) can be achieved through slow motion digital walls, or by providing niches for silence and solitary futures exploration.

Shift Toward Meaning Society

The most important socio-economic trend identified during the project was the shift from the information society towards the meanings society.

Applying this shift to work, the central findings were the need for new organization models, radical mixing of different industries and branches, as well as utilizing prosumerism (producers + consumers) in a new work paradigm.

Adding to these a set of new competences and skills were identified. The diamond of seven competences that are critical for future work life in 2020 was presented.

The future of work in ubiquitous interaction

The future of work and the future economy will be shaped especially by changes in two intermingling areas: the technologies used and people’s ways of life.

The guiding technology for the future will, quite unsurprisingly, be the Internet with its different applications and services. The Net will affect our culture deeply.   The values and norms of web 2.0 will spread to the entire society – and the workplace. Digital natives will take participation, bottom-up approaches, collaboration and sharing for granted. They are intrinsically motivated rather than extrinsically influenced.

Adding to this, people strive more and more for a life that is personally and individually meaningful. The source of meaningful experiences can be anything, be it consumption, work, arts, or social relationships.

The Internet and other key technologies and services (e.g. cloud computing, mobile devices, application services) together with the strengthening ethos of self-expression are leading away from the information society to a new societal form, the meanings society. This transition will have a significant impact on how we work and on the organizations in which we work.

Despite automation work will not disappear. People are simply doing what gadgets are not capable of – taking care of creative, non-routine and un-linear tasks. Nevertheless, by 2050, work can transform in such a deep way that one can declare the end of work as we know it. We might see a return to the roots of work, to the time before the institution of paid work.

Work per se is an act of creativity, which aims at satisfying our material and immaterial needs. People enjoy working, because it manifests their best qualities: creating, solving problems, using ones skills and crafts, developing one self. Working creates the experience of autonomy as well as binds people to each other through the division of labour. Work is an act of individualism as it is that of collectivism.

Instead of the institution of paid work under an employee, in the future self-organizing peer-to-peer production and prosumerism could form the basic framework for work institution. In the future, the ideal worker may not be a diligent toiler with narrow expertise, but an enthusiastic and ingenious amateur (Heinonen & Ruotsalainen 2012). Workers know well their field of expertise, but are curious and interested in a myriad of things. Engineers cherish the ideal of the Renaissance Man. Of the general work competences especially time competence, systems competence and meanings competence are needed.

Meaning Competence as a New Skill

Especially meanings competence can be of most crucial importance in the future. Production in the creative economy is in essence cultural meanings. Communication is carried out through meanings. Production aims more and more at products and services which aid in identity production and constructing a personally meaningful way of life. This is not solely a concern of the creative class, but all industries have to take into account this change in society and consumer demand.

Meanings competence is the ability to create and interpret meanings, construct and communicate social reality. Workers need meanings competence not only as tool, but also as a skill to construct one’s work as comprehensible, fulfilling and meaningful. Jobs will be less and less clearly defined, and workers must learn to “define” their jobs for themselves. Creating meanings competence is a social process, which calls for interaction competence: culture is by definition social, shared. Creativity, stories and innovations can only be created in socially livable environments, in which the interaction between individuals is fluid. Socially lively work means also taking consumers along in the production process: it is the best way to ensure that the products and services will be deeply meaningful. Essentially, meanings competence is not only a matter of work life, but people will increasingly strive at creating their life meaningful and purposeful.

Danger of Work Becoming too Big

The most important trend identified considering working life was not only the mixing together of different industries but different spheres, values and procedures: consumers becoming producers (and producers consumer-like), work becoming leisure-like (and vice versa).

This development has several benefits, as it helps making work more meaningful and products more demand-matching. However, it contains serious threats: instead of work becoming more meaningful and fulfilling, it can attain too big a role in our lives. Furthermore, these issues are linked with the emerging theme of the changes between public and private spheres.

Perhaps not by 2020, but most probably by 2050 technology has melted to become an inseparable part of our environment, but also of ourselves. Our thinking, communication, work and leisure are intermediated, supported and enhanced by technology. One of the most prominent effects of technologies is the dramatic fertilization of communication. Vivid communication promotes openness, which on its part promotes innovation. We are increasingly living a life of ubiquitousness and transparency. It is a matter of further investigation what are the pros and cons of this development.

Testing New Techniques, Products and Processes

Examples of the main topics that were dealt with in Futures Cliniques are:

  • Future Concepts of Urban Housing and Sustainable Multi-Locality
  • Radical Innovations on Combating Climate Change
  • The Future of Library
  • The Future of Technology Centres
  • The Intertwining Futures of Work and the Internet
  • The Utilization of 3D Worlds
  • Emerging Digital Culture
  • Meaning and Time Competence as Future Work Skills

Clients for recent Futures Cliniques conducted by Finland Futures Research Centre include for example the Finnish Ministry of the Environment, the Finnish Innovation Fund, Technology Centre Innopark and Helsinki City Library.

For each Futures Clinique the participants were selected to represent different industries, branches and fields. The heterogeneity of the participants and co-creative methods used resulted in various progressive and future oriented ideas. For example, the Futures Cliniques considering the futures of libraries helped in redesigning of the activities of Helsinki city library “Kohtaamispaikka” (Meeting Point).

The participating case organisations profited from the project in the form of new ideas for future development. In addition to the core concept (CFS), it was possible to test some of the tentative ideas, as well as the new techniques, products, services and processes of the participating organisations in the workshops. The participants also received all the material created in the project and in the Futures Cliniques conducted within the CFS.

The results of the project were also presented in the media, which both disseminated information and made the project more influential on local and even regional level, thus giving the participating organisations a means for marketing. The project also added to the wellbeing of the participating organisations’ employees. Visiting the Creative Foresight Space and attending Futures Cliniques were often regarded as legitimate out-of-official-role behaviour and relaxation with futures-oriented intellectual stimulation. Concrete input for regular work was provided by the ideas and innovation germs picked up from CFS, together with adoption of a more holistic and longer-term looking ahead.

Democracy and Participation to Profit from Creative Public Spaces

The project implicated the untapped possibilities of collaborative, co-creative and peer-to-peer foresight activities. Participatory foresight or planning methods could be used considerably more in policy and decision making processes. In government, each Ministry could have its own Creative Foresight Space. Large companies and organisations could have their own Creative Foresight Space, while smaller enterprises could share a common CFS, located e.g. inside a technology park, science hub or conference centre.

Another central issue is the planning and designing of public spaces. The concept of CFS could be implemented not only in corporations, but in public spaces and public enterprises too. This would not only improve work-related wellbeing but benefit democracy and participation. For citizens, libraries and educational institutes would be ideal places for futures learning through Creative Foresight Spaces.

Ubiquitous digital technologies and Internet-platformed solutions have a huge potential to provide for creative processes as well as participatory policy planning and democratic decision making. The potential of Internet-based technologies and services should be further examined especially in conducting virtual foresight workshops, cross-fertilised with face-to-face Futures Cliniques.

The project on Creative Foresight Space with the introduction of this hybrid concept for futures learning, and with its documentation of the results from two experimental cases is the first step. The second step is to disseminate the experiences of these cases to make a concrete call for further action. The concept of Creative Foresight Space and of Futures Cliniques could be revisited for involving policy-makers more directly in the foresight processes. These tools can be utilised to enable decision-makers, experts/researchers, planners, and citizens to collaborate − crowdsourcing the futures, “learning” the futures.

Authors: Sirkka Heinonen          sirkka.heinonen@utu.fi

Juho Ruotsalainen      juho.ruotsalainen@utu.fi

Sofi Kurki                       sofi.kurki@utu.fi

Sponsors: European Regional Development Fund, City of Helsinki, Technology Park Innopark
Type: single issue
Organizer: Finland Futures Research Centre, University of Turku, Future of Media and Communications Research Group, Sirkka Heinonen, sirkka.heinonen@utu.fi
Duration: 2009-2011 Budget: N/A Time Horizon: 2020 Date of Brief: 7.7.2012  

Download EFP Brief No. 237_Creative Foresight Space for Enhanced Work Milieux.

References

de Bono, Edward (1985). Six Thinking Hats.

Glenn, Jerome & Gordon, Theodore (ed.) (2009). Futures Research Methodology version 3.0. CD. Millennium Project. Washington D.C.

Heinonen, Sirkka & Hiltunen Elina (2011). Creative Foresight Space and the Futures Window: Using

visual weak signals to enhance anticipation and innovation. Futures vol 44, 248-256.

Heinonen, Sirkka & Kurki, Sofi (2011). Transmedial Futuring in Creative Foresight Space. In publication: Wagner, Cynthia G. (ed.) (2011). Moving from Vision to Action. Essays published in conjunction with the World Future Society’s annual meeting. pp. 119-128. World Future Society, Maryland.

Heinonen, Sirkka, Kurki, Sofi & Ruotsalainen, Juho (2012). Futures Learning for Future Work. From Know How to Know Why. Manuscript. Forthcoming.

Heinonen, Sirkka & Ruotsalainen, Juho (2012). Towards the age of neo-entrepreneurs. World Future Review, Journal of Strategic Foresight.

Ravetz, Joe, Popper, Rafael & Miles, Ian (2011). iKnow ERA Toolkit. Applications of Wild Cards and Weak Signals to the Grand Challenges & Thematic Priorities of the European Research Area. European Commission. http://community.iknowfutures.eu/pg/file/popper/view/11926/iknow-era-toolkit-2011

Website of the Research Group of the Future of Media and Communications (FMC), University of Turku

https://sites.google.com/site/futuremediac/