Archive for the ‘Environment (including climate change)’ Category

EFP Brief No. 257: Creating Prospective Value Chains for Renewable Road Transport Energy Sources

Tuesday, September 16th, 2014

If the Nordic energy and transport sectors are to meet the 2050 energy and climate policy targets, major systemic chang-es are necessary. The transition requires cooperation between public and private actors. The approach outlined in the paper combines elements from the fields of system level changes (transitions), value chain analysis and forward looking policy design. It presents a novel, policy relevant application with a set of practical tools to support development of im-plementation strategies and policy programmes in the fields of energy and transport.

A Major Transition is Necessary

Sustainable energy technologies are driven especially by the climate change challenge, which necessitates paradigm shift also in global energy production and consumption structures. Currently, about 20 % of the Nordic CO2 emissions are due to transport sector. If the Nordic energy and transport systems are to meet the 2050 energy and climate policy goals, a major transition is necessary. Along with new technologies, changes are required also in other societal sectors such as business models and consumer habits. The transition requires cooperation between public and private actors. Political decisions should create potential to enterprises which can provide renewable energy solutions in a way that they attract also consumers and transporters of goods.

In order to be able to make wise political decisions we need foresight actions to get an idea about the future trends and needs, and possible ways of shaping the future. We believe that, for the most part, actors create the future and therefore the state of the transport system is a result of the measures and actions carried out by the producers, operators and users of the system. Therefore we need knowledge and understanding about the actors who are important in the processes. In our understanding actors are outlined in value chains.

A new Approach to Value Chains

The focus in this brief is on developing tools to understand, create and analyse prospective value chains up to the year 2050. With ‘value chain’ we mean a chain of activities needed in order to deliver a specific valuable product and service for the market, incl. activities related to energy sources or feedstock production; energy production; distribution and transportation; retail; consumption; regulation and governance; and research and development. In our case the value chains arise from three alternative, but partly overlapping technology platforms, namely electricity, biofuels and hydrogen.

The motivation for this foresight exercise is to produce knowledge for future decision making and policy support in order to create enabling ground for sustainable energy solutions for the future transport sector. Traditionally value chains are considered in rather short term business opportunity analyses. In our case, we need to outline the value chains in the far future.

The brief is based on the preliminary results of the TOP-NEST project WP4. The task of WP4 is to identify prospective value chains in order to outline roadmap and policy recommendations in the later phases of the project.

Functions of Foresight and Policy-making

The impact of foresight on policy-making has been discussed among foresight experts practitioners (e.g. Georghiou & Keenan 2006, Da Costa et. al. 2008, Weber et.al. 2009, Könnölä e.al. 2009, 2011). One aspect of this discussion is to consider the functions of foresight in policy-making. The functions of foresight can be summarized into three major functions, which are 1) informing, 2) facilitation, and 3) guiding.

The informing function of foresight is generation of insights regarding the dynamics of change, future challenges and policy options, along with new ideas, and transmitting them to policymakers as an input to policy conceptualisation and design.

Facilitation of policy implementation gets it motivation from the changing nature of policy-making. There has been a shift from linear models of policy-making, consisting of successive phases such as formulation, implementation and evaluation phases, into cyclic models, where evaluations are supposed to feed back into the policy formation and implementation phases (Weber et. al 2009; Da Costa et. al 2008). This kind of thinking puts more emphasis on interactions, learning, and decentralised and networked characters of political decision-making and implementation.

The effectiveness of policy depends also on the involvement of a broader range of actors, and therefore also, the role of government shifts from being a central steering entity to that of a moderator of collective decision-making processes. To meet the requirements of the new mode of operation one needs foresight instrument.

Policy guiding refers to the capacities of foresight to support strategy formation or policy definition. In its best foresight exercises may bring to light the inadequacy of the current policy system to address the major challenges that society is facing (Da Costa et al. 2008).

Our approach combines analysis of system level changes (transitions) and value chain analysis with foresight approach. We apply multilevel perspective model (Geels 2005) to define the prerequisites of the transfer of the complex transport system, and value chain analysis in order to concretise the changes needed. With these elements we try to inform, facilitate and guide policy-making.

Multi-level Perspectives of the Energy and Transport Systems

Figure 1 presents the three basic components of the transport system: users, vehicles and transport infrastructure. The use of vehicles involves behavioural and business models, and different types of solutions are available concerning issues such as vehicle ownership (adapted from Auvinen and Tuominen, 2012). The illustration presents also the main elements of the energy system (primary energy sources, production and storage), which are linked to the transport system mainly through energy and transport infrastructures and are crucial for transport operations.

The state of the transport system is a result of the measures and actions carried out by the producers, operators and users of the system. Producers and operators are organisations or companies, which can be categorised according to their main duties, such as: policy formulation, infrastructure construction and maintenance, production and operation of services for the transport system, and production of transport-related services (e.g. vehicle manufacturing and fuels). Individual people, actually the whole population, are the users of the passenger transport system. In freight transport, users are companies and organisations in the fields of industry, transport and commerce (Tuominen et al. 2007). Value chains are composed from these different actors.

257_bild1

Figure 1. Transport and energy systems in multi-level perspective model. The transfer process requires changes in all levels heading to the same direction.

From Future Wheel to Technology Platforms and Prospective Value Chains

The foresight procedure consists of three stages (see Figure 2):

257_bild2

Figure 2. A procedure for prospective value chain analysis.

The starting point of the process (Step 1) is to create an idea of the context were the prospective value chains will operate. For this pourpose, various foresight methods, such as Futures Wheel, and scenario methodology can be used. We formulated four different scenarios for 2050, which are described briefly below (Figure 3).

257_bild3

Figure3. The principle of scenario creation and the four transport scenarios formulated for 2050.

The goal of the second step is to identify the value network actors and analyse their individual interests, and connections between different actors, if possible, in all different scenarios. The analysis covers value chain activities from energy sources and feedstock production to energy production, distribution and transport, retail and consumption. Also regulation, governance and R&D actors are included in the analysis.

All possible actors are listed and their opportunities and advantages, as well as supportive needs are analysed. Opportunities refer to the possibilities to make profit in the value network (How the actor benefits from the value network?), and advantage refers to created value by the actor (What is the added value the actor produces to its customer or in the network?). The analysis of the supportive activities is needed to recognize the connection between different actors. Figure 4 gives an example of the value network illustration.

257_bild4

Figure 4. Value network of a biodiesel example based on tall oil.

The third step includes outlining of the prospective value chains. In this stage, couple of aspects need to be taken into consideration. Different technology platforms will co-exist in the future and different futures create different opportunities and development possibilities for different technology platforms. Therefore, one needs to describe the level of technological development of the given technology platform in the outline of the value chain. In other words, the outline of the value chain works only in selected scenario, and the level of technological development of a single technology platform is different in different scenarios.

Participative Workshops Informing, Facilitating and Guiding Policy-making

Future value chains and future actors within have to be recognised in order to find out prerequisites of the future actions. The proposed approach may act as a checklist for the key issues to be covered in outlining prospective value chains in the road transport context.

The process integrates methods from different theoretical starting points: foresight, multi-level perspective and value chain theories. It also integrates energy and transport systems, and expands the context far to the future. The process is not yet complete but the work will continue in the TOP-NEST project up to the 2014.

To outline future actors is a challenging task. At this stage of the process development we have noticed that the most challenging part is to be able to imagine potential new actors and to create potential new relationships between the actors in a strongly path dependent situation, as is a biodiesel case. We assume that for instance in testing this procedure in hydrogen technology system the challenge may be slightly easier, because path-dependency is not strong.

Another challenge is to get relevant stakeholders to either participate the workshops or give interviews. The workshops or interviews shall include stakeholders at least from the industry, ministries, NGO’s e.g. nature protection organisations, vehicle industry and associations as well as researchers. The issue to be discussed is so large including energy, transport and transition policies, that the discussion would take time. There may also be confidentiality problems concerning new emerging technologies.

We believe that the prospective value chain analysis helps us to figure out landscape level constraints, like values and global trends, niche level options, as well as the needs which guide us to change or maintain the existing regime. Value chain analysis gives us views about the future and about the potential paths and constraints to help making wise political decisions.

 

Authors: Nina Wessberg, nina.wessberg@vtt.fi, Anna Leinonen, anna.leinonen@vtt.fi, Anu Tuominen, anu.tuominen@vtt.fi, Annele Eerola, annele.eerola@vtt.fi ,Simon Bolwig, sibo@dtu.dk
Sponsors: NER (TOP-NEST project http://www.topnest.no/ )
Type: Nordic foresight exercise
Organizer: VTT, nina.wessberg@vtt.fi
Duration: 2011-2015
Budget: € 402,000
Time Horizon: 2050
Date of Brief: July 2014

Download EFP Brief No. 257_Prospective Value Chains

Sources and References

Auvinen, H. & Tuominen, A. 2012, Safe and secure transport system 2100. Vision. VTT Technology 5 (2012).

Da Costa, O., Warnke, P., Cagnin, C., Scapolo, F. (2008) The impact of foresight on policy-making: insights from the FORLEARN mutual learning process. Technology analysis & Strategic Management, vol. 20, No. 3, pp. 369-387.

Geels, F.W. 2005, “Processes and patterns in transitions and system innovations: Refining the co

evolutionary multi-level perspective”, Technological Forecasting and Social Change, vol. 72, no. 6, pp. 681-696.

Georghiou, L., Keenan, M. (2006) Evaluation of national foresight activities: Assessing rationale, process and impact. Technological Forecasting & Social Change, vol. 73, pp. 761-777.

Könnölä, T., Scapolo, F., Desruelle, P., Mu, R. (2011) Foresight tackling societal challenges: Impacts and implications on policy-making. Futures vol. 43. pp. 252-264.

Tuominen, A., Järvi, T., Räsänen, J., Sirkiä, A. and Himanen, V. (2007) Common preferences of different

user segments as basis for intelligent transport system: case study – Finland. IET Intell. Transp. Syst.,

2007, 1, (2), pp. 59–68.

Tuominen, A., Wessberg, N., Leinonen, A., Eerola, A. and Bolwig, S. (2014). Creating prospective value chains for renewable road transport energy sources up to 2050 in Nordic Countries. Transport Research Arena 2014, Paris.

Weber, M., Kubeczko, K., Kaufmann, A., Grunewald, B. (2009) Trade-offs between policy impacts of future-oriented analysis: experiences from the innovation policy foresight and strategy process of the city of Vienna. Technology analysis & Strategic Management, vol. 21, No. 8. pp. 953-969.

Wessberg, N., Leinonen, A., Tuominen, A., Eerola, A. and Bolwig, S. (2013) Creating prospective value chains for renewable road trasport energy sources up to 2050 in Nordic Countries. International Foresight Academic Seminar in Switzerland, Sept 16-18, 2013.

EFP Brief No. 252: Egypt’s Water Security – Future Vision 2030 Using Delphi Method

Tuesday, February 12th, 2013

This study was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Studies in the Egyptian Cabinet’s Information and Decision Support Center. Using Delphi Method, the study aims at identifying, analyzing and foreseeing potentials of Egypt’s water security as ground to thinking of pilot solutions aimed at evading problems and crisis as well as developing a set of procedures whereby Egypt’s water security is attained.

Increasing Gap between Water Supply and Demand

The Nile stands as Egypt’s main source of water whereby it secures 80% of Egypt’s water yield per year-according to the 1959 Nile Agreement, Egypt’s fixed quota of Nile water comes to 55.5 billion m3/year. In Egypt, water security tops the national agenda whereby studies reveal that estimations of available water and water needs for different purposes are heading towards an increasing gap between water supply and demand, not only because of the anticipated increase of water demand, but also due to the impact of other factors on the available quantity of Nile water. The study at hand contributes to foreseeing the future of Egyptian water security, by analyzing the impact of varied factors influencing Egypt’s water security in terms of the political, economic, environmental, hydrological, legal and strategic aspects,  developing an integrated vision, and forming a new approach for further research in this area and providing comprehensive knowledge.

Combining Forecasting and Delphi

The study applied the “Delphi Technique” – an important qualitative tool of future studies – which relies on collective intelligence and scientific forecasts, by deriving knowledge from a group of experts, directing them to consensus on aspects of the issue at hand, and providing verifications for the relatively extreme positions. This technique was used to identify the main factors of uncertainty that will affect the future of Egypt’s water security, and to forecast potentials of these uncertainty factors, their different expected impacts, and proposed recommendations. A Delphi web site was developed allowing access to 25 experts in the areas of water, economic and political science.

The study also used forecasting (futures analysis) which does not seek foreseeing or planning the future, but rather conducts a set of conditional forecasts or scenarios assuming either the reality or desired ones. Hence, the research does not conclude to achieving any of the aforementioned scenarios but aims at allowing societal players to learn about the requirements of achieving one of the desired scenarios according to their relevant preference in order to work on giving it precedence over other alternative scenarios.

Main Factors Affecting Water Security

Based on the theoretical review of the issue of Egypt’s water security, the most important factors affecting Egypt’s water security were identified by applying Delphi Technique as follows:

  1. Relations between countries of the Nile basin towards either cooperation or struggle:

The regional hydrological system of the Nile basin lacks a comprehensive legal or institutional framework deemed acceptable by all Nile countries because of their conflicting outlook on the legitimacy of the existing agreements and international conventions – the 1929 and 1959 Agreements in specific. Accordingly, countries of the Nile sources divide the River Nile’s water according to the area of River Nile basin passing through the given country, and the contribution of each country to the river’s water yield. However, Egypt and Sudan refuse reviewing the distribution of water quotas in the Nile basin based on calls for justice and equity.

Additionally, some of the Nile basin source countries are calling for enforcing the principle of international water sale on the Nile basin system including that Egypt and Sudan, pay financial compensation in return for their water quotas if they wish to maintain them, while Egypt and Sudan refuse this principle on the ground that water is a socio-economic commodity that should not be subjected to market mechanisms.

On another level, countries of the Nile basin sources reject the condition of advance notification when developing water projects or taking water measures within their national borders, which is seen as necessary by Egypt and Sudan.

  1. Impact of external powers:

External powers, mainly USA and Israel play a crucial role in affecting international water interactions in the Nile basin, and carry out a motivating role for struggle. In this regard, Israel adopts two main strategies: “Quota based system” considering projects involving water that eventually aims that Israel receives fixed water quota from the Nile and “Seizure Strategy” which implies surrounding the Egyptian policy and using water as a pressure card against Egypt and Sudan. European countries, specially Italy, Holland and some Asian countries particularly Japan are playing a motivating role for water cooperation in the Nile basin putting down inclinations towards water related conflicts by providing financial and technical support for a number of water related projects in the Nile countries.

  1. The impact of the separation of South Sudan:

Opinions vary on the impact of south Sudan separation on Egypt’s water security. Some opinions perceive minimum negative impact resulting from the separation on the Egyptian water yield from the Nile and others are seriously concerned about the potential impacts.

  1. Shifts to irrigated agriculture and minimizing pressure on the blue water:

All countries of the Nile sources wish to follow Egypt’s footsteps in terms of cultivating spacious irrigated agricultural areas. However, this type of agriculture requires costly technical expertise. In this context, funding and technical assistance provided through investors, local, regional or international entities might have a hidden agenda for helping poor citizens of the Nile countries, destabilizing some countries and creating tension in a manner that impacts development plans.

  1. Change in the economic:

As a main feature of the Nile basin countries- except Egypt- extreme poverty reflects on the capabilities in terms of providing water related infrastructure. According to 2007 World Bank data, Burundi had the lowest GDP (US$0.97 billion) among Nile Basin countries, whereas annual GDP per capita growth rate was highest in Ethiopia and Sudan at 8.4% and 7.7% respectively. Egypt comes next with a growth rate of 5.2%. Nevertheless, GDP per capita share decreased in Burundi by 0.3% and in Eritrea by 2.3%.

  1. Water reservoirs or control utilities:

If dams are constructed to serve as reservoirs, it is necessary to ensure that the stored water affects Egypt’s water quota in the long term.

  1. Impact of climate change on water of Nile basin:

The most important climate changes affecting the Nile’s water are increasing temperatures which  will cause rising rates of evaporation, and changes in the rates, locations and seasons of water fall will cause the loss of quantities of rain that were to be used in agriculture and human consumption in the northern coast.

  1. Political stability of the Nile basin countries:

Continuous or aggravated forms and indicators of domestic instability in the Nile basin countries will push them to adopt struggle based foreign policies. It is projected that countries of the Nile basin sources will resort to adopting aggressive foreign policies towards both mouth and stream countries-Egypt and Sudan-every now and then. This is in an effort to divert the domestic public opinion away from internal problems and failures suffered in each country relatively.

Egyptian Water Security Scenarios

Given the aforementioned main factors affecting Egypt’s water security, the future of water in the Nile basin will likely be shaped according to three alternative scenarios as follows.

Business as Usual Scenario

The current situation of struggle relations between Egypt and the Nile Basin Countries, will continue but will not escalate to war because of political expertise,  and countries of the Nile basin maintain a reasonable margin of rationality with their neighbours. Furthermore, the domestic political, economic and social circumstances of the Nile basin countries will not permit potential escalation of conflicts.

According to the outcomes of Delphi survey, a change in the current situation of cooperation or struggle regarding water is unlikely (there were no sharp deviations regarding the potential full cooperation or struggles that may escalate to war over water), where 46%, 38% and 50% is the probability of increasing the normal yield of Nile water before 2030 via cooperation where Egypt develops projects in the Ethiopian Plateau, Equatorial Lakes Plateau and Bahr el Ghazal. But the probability of reaching an agreement on some of the conflict areas by amending the existing legal agreements of the Nile basin countries is 48%.

Also, lack of current sufficient funding will affect the ability of benefiting from green water and relieving the pressure off blue water in Nile Basin countries. And in light of the outcomes of Delphi survey, Egypt’s probability of developing projects -in cooperation with donor international organizations-aimed at assisting other countries in benefiting from green water is 49%, 52% and 53% respectively in the Ethiopian, Equatorial Plateaus and Bahr el Ghazal.

It is unlikely that the basin countries will experience an economic boom on the short term, since economic development requires stable political regimes and local, regional and international capital, capacity building, technical calibres and improvement of institutions and laws.

There is low probability of an impact from the separation of south Sudan on Egypt’s yield of the Nile water, as the new State will be bound by all past conventions related to the River Nile. Needless to mention, South Sudan is advantaged with abundant rain which spares it the need for this water. According to Delphi Survey, the probability of a relevant impact on Egypt’s Nile water supply is 45%.

It is likely that climate changes will continue without an impact on the normal yield of Nile water in Egypt, at least during the coming twenty years. According to a study by the Organization of Economic Cooperation and Development (OECD) in 2004, there is limited confidence regarding changes in amount and direction of rainfall on the future on the Nile basin countries. Based on the survey results, the probability that climate changes will move the rain belt far from the Ethiopian, Equatorial Lakes Plateaus or Baher Al Gazal are 40%, 35% and 44% respectively.

Optimistic Scenario (Regional Cooperation)

This is the scenario of optimization of available opportunities for developing shared water resources and building a regional water system capable of securing the needs of the region’s countries without undermining the fixed historical and legal rights of some of the countries.

This scenario involves the potential of expanding cooperation areas among Nile basin countries within the Nile Basin Initiative, which includes all ten Nile basin countries, provides an institutional framework for collective cooperation, receives governmental and political support, and pays great attention to projects and mechanisms aimed at building mutual trust among basin countries, as well as capacity building and training projects.

There is an increased possibility of establishing water related projects in collaboration with the basin countries via building and connecting dams on a unified electricity network in those countries, aimed at generating power for agriculture and industrial production purposes rather than storing water and assist in regulating water supply to Egypt. Survey results indicate that probability of completing Gongli Canal is 56%, in addition to the possibility of redirecting Congo River to benefit from its water is 60%.

Pessimistic Scenario (Conflict)

This scenario is based on the possibility that variables motivating struggle will lead to raising chances of conflict of national interests in the Nile basin countries to an extend of inter struggle. The struggle inclination might rise given the following variables:1) A strong and sharp inclination of the Nile basin sources countries towards enforcing the principle of “selling Nile water” to the two countries of the mouth and stream will cause an eruption of international water struggle and wars among the countries.2) Escalated role of the external motivating powers for Nile-Nile struggle based on the following considerations:

Israel will play a motivating role for water struggle in the Nile basin in addition to the indirect role of the USA, where it will work on besieging and pulling the parties of Egyptian policy, on the regional level, in a way that serves coining the American power on the political and strategic levels in preparation for an effective Israeli role.

Countries of the upper Nile basin will seek to constitute external coalitions aimed at changing the current situation; these are mainly Ethiopia, Kenya, Tanzania, and Uganda.

Separation of south Sudan will be at the expense of projects dedicated to exploiting the wasted Nile water in the Egyptian and joint upper parts, such as the Gongli Canal project.

The political tensions in the Ethiopian Plateau will negatively affect the Egyptian water yield as well as failure to implement any proposed projects. According to the survey, the probability of the eruption of a civil war (due to ethnicity, religion, political or tribal affiliation) in the Ethiopian Plateau and bearing an impact on water projects and management is 53% and 57% respectively.

Based on the Delphi Survey outcomes, the probability of increased Nile basin countries’ demand for Blue water for agricultural, industrial, drinking, tourism, and fish wealth purposes by 2030 in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region are 60%, 61% and 59% respectively. As for the probability that those countries construct dams or other projects in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region-to meet the increased demand for water -that will eventual-ly affect Egypt’s Nile water quota by 2030 are 63%, 59% and 54% respectively.

Cooperation for Water Security

  1. Cooperation among the Nile Basin Countries

Regional cooperation should depend on balancing the distribution of benefits and duties in the context of a cooperative Win-Win Approach, which will eventually lead to optimizing the benefits among all Nile countries enabling a relevant improvement and development.

  1. Endorsing the Soft and Diplomatic Instruments

This ensures avoiding the struggle scenario, and can be supported by developing the mutual dependency mechanism between Egypt and Ethiopia via joint projects where Egypt provides the technical expertise in irrigation currently being provided by Israel.

  1. Enhancing Cooperation between Egypt and Sudan

The mutual dependency mechanism between Egypt and Sudan, in light of separation, can be achieved through establishing strong ties with both north and south via joint cooperation in agriculture, power production, health, education and industrial projects in addition to military. This entails developing railways, river naval lines and unified electricity networks, and that Egypt grants southern citizens all advantages equal to Sudanese citizens in terms of education, work, residence, and entry into Egypt, and redrafting the projects to exploit wasted water in the upper Nile in Bahr El Gabal, Bahr El Gazal, and Mashar Swamps situated in south Sudan.

  1. Benefiting from Green Water

This entails that Egypt: cooperates with the international donor organizations for developing projects in the source countries, transfers agriculture technologies to all Nile basin countries by availing technically qualified irrigation and agriculture engineers, and developing rain harvest technologies and introducing selected seeds and chemical fertilizers.

  1. Creating a social, economic, political observatory

This should be in charge of monitoring changes immediately, analysing indicators and presenting relevant plans. In the event of any internal political tensions in the Nile basin countries, Egypt should adopt a neutral position, stimulate mediations in ethnic and border conflicts taking place in the Great Lakes and African Horn regions to evade the potential sensitivities that might emerge due to aligning with any of the conflicting parties.

  1. Egypt’s Role in Developing Economies

It is recommended that Egypt carries out development projects in Nile Basin countries and cooperates with international organizations in areas of improving health care, and eradicating Endemic diseases that affect public health and consequently productivity.

  1. Forecasting the Impact of Climate Changes

Developing a local model for forecasting the impact of climate change on the Nile basin water yield, in cooperation with the British Meteorology Office.

Authors: Dr. Nisreen Lahham   nisreenlahham@idsc.net.eg

Dr. Mohamed Saleh   msaleh@idsc.net.eg

Sahar Sayed Sabry    saharsayed@idsc.net.eg

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion.
Organizer: Dr. Nisreen Lahham, Executive Manager, Center for Future Studies, www.future.idsc.net.eg
Duration: 2009 – 2010
Budget: n.a.
Time Horizon: 2030
Date of Brief: August 2011

Download EFP Brief No. 252_Egypt’s Water Security

Sources and References

Ayman Alsayed Abdul Wahhab (editor), “River Nile Basin: Cooperation opportunities and problems” (Cairo, Al Ahram Center for Political and Strategic Studies, 2009).

Mohammad Salman Taye`a, Water Security in the Arab Gulf in a Changing World: between Prerequisites of National Interest and Addressing External Threats, Middle East papers, National Center for Middle East Studies, Vol. 38 October 2007.

Atlas of international agreements on fresh waters, UNEP, FAO, and Oregon University, 2002.

H.J.Brans (ed.), The Scarcity of Water: Emerging Legal and Policy Issues, London, The Hague, Boston, Kluwer International, International Environmental Law and Policy Issues, 1997, 21-39.

Theodore J. Gordon, The Delphi Method, future research methodology – V2.0, AC/UNU Millennium Project.

World Bank, World Development Indicators, Washington, 2007

 

EPF Brief No. 243: Towards Gender-transformative Climate Change Adaptation Policies

Friday, December 21st, 2012

This climate policy research demonstrates that in India’s agriculture-dominated and gender-biased economy, the future of India’s adaptation strategy hinges on how well gender is integrated into agriculture-related policies and programmes. India’s National Action Plan on Climate Change, which lays out India’s strategy for mitigation and adaptation, recognises that women suffer more from climate change impacts than men. However, it fails to recognise that women are also integral to climate solutions. The research concludes with a set of policy recommendations for policy-makers and other actors.

Why Should India Focus on Gender-Responsive Adaptation?

There is growing scientific and anecdotal evidence in India that climate vagaries are affecting the life and work of its people, especially the 72% of its populations that lives off climate-sensitive agriculture and related activities. An overwhelming 60% of India’s agriculture is rain-fed and prone to recurring natural disasters like floods, droughts and cyclones which, according to climate scientists, will become more frequent, intense and unpredictable. These rain fed areas are also home to majority of the poor and marginalised farmers. India’s 11th Five-year Plan (2007-2012) notes the increasing ‘feminisation’ of Indian agriculture and a dominance of women workers in livestock rearing and collection of minor products from forests.

While India is the world’s 5th largest greenhouse gasses emitter and the 6th largest carbon emitter, these constitute just 4% and 3% of the global emissions respectively; also, India’s per capita emissions are 70% below the world’s average. Following a low-carbon growth strategy is important, and India has already embarked upon one, but there is far less policy focus on adaptation. As the Stern Review (2006) notes: ‘adaptation policy is crucial for dealing with the unavoidable impacts of climate but it has been underemphasised in many countries. Adaptation is the only response available for the impacts that will occur over the next several decades before mitigation measures can have an effect.’

Overcoming Gender-specific Disparities

Without an effective adaptation policy, India cannot achieve its Millennium Development Goals (MDGs) or its MDG-based National Development Goals as set out by the Indian Planning Commission. Climate change impacts often threaten to erode or inhibit development gains. Women are typically responsible for providing their household with climate-sensitive resources like water, food crops, fodder and firewood; they are also less likely to have the education, opportunities, authority and productive resources to adapt to climate change impacts. Without gender-specific disparities being addressed by adaptation policies, climate change will add another layer of gender inequality, especially in the farming sector.

The fourth assessment report of the Inter-governmental Panel on Climate Change (IPCC) notes that gender differences affect the vulnerability and adaptive capacity of women and men. After decades of gender-blind climate negotiation texts under the UN Framework on Climate Change Convention (UNFCCC), women and gender concerns were mentioned in the December 2010 Conference of Parties (COP 16) Cancun text.

Understanding Gender-specific Impacts of Climate Change

Using a gender lens, the research (a) analysed adaptation policies and programmes as laid out in the NAPCC and (b) gathered evidence from four disaster-prone rain fed agro-climatic zones in four states (India consists of 28 states and 7 Union Territories) for evidence-based policy recommendations. The four agro-climatic zones were:

  • The Himalayan eco-system in Himachal Pradesh (HP).
  • The flood plains of Eastern Uttar Pradesh (UP).
  • The Sunderbans coastal area in West Bengal (WB).
  • The drought region of Andhra Pradesh (AP).

The research objectives were:

  • Understanding some of the socio-economic impacts of climate change at the local level where gender-specific disparities are most intense.
  • Identifying some of the gender-responsive policy gaps in the national adaptation missions and in specific state-level climate change plans, and suggesting possible corrections.
  • Identifying some areas where women and men can both participate in, influence and benefit from scientific work on adaptation
  • Assessing how gender-responsive the work of grassroots NGOs working on adaptation is and how this can be up-scaled in a gender-responsive manner by the Central and State government’s climate-related policies and plans.

The research employed a range of tools and techniques. These included:

  • Literature Review
  • Participatory collection of field-data by four grassroots NGOs, each in one of the above agro-climatic zones.
  • Consultations with gender/climate experts
  • Policy analysis
  • A Delphi exercise

How Women and Men are Impacted Differently by Climate Change

There is little evidence to show the different impacts of climate change on men and women. The need to identify and study these differences is critical for making gender-responsive adaptation policies and programmes.

This research gathered data from the four agro-climatic zones and used a gender lens to show how the same climate change impact affected women and men differently. The research revealed that men’s primary way to adapt was to migrate from farms which meant that women were left behind to both till the unproductive land and to continue their care roles. This put an additional burden on women because they had to till the unproductive land or labour in other fields, while continuing to shoulder their care-giver responsibilities with no support from the spouse. The table below captures this gender difference from the four zones.

Gendered Impacts of Climate Change
Climate Change Impacts on women Impacts on Men
Lower food production Least to eat; sleep on an empty stomach

Need to take on additional work as wage labour which also led to more feminisation of agricultural labour (WB, UP, AP)

They get first priority to available food in the family
More natural disasters – cyclones, floods, water-logging and droughts; infrequent rains; intense rains Longer distances to walk to get water and fuel-wood

Loss of fodder and livestock

Drought/infrequent spells of rains – harder ground to do agricultural work on

Intense rains – more weeds and weeding is a woman’s job

Distress migration
Higher summer temperatures; longer summers Lower milk production among animals

More tiring work in fields even in April (HP)

Longer waking hours to work in the field early morning and late evening to beat the heat (AP, HP, UP)

Lesser tasks in the field.

Distress migration

Effect on regeneration of species and upward shift of the forest tree-line Medicinal herbs and fodder unavailable in forests now (HP) No effect
Social impacts

 

 

Higher indebtedness – women go to take loans and have the responsibility to pay off loans!

Increased male migration results in more women and child trafficking and HIV/AIDS spread

Greater poverty and frustration among men leads to increase in domestic abuse/violence

Distress migration

 

Adaptation Interventions Involve Women more but also Affect them Differently

Most grassroots development organisation working on farm-based livelihoods with rural men and women have willy-nilly adopted techniques that help small and marginalised farmers adapt to climate vagaries. Adaptation can be understood to be ‘development-plus;’ or development measures that take into account climate-proofing; or climate change adaptation interventions that help in also achieving development gains. According to a World Resources Institute study (2007), ‘adaptation uses the same toolbox as development measures, is more integrated than development interventions and factors in the dimension of ‘additionality’ on account of climate variability.’

Most NGOs this research study examined have similar approaches to integrating adaptation measures into farming practices. They build on traditional knowledge, adopt a diversified livelihoods basket, and add value through applied scientific and technological interventions. All this is done by first mobilising groups of farmers – both men and women but more women farmers. The reason for making women active players is because NGOs acknowledge that women farmers are more responsive than men farmers and achieve greater success. So women, more than men, are the main mobilizers of peer groups, recipients of knowledge and skills and risk-takers. Yet, these roles are hardly acknowledged by NGOs in documents, meetings and advocacy initiatives.

Working with women also does not usually translate into women owning more productive assets or accessing more government schemes or participating more in government or community-level decision-making bodies. While women do reap some benefits and are also more empowered than earlier in some respects, many adaptive interventions put more time and labour burden on women as compared to men. The table below illustrates a few of the differential impacts of on-the-ground adaptation interventions on men and women and some of the policy gaps that need to be addressed.

Gender Analysis of Adaptation Interventions
Adaptive Interventions Gender Analysis Policy & Programme Imperatives
Organic/low chemical input agriculture with diversified products Improved food security for both women and men

Women put in more labour and time to prepare bio-fertilizer and bio-pesticide

Higher fodder and fuel-wood yields for women

Less information/ knowledge/ inputs accessed by women

Less participation in decision-making bodies

Incentives to promote availability of bio-inputs

Incentives to promote joint farm land titles to spouses and leasing public land to women farmers groups.

Development of women-friendly technology to reduce drudgery

Availability of local weather-related information to women farmers.

Increased use of traditional saline/ drought/ flood resistant seeds and local livestock varieties More food security for both women and men

Gives women fodder/ fuel-wood

Enables women to store and exchange seed, not buy from seed markets

Opportunity for women to reclaim traditional knowledge

Promote farm-to-lab, in addition to the current lab-to-farm approach

Make local varieties available

Popularize seed banks, grain banks and fodder banks

Recruit women and men farmer trainers in extension work

Rain-water harvesting Benefits women more because it ensures improved food security and availability of water for livestock and homes Promote water harvesting structures for kitchen gardens, roof rainwater harvesting and for small farms;

Revive traditional ponds and wells.

Empowerment of Women

Women need to be at the core of planning and implementation of adaptation interventions. This includes collection of gender-disaggregated data at all levels, gender-based monitoring and evaluation and gender-budgeting. The four-C framework given below sums up the main policy recommendations.

  • Counting women in at planning, designing, implementing, resourcing and evaluating stages of all programmes and schemes. Currently, there is a huge deficit on gender-disaggregated data for policy making.
  • Converging programmes and schemes at the planning and design stage through multi-sectoral and multi-ministerial bodies and at the implementation stage through local government agencies and local elected bodies. A specific need is to mandate gender-responsive ‘Local Action Plans on Adaptation,’ (or LAPAs) integrated with the Village Development Plans made by local elected bodies.
  • Capacity building and empowering women and men at the level of local elected bodies, local government agencies, within scientific institutions working on adaptation and within relevant NGOs and community-based organizations. Gender-responsive decision-making institutions are basic building blocks for egalitarian adaptation policies.
  • Collaborating with key stakeholders – adaptation science researchers, government agencies and departments, local elected bodies, user groups, civil society groups and legislators – to build resilience among the most vulnerable people through participatory innovation, utilization of traditional and local knowledge, adding value through scientific and technological interventions and converging all resources.

Within this framework, the research identifies policy-level recommendations for specific actors – legislators, government planning bodies, government officers, local elected bodies, adaptation research scientists, civil society organizations and community-based groups.

These policy recommendations form a blueprint of what India’s approach and policies must be in the coming decades to ensure that both men and women are able to reap the benefits of a climate-resilient path to development.

Authors: Aditi Kapoor, Alternative Futures    email address: aditikapoor2@gmail.com  
Sponsors: Heinrich Böll Foundation, Germany and Christian Aid, U.K.  
Type: National foresight and policy advocacy research  
Organizer: Alternative Futures (Rakesh Kapoor) afmailbox@gmail.com  
Duration: 08/2010 – 05/2011 Budget: 20,000 € Time Horizon: 2030-2050 Date of Brief: July 2012

Download EPF Brief No. 243_Gender-transformative Climate Change Adaptation.

 

Sources and References

Ministry of Environment and Forests (November 2010), Indian Network for Climate Change Assessment (INCCA) Report 2, Government of India, New Delhi

Stern, N. (2006). The Economics of Climate Change: The Stern Review. Cambridge University Press, Cambridge

Adger, W. N., et al. (2007). Assessment of adaptation practices, options, constraints and capacity. In Parry, M. L., et al. (Eds). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,   Cambridge University Press, Cambridge, UK, 717-743.

Agarwal, Bina. (1994). A Field of One’s Own: Gender and land rights in South Asia. Cambridge University Press, New York.

——- (2010). Gender and Green Governance: The political economy of women’s presence within and beyond community forestry. Oxford University Press, New Delhi.

Dankelman, I. (2002). Climate Change: Learning from gender analysis and women’s experience of organising for sustainable development. Gender and Development 10(2), 21–29.

Food and Agriculture Organization (FAO). (2003). Gender: Key to Sustainability and Food Security; Gender and Development Plan of Action (2002-07).

Government of India. (2008). Eleventh Five Year Plan Vol I-III (2007-2012). Planning Commission. Oxford University Press, New Delhi.

IWRAW Asia Pacific. (2009). Occasional Papers Series No. 14, Equity or Equality for Women? Understanding CEDAW’s Equality Principles, International Women’s Rights Action Watch Asia Pacific, Malaysia.

Krishna, Sumi, ed. (2004). Livelihood and Gender: Equity in Community Resource Management. Centre for Women’s Development Studies. Sage Publications, New Delhi.

EPF Brief No. 241: Embedding Futures Thinking in Environmental Policymaking

Friday, December 21st, 2012

Many of society’s most pressing problems are long-term policy challenges, lasting a generation or more. Policymakers and business leaders often face strategic decisions with uncertain future outcomes. Despite numerous unpredictable factors, decision-makers need to be confident that they can achieve specific outcomes. Failing to do so could result in systemic failures with major consequences for society. The European Environment Agency (EEA) undertook analyses through the BLOSSOM project (Bridging long-term scenario and strategy analysis: organisation and methods) to identify a ‘toolbox’ of approaches to institutionalise long-term futures thinking in government; to explore which countries have introduced respective approaches and tools, and to identify the pioneers as well as which methods have become commonplace and which have not; to look for commonalities and differences and identify the factors that can explain the success or failure of efforts to embed a long-term perspective in policymaking.

Why Bring Foresight to Environmental Policymaking?

While academic literature has thoroughly assessed the pros and cons of different methodological approaches, systematic analysis of the use, impacts and effectiveness in environmental policymaking is still superficial or absent. It is evident that the institutional and governance aspects of foresight work need to be given more attention. We also need new structures that break with single forecast models, which miss the complexity and uncertainty in future developments, and different institutional arrangements to implement them. For future studies to gain greater relevance in policymaking, there are also two science-policy challenges that have to be tackled: policymakers often perceive future studies to be evidence-based and the time scale of future studies differs from that of policymaking.

The characteristics of the problem-solving context make it very hard to introduce the long-term perspective needed to analyse environmental problems. However, futures thinking and foresight is increasingly being used to inform policy, through the use of techniques such as expert panels, workshops and scenario planning. Explorative or normative scenarios are often used for long-term futures thinking whereas for more short-term purposes predictive techniques such as forecasts and outlooks are more common.

Analysis of Success Factors and Barriers

The analyses proceeded in two stages. In the first stage in 2008, the EEA started to analyse the success factors and barriers to a long-term perspective in public policymaking with particular reference to environmental planning. The EEA report Looking Back on Looking Forward (EEA, 2009) — a precursor to this study — reviewed the available evaluative scenario literature. The research found that only a few studies evaluated the actual impact of scenarios. Most of those studies found that scenarios were indeed useful in preparing corporate strategies and public policy, although most focused on the business sector. Moreover, the public sector presented several difficulties, including the varied set of goals and interests that public agencies face. The research concluded that more empirical evidence is needed particularly on what types of scenarios work in different contexts and the institutional arrangements that enable scenarios to be used more effectively in order to demonstrate that scenarios can deliver on their promises.

The second stage focused on analysing the role and relevance of futures analysis and the practical experiences with adapting institutional arrangements to embed a longterm perspective in government in EEA member countries. Country case studies were developed for eight EEA member countries based on interviews with practitioners in government, administration and policy advisory bodies along with a review of relevant academic and nonacademic literature. During 2010, four additional case
studies were included following the same approach. The project involved consultations on draft case study country reports and the comparative analysis report with the interviewees and other stakeholders in all the countries studied. In the later stage, additional consultations took place with the EIONET network of experts. Upon completion of the case studies, the crosscutting report analysed the key findings and presented a crosscountry comparison (available at http://www.eea.europa.eu/publications/blossom/).

Focus on Institutional and Governance Structures

The research did not seek to evaluate the quality of individual futures studies or to explore the whole range of futures work (such as research or technology foresight). It only addressed the aspects most relevant to environmental policymaking, notably the institutional and governance structures.

Design and Analysis of the Country Case Studies

The BLOSSOM country case studies were developed following a common approach. Each started by identifying several important aspects:

Institutions
· Central body for futures thinking vs. diffuse structures across departments
· Internal vs. external advisory bodies
· Formal vs. informal networks
· Role of parliament/parliamentary bodies
· Maturity of formal futures work

Mechanisms
· Permanent vs. ad hoc arrangements
· Degree of independence of futures/foresight bodies
· Formal vs. informal reporting

Process
· Stakeholder vs. expert led futures work
· Use of specific futures techniques, e.g. scenarios, horizon scanning
· Thematic range (cross-sectoral vs. sectoral)

In addition, at least two external factors are crucial for embedding futures thinking:
· Level of political support
· National administrative culture

The case study countries were selected to provide a range of cultural, geographical, institutional and administrative approaches, including countries that were at very different stages of implementing futures thinking. Detailed case studies were compiled and informed by interviews with senior officials in the respective member states. Following the production of individual country case study reports, SWOT analyses were undertaken for each country, providing the analytical framework for understanding which factors facilitated knowledge exchange from futures studies or research into practical policymaking in each country. These were then presented for each country as SWOT-tail diagrams. SWOT-tail© diagrams combine fishbone (Ishikawa) diagrams with SWOT analyses to provide a visual and concise summary analysis for each country. Clearly, there is no ‘one-sizefits-all’ solution; context and path dependency matter.

Development of Futures Thinking over Time

The country case studies revealed very different histories of futures thinking across the countries studied. Taking the introduction of a central foresight body as an example, the analysis showed that some countries (e.g. Portugal, Sweden) had long-standing central foresight bodies (since 1950s/60s) while most countries have established such bodies only since the 1990s. Some countries did not have a central foresight body at the time of the study (i.e. Hungary and Slovenia).

Commonalities and Diversity among Approaches

As noted, the country case studies analysed institutions, mechanisms and processes, and facilitated comparison between country approaches. This showed which approaches and structures were most and least common. A central foresight body, thematic studies and some use of scenarios in policymaking were all seen in 10 out of the 12 countries studied. However, less common were formalised foresight reporting requirements (5 countries), routine stakeholder involvement (5 countries) and horizon scanning formally in place (3 countries).

‘Maturity’ of Futures Work

Futures work and how it relates to environmental policy was classified by its ‘maturity’ into the categories mature, developing and nascent (see Figure 1). Futures work was considered most mature where it could mostly draw on permanent and formalised systems, diverse networks across levels of government and departments, and where experience of futures studies had a clear influence on policy. The category developing was applied where some features of futures work had been introduced and futures arrangements show evidence of lasting structures and influence. Futures work was considered nascent where futures arrangements were in their infancy, i.e. mainly ad hoc or fragmented, or where institutional structures or governance arrangements to facilitate futures thinking in policy at the level of national government has only recently been introduced.

Parliamentary body/role of parliament: Some of the case studies, notably Finland, have shown that parliaments can play an important role in supporting futures thinking.

Internal body: In most countries, some form of futures work is performed in government departments (whether regularly or ad hoc) although not all have a central body that coordinates or advises across all areas of government.

External body: In the Netherlands and United Kingdom, no single centralised body deals with foresight. There are a number of external bodies/agencies that engage in futures work. In Slovenia, the Bled Strategic Forum, which works on long-term thinking at national and European levels, has sponsored debates about long-term futures, drawing thinkers from politics, industry and academia from all over Europe.

Process

Routine stakeholder involvement: The degree of consultation varies between countries, with Finland and Austria at one end of the scale with a high degree of participation and France on the other with comparatively little. Generally, the foresight topics are determined through consultations with expert stakeholders. Stakeholder participation is widespread among most futures programmes across the member states studied and driven by policy needs.

Thematic or sectoral: Cross-sectoral studies appear to be more common in the environmental sphere, even in countries that undertake both types.

Horizon-scanning system in place: Only a few countries have formally established horizon-scanning systems either centrally or within, for example, environmental agencies.

Mechanisms

Formally independent body/degree of independence: Trade-offs between access and independence are dealt with in different ways across countries. In most countries, this is somehow related to how the governmental institutions work.

Permanent or ad hoc arrangements: In general, the most effective bodies for futures studies have had a permanent role and structure within government. Some countries have created ad hoc groups for specific studies.

Governance Culture and Political Support

Governance culture and tradition of futures thinking: A long-standing tradition of futures thinking does not in itself facilitate the embedding of futures thinking in policymaking. Those with the most mature systems tended to have either a strong participatory, consensus-building governance culture (Finland, Sweden, the Netherlands) or a strong external advocacy tradition, as well as strong centralised government and policymaking (the United Kingdom).

Interdisciplinarity and interdisciplinary approaches: The increasing importance of interdisciplinarity and interdisciplinary approaches can be observed among the many environment-related futures studies considered.

Evidence versus strategy: It is apparent that in a few countries futures studies are used to develop or contribute to the evidence base upon which policies are built (and therefore often strongly associated with ‘science’ and science ministries), but they are also used to identify potential strategic priorities and ensure that the strategies developed have a view to the long term. The distinction between evidence and strategy is not absolute but, based on the individual country reports, it does appear that futures work is generally used for two sometimes distinct purposes: to inform strategic priorities or contribute to the evidence base upon which policies are built, using different methods.

Political support and policy needs: A further element that can shape the approach to futures thinking is the specific need in the policy sector (Netherlands, Poland, United Kingdom, Germany) or influenced by work in other countries (France inspired by Finland, Hungary by the United Kingdom). In all four countries with nascent futures systems — Hungary, Poland, Slovenia and Spain — advanced technology foresight work in other countries has been prominent. Another important criterion for embedding futures work in policymaking is a government policy calling for the use of futures studies.

Follow-up: The use of follow-up and feedback to futures studies seems to support the successful implementation of futures thinking in policymaking.

Key Success Factors for Embedding Futures Thinking in Environmental Policymaking

Policy demand and political support would appear to be overwhelmingly the most significant factor.

Need for policy-led futures thinking: policy interest and support may be key, and high-level ambassadors or ‘champions’ can help promote and influence the inclusion of futures studies in policymaking. High quality of studies helps to provide credibility and convince policymakers.

Resources: skills and capacity are required for a successful forward-looking programme.

Timeliness and relevance: to be taken up by policymakers, a futures study must be relevant to needs and available when needed.

Stakeholder engagement and participation: broad participation is an important success factor as it increases legitimacy and helps establish familiarity and understanding.

Potential role for parliament: Although parliamentary involvement is not necessarily a success factor, it may be important for facilitating democratic engagement in longterm environmental policymaking as well as a shift of futures work beyond a largely expert-driven process.

Barriers to Success

A major barrier, alluded to above, is the fundamental challenge for futures thinking in the science-policy debate and the dominant focus of government administration on electoral, legislative and budgetary cycles. Other barriers are:
· Departmental upheaval and reorganisation in the wake of establishing institutional arrangements for futures thinking
· Departmental silo mentality
· Lack of futures skills and awareness amongst officials and politicians
· Problems of scale: large futures studies can be unwieldy and miss their window of opportunity
· If not policy-driven, then futures thinking is unlikely to influence policy
· Cultural barriers (administrative traditions)

Recommendations for Action

Rather than rely on a trickle-down effect, there are active efforts governments can make to improve the integration of futures thinking into policymaking. These actions should include:

· capacity building,
· knowledge brokerage through networks,
· coordination of futures work through networks across government: to avoid duplication, to facilitate crosssectoral (thematic) studies,
· institutional arrangements that create policy demand, for instance formalised requirements for futures thinking, building futures thinking into long-term strategy development, formalised reporting requirements on government policy and a parliamentary role for futures thinking,
· techniques for prioritising futures studies (from systematic horizon scanning to top-down and bottom-up stakeholder, public and parliamentary involvement in the prioritisation process),
· clarity on the distinction between policy-relevant futures work and more blue-skies academic futures work (the former responding to policy demand, the latter pushing the boundaries and development of tools, techniques and approaches);
· sufficient resources to build capacity, networks and institutional arrangements;
· increasing participation, including the broad public: new technologies and innovative methods could be used to bring in a wider and more diverse range of opinions and ideas, as well as to disseminate study results and their implications.

Download EPF Brief No. 241_Embedding Futures Thinking in Environmental Policymaking.

Sources and References

EEA, 2009, Looking Back on Looking Forward: A Review of Evaluative Scenario Literature, EEA Technical Report No. 3/2009.

EFP Brief No. 238: Research Agenda Dutch Mobility System, Energy System and Built Environment 2040

Friday, December 21st, 2012

Scenario forecasts for the Dutch mobility system, energy system and built environment in 2040 were performed to investigate which knowledge TNO should develop to support and stimulate future innovation in these fields. Three scenario studies were conducted to investigate the Dutch built environment, the Dutch energy system and the Dutch mobility system. The results serve to strengthen the TNO strategy statement.

Identifying Dutch Research Priorities for Future Mobility, Energy and Built Environment

Netherlands Organisation for Applied Scientific Research TNO is an independent research organisation whose expertise and research make an important contribution to the competitiveness of companies and organisations, to the economy and to the quality of society as a whole. It’s activities are split into seven thematic domains; healthy living, industrial innovation, defence, safety and security, energy, transport and mobility, built environment and information society.

 TNO needs to update it’s strategy every four years to announce which societal issues it will address in their next strategy period and how it will apply the funds which are administered by the Dutch government. In order to formulate a strategy that is robust for future developments TNO used scenario planning in order to test its strategy against multiple possible future

Creating a Shared Vision

The objective of the scenario study is threefold:

1) to find what knowledge should be developed to deal with future challenges,

2) to test the TNO strategy against future scenario’s

3) to find the most important factors influencing the development of technologies in mobility, energy and the built environment and

4) to create a shared vision on future development amongst the participants.

Scenario Method

For the future forecast TNO applied a scenario method which is based on the original work of Kees van der Heijden for Shell (Heijden, 1996). For each of the three subjects a separate study was performed, consisting of a series of three workshops. Within these workshops the participants identified the main uncertainties in the future developments in the respective fields. Subsequently, these fields were clustered and scored for importance and level of uncertainty. Based on the two most important/uncertain uncertainties the participants developed four scenarios to describe the possible future outcomes.

In the scenario process an average of 25 TNO specialists per subject participated in the scenario development process. Selection of participants was based on coverage of all relevant expertise within the subject, furthermore participants were selected for their ability to overview developments in the entire field. Specialist were available on: key (emergent) technologies, finance, economy, policy, rules and regulations and international relations.

 

Clusters of Uncertainties

In the first workshop the participants were asked to name the most uncertain factors which would determine the future developments in energy, mobility and the built environment. The results were clustered into 6-15 clusters of uncertainties. Which clusters of uncertainties were most influential and uncertain was determined by popular vote and discussion.

For each subject the project the following major uncertainties were identified:

Mobility

Strong governmental control vs. market driven and an individual society vs. a collective society.

Energy

Governmental control vs. market driven and lack of international cooperation vs. strong international cooperation.

Built environment

An individual risk prone society vs. a collective risk averse society and spread low economic growth vs. concentrated high economic growth.

Within the projects the experts developed two or four scenarios in group discussions. These scenarios are based on the two uncertainties that are considered most uncertain/influential for the subject. In the following sections the results of the scenario studies for the three subjects will be discussed separately. First the scenarios are described, then aspects which are relevant for all different scenarios or vary between scenarios are discussed and finally a draft technological research agenda is compiled.

Mobility: Four Scenarios Discussing the Shades of Governmental Control and Societal Involvement

Scenario I: Driven by individualism, the government limits is effort to a small number of activities that protect the rights of its citizens. The government facilitates market activities by providing a stable environment for economic growth. The scenario shows high economic competition, with a European home-market.

Scenario II: The government is strict, yet righteous. The government uses her influence through laws and setting norms and standards that are based on firm societal support. – after all, these are made in the public interest. Laws and regulations are firmly maintained.

Scenario III: The government has a minor role, market forces are trusted upon to ensure innovation. This way people can vote with their wallets.

Scenario IV: The influence of the government on societal issues is limited. Society is too complex and interests too divers to find a common ground for governmental action. Collective values are shared by joining communities that share our values and warrant your interest.

 

Mobility in the Context of the Four Scenarios

The developments in the mobility system are very uncertain. All scenarios are equally conceivable. Therefore, a strategy should be developed that is able to cope with different future developments.

Future developments in transport are highly dependent on the available infrastructure, vehicle- and fuel developments and the effect transport has on the environment and society.

All scenarios point to mobility that is concentrated on roads. Congestion will be a lasting problem. External effects are tackled with technological solutions.

Biofuels, hydrogen and electricity will play a more important role in mobility.

 

Scenario Specific Findings

  • In some scenarios a European network of high-speed rail connections is developed.
  • Solutions to congestion are scenario specific: optimisation of infrastructure usage, transport services or smart logistics.
  • Also solution to externalities are scenario specific, ranging from efficient driving mechanisms to capture of pollutants.
  • Transport- and travel volume are scenario dependent and depend on price. This price may increase, because of internalisation of external cost and high fuel prices, or drop because of more fuel efficient techniques.
  • The degree to which biofuels, hydrogen and electricity will play a more important role in mobility is dependent on the role of the government.

For TNO’S future Technological Research Agenda these findings imply that further knowledge is needed about:

  • Energy efficient vehicles;
  • Alternative driving mechanisms;
  • ITS systems for:
    • Managing mobility issues
    • Managing traffic
      • Communication between vehicles for increased safety and traffic flow enhancement;
    • Impact assessment of infrastructure;
    • Robust infrastructure;
    • Reliability of infrastructure;

Energy: Two Scenarios Discussing the Shades of Governmental Control and International Cooperation

Scenario I: Countries form a collective to face the global challenges, such as climate change. The national government firmly takes the initiative for bringing (sustainable) change.

Scenario II: : International governments and organizations are suspicious of each other. Countries compete for available energy sources. The national government is reactive and aimed at facilitating change processes initiated by industries and NGO’s.

Energy in the Context of the Two Scenarios

The entire built environment will be transformed to become energy neutral. More energy production will take place locally with solar (pv and warmth), Aquifer Thermal Energy Storage (ATES) and geothermic energy.

Fossil fuels will remain an important source of energy. Whereas, biofuels and hydrogen will only play a small role in the Dutch energy system.

Scenario specific findings

  • The degree to which societal costs are included in the price for fossil fuels is largely dependent on the degree of governmental control.
  • The choice for climate change mitigation or adaptation is largely dependent on the degree of governmental control and international cooperation.
  • The degree to which local energy systems are developed collectively or independently is largely dependent on the degree of governmental control.
  • The emergence of a international smart grid and large scale energy storage capacity is largely dependent on the degree of international cooperation.
  • The large scale deployment of carbon capture and storage is largely dependent on the degree of international cooperation.
  • The substitution of oil by coal of gas is largely dependent on the degree of governmental control

Accordingly, in the energy sector, TNO will need knowledge to boost their Technological Research Agenda. Knowledge is needed about:

  • ways to include new technology in existing products;
  • insulation;
  • separate transport systems for inside and outside cities;
  • preparing the electricity network for larger fluctuations in supply and demand;
  • large scale storage of electricity and warmth;
  • small scale storage of electricity and warmth;
  • how to deal with the interaction between local networks, national networks and international networks of electricity, gas, warmth and CO2;
  • implementation of renewable energy systems;
  • mass-production of renewable energy systems.

Built environment: Four Scenarios Discussing the Shades of Collectiveness and Economic Prosperity

Scenario I: It is a self-service economy. Small government has prevailed. The economy is in a recession, especially in cities, resulting in more regional economic activity.

Scenario II: People strive for individual gain, and are willing to take risks. The Netherlands is a flourishing and innovative country. The economic growth is concentrated around the Randstad and a limited number of other cities.

Scenario III: People are more dependent on each other because of the fragile economic situation.

Scenario IV: Economic prosperity leads to collective appreciation of wellbeing.

Built Environment in the Context of the Four Scenarios

End consumers will get more influence in the building process. Buildings will have to become more adaptable during the different phases of life and individual needs. Elderly people will become a more important target group.

Scenario specific findings

Dense urban environments and intensive land use are themes which are important in the two scenarios with a concentration of economic activity in the Randstad area. In order to tackle the aspects identified in the scenarios, TNO will need knowledge with regard to the Technological Research Agenda on:

  • ways to increase flexibility in the use of buildings;
  • conceptual building methods;
  • re-use of building materials;
  • social-, construction-, traffic- and fire safety;
  • ways to become climate proof;
  • closure of material cycles (urban mining);
  • virtual building;
  • technologies for local energy generation and storage;
  • the effects of climate change;
  • intensive land use.

TNO Strategy Update Every Four Years

In order to formulate a strategy that is robust for future developments TNO used scenario planning in order to test its strategy against multiple possible future. TNO needs to update it’s strategy every four years to announce which societal issues it will address in their next strategy period and how it will apply the funds which are administered by the Dutch government.

 

Authors: Dr. J. van der Vlies      jaap.vandervlies@tno.nl

Drs. G.G.C. Mulder      guus.mulder@tno.nl

Sponsors: Dr. H.M.E. Miedema
Type: National foresight exercise, single issue
Organizer: Netherlands Organisation for Applied Scientific Research TNO
Duration: Feb-Sept 2009 Budget: 35 kEuro Time Horizon: 2040 Date of Brief: March 2011  

 

Download EFP Brief No. 238_Dutch Research Agenda.

Sources and References

Heijden (1996), Scenarios – The art of strategic conversation, second edition, John Wiley & Sons, 2005, West Sussex.

EFP Brief No. 232: STRATCLU

Tuesday, December 4th, 2012

STRATCLU, the ‘entrepreneurial’ strategy process of the German ‘spitzen’-cluster (leading-edge cluster) MicroTEC Südwest meets the needs of multi-actor, multi-governance-level and multi-sector research and innovation (R&I) policies. The forwardand outward-looking process exemplifies how a broad range of regional R&I actors can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic R&I investments and collective actions, and focus their diverse competences in microsystems as a general purpose technology to tackle societal challenges and enter future markets globally.

Research & Innovation Programmes Addressing Challenges of the 21st Century

In line with a more systemic understanding of research and innovation (R&I) policy (OECD 2005), the respective support programmes introduced the perspective of global, societal challenges to be tackled by scientific and technological breakthroughs. The German government, for instance, launched its High-Tech Strategy 2020 (HTS 2020) in 2006 with the aim to make Germany a leader when it comes to solving global challenges (climate/energy, health/nutrition, mobility, security, communication) and providing convincing answers to urgent questions of the 21st century. The German Strategy for Internationalisation of Science and Research stresses that, to realise optimised solutions to these challenges, it is necessary to leverage science and innovation potential worldwide. In the same vein, the Europe 2020 strategy and its flagship initiative “Innovation Union” aim at refocusing R&I policy on the challenges facing society, and the EU Cohesion Policy 2014-2020 asks the member states and regions to develop innovation strategies for smart specialisation. The ‘entrepreneurial process’ of developing regional innovation strategies for smart specialisation (RIS3) (Foray et al. 2009) focuses on unique regional assets with a view to developing competitive products and services in international markets. If the different RIS3 are developed in alignment with the European context, synergies can be leveraged to further develop the European Research Area.

Against this backdrop, clusters as local nodes of global knowledge flows and ‘innovative hot-spots’ in globalised value chains provide the base not only for developing technological answers to the urgent problems of the 21st century but also for producing adequate, strategic knowledge for cutting-edge (and trans-regionally aligned) R&I programming (Sautter/Clar 2008). In 2007, the German government launched the ‘spitzen’-cluster competition as the flagship of the HTS 2020 and cornerstone of the national Strategy for the Internationalisation of Science and Research to support the development and implementation of future-oriented R&I strategies. The overall objective is to tackle key societal challenges and thus position the ‘spitzen’-clusters in the global knowledge economy and make them attractive for talented, creative people as well as innovative companies and forward-looking investors. MicroTEC Südwest in Germany’s south-western state of Baden-Württemberg and one of the winners of the competition started a forward-looking cluster strategy process inspired by the Strategic Research Agenda of the European Technology Platform on Smart Systems Integration (EPoSS), and focused on the priority fields of the German HTS 2020: climate/energy, health, mobility, security, communication.

‘Spitzen’-Cluster Strategy on Smart Microsystems Technology (MST) Solutions to Global Challenges

The MicroTEC Südwest cluster, closely linked withneighbouring parts of France and Switzerland, covers the competences needed along the value chain of the GPT (General Purpose Technology) miniaturised systems: from basic research, for instance in nano-, micro- or bio-technologies, to the design and production of smart microsystems, to the integration of such systems in ‘intelligent’ products (e.g. driver assistance systems in cars or point-of-care diagnostic systems in the healthcare sector). Besides global players like Bosch and Roche Diagnostics, the 350 actors involved in the cluster include top universities and research centres, and many small and medium-sized enterprises.

In order to focus the different competences on synergistic R&I investments, a ‘spitzen’-cluster proposal was developed with two application-oriented priorities to generate breakthrough innovations in global lead markets (health and mobility) and two technology-related priorities to develop and produce next generation microsystems for future fields of application. The funds (50-50 public-private) for implementation amount to nearly 90 million EUR, from national and regional ministries, regional bodies and enterprises.

The MicroTEC Südwest proposal was highly evaluated in the competition not only for the quality of its research projects but also for its additional structural projects on innovation support, qualification and recruitment, internationalisation and the STRATCLU strategy process.

From Ad-hoc Strategy Building to Systematic Learning Cycles

The STRACLU project has been set up to advance the successful ‘spitzen’-cluster project and to broaden and consolidate the participative decision-making process in the cluster. Stakeholder groups (cluster board, strategy panel etc.) have been established and strategic policy intelligence (SPI) tools combined in a learning cycle with three main stages:

· Stock-taking (incl. outward-looking): Review of cluster position in the global context (major SPI tools: audit, evaluation, benchmarking)
· Forward-looking: Longer-term perspectives & priorities (foresight, impact assessment)
· Action-planning: Roadmaps with milestones and specific joint actions (roadmapping, GOPP)

An operational learning cycle has been put in place as well to monitor the implementation of the joint actions. With these learning cycles, STRATCLU both guides individual actors in their strategic decision-making and develops MicroTEC Südwest itself into a learning ‘smart innovation system’, which continuously

· identifies global challenges and promising future markets,
· formulates long-term and ‘open’ RTDI strategies for smart MST-based solutions,
· builds local competences and capacities, looks for strategic partners along global value chains,
· encourages key local and global actors to join forces in common strategies and thus
· ensures long-term success in global competition.

MicroTEC Südwest AGENDA 2020+

Related to the national priorities of the HTS 2020, and based on detailed science and market analyses, the investigation and discussion of global trends and an assessment of their specific impacts along the strategic learning cycle (fig. 1), the MicroTEC Südwest strategy panel prioritised a joint AGENDA 2020+ with the following five major crosscutting priority fields for R&I, and an additional focus on cross-industry innovation and education and training.

These five R&I-related priority fields for smart MSTbased solutions address and leverage synergies across all key application fields (in particular with regard to the national priorities of the HTS 2020).

This topic was assessed as the most relevant. The renaming of the microsystems technology (MST) division of the German Ministry of Education & Research into Demographic Change: Human-Technology Interaction in the context of the German BMBF Foresight Process (Cuhls 2010) underlines the relevance of this issue. The big challenge is to develop smart MSTbased solutions adapted to people’s needs and providing them with real value added.

Here, the focus is on the integration of smart systems in superior systems: from smart systems to smart things like cars to comprehensive systems such as the transportation system (cf. cyber-physical systems or Internet of Things). The big challenge is to handle the increasing complexity that comes with a higher degree of system integration.

Energy converters (e.g. important for energy harvesting) and storage along with self-sustaining systems are preconditions to realise the systems-of-systems approach and to develop mobile and functional intelligent devices.

In the future, the production of smart systems and things has to be closely related to mass-customisation in order to provide the users (consumers) with wellcustomised and cost-efficient solutions.

Resource efficient production and consumption systems, total life cycle assessment (including the recycling stage) etc. are important issues in this priority field.

Roadmaps to Tackle Societal Challenges

Continuing along the strategy cycle, the AGENDA 2020+ provides the strategic framework for roadmapping exercises at multiple levels: Cluster actors develop R&I roadmaps towards market-focussed and MST-based breakthrough innovations to tackle societal challenges in prioritised joint action areas (e.g. in personalised medicine, factories of the future or green cars). These roadmaps will be aligned with other roadmaps, for instance of the European Technology Platforms EPoSS or MINAM, and integrated in the MicroTEC Südwest Cluster Roadmap 2020+, which involves also horizontal support measures like qualification, recruitment etc. and will be communicated to public and private investors (‘agenda setting’). Furthermore, the roadmaps will be transferred to SMEs in the cluster to support them in their own longer-term business development and R&I investment strategy.

Taking a Big Step Towards Smart, Sustainable and Inclusive Growth

The participative forward- and outward-looking strategy process in the German ‘spitzen’-cluster MicroTEC Südwest shows successfully how regional R&I consortia can share and utilise strategic knowledge to identify joint priorities for longer-term, synergistic investments and collective actions. By enabling actors to systematically develop future strategies together, to asses them and develop actorspecific, synergistic approaches to successful implementation, the overall risk of longer-term R&I investments can be reduced significantly, for the current participants and for foreign direct investment.

The strategy approach of MicroTEC Südwest meets the needs of (new) future-oriented, multi-actor, multigovernance level and multi-sector R&I policies in manifold ways. First, it focuses local competences in a general purpose technology on tackling grand societal challenges with the aim of entering global markets. Second, it strives to attract complementary competences and foreign direct investment from other regions, and to work together with strategic partners along global value chains. Third, it combines ‘bottom-up’ with ‘topdown’ activities by taking up and assessing external inputs from a regional perspective: for instance, the German High-Tech Strategy or the BMBF Foresights, European and other R&I policies and strategy processes, such as Joint Programming Initiatives or the Japanese NISTEP Delphis, respectively. Against this backdrop, the MicroTEC Südwest approach can be seen as a test bed for an ‘entrepreneurial process’ suggested by the European Commission to develop regional smart specialisation strategies and to capitalise on them to advance the European Research Area.

To fully benefit from the regional assets across Europe, strategic capacity building has to be strengthened, not only in Europe’s world-class clusters. If more clusters such as MicroTEC Südwest develop and align their longer-term strategies in order to raise, structure and optimise overall private and public (EU, national, regional) investments, with one focus on pooling forces and jointly tackling common challenges, a big step could be taken towards smart, sustainable and inclusive growth.

Download: EFP Brief No. 232_STRATCLU.

Sources and References

Cuhls, K. (2010): The German BMBF Foresight Process, in European Foresight Platform, EFP Brief No. 174.

Foray, D., David, P.A. and Hall, B. (2009): “Smart specialisation: the concept”, in Knowledge for Growth: Prospects for science, technology and innovation, Report, EUR 24047, European Union.

OECD (2005): Governance of Innovation Systems: Volume 1: Synthesis Report, OECD Publishing.

Sautter, B., Clar, G. (2008): Strategic Capacity Building in Clusters to Enhance Future-oriented Open Innovation Processes, in The European Foresight Monitoring Network, Foresight Brief No. 150.

Web links for more information:

www.microtec-suedwest.de

www.smart-systems-integration.org

www.minamwebportal.eu

www.era.gv.at/space/11442/directory/11767.html

www.steinbeis-europa.de/rsi.html

www.steinbeis-europa.de/stratclu_en.html

EFP Brief No. 228: Visions for Horizon 2020 from Copenhagen Research Forum

Friday, November 23rd, 2012

In January 2012, the Copenhagen Research Forum (CRF) gathered 80 European scientists to discuss the societal chal-lenges to be addressed by Horizon 2020, the next framework programme for European research and innovation, and consider how research could contribute the best solutions. This EFP brief explains the process behind the CRF and gives a summary of recommendations. It ends with a discussion on cross-disciplinarity and strategic partnerships as tools for organising research in order to solve complex societal challenges.

Visions for Horizon 2020 – from Copenhagen Research Forum

The EU Commission’s proposal for a new framework programme, Horizon 2020, is devoted to strengthening the strategic organisation of European research and innovation. The ambition is to mobilise excellent scientists across various branches of knowledge in order to provide solutions for complex societal challenges.

The Copenhagen Research Forum (CRF) set out to assemble a broad spectrum of leading European scientists to give their view on the Commission’s choice of societal challenges and possible ways of implementing Horizon 2020 as a means of tackling them. Approximately 600 scientists contributed throughout the process.

The CRF recommendations clearly affirm the EU Commission’s selection of societal challenges as well as the idea of supporting cross-disciplinary collaboration as a means to address crosscutting problems within and across challenges. The recommendations also send a strong signal of support for a framework where excellence, cross-disciplinarity and simplicity in administrative processes are key components.

The following pages provide an overview of the process behind the CRF, the main recommendations as well as a discussion of new instruments to be implemented to support cross-disciplinarity.

The CRF Process

The main idea behind CRF was to involve a broad spectrum of Europe’s top-level researchers in the making of Horizon 2020 since part of its preparation would take place during the Danish EU presidency in the first half of 2012.

The University of Copenhagen, Technical University of Denmark and the Capital Region of Denmark wanted the scientific community to provide unbiased input to Horizon 2020, with the aim of making Horizon 2020 as attractive as possible to researchers working in the areas covered by the six societal challenges. Professor Liselotte Højgaard was appointed as Chair of CRF.

The concept was finalised in the summer of 2011. The key issue was that CRF should convey ideas, visions and comments from outstanding researchers, all of whom were invited personally to join CRF. A full list of names of conference participants may be found in the CRF report (see link on the last page).

The process comprised several steps and organisational roles:

Chairship – This involved contacting researchers for the six groups and establishing a chairship comprised of one Dane and one European researcher for each challenge:

  • Health: Professor Liselotte Højgaard MD, DMSc and Professor Deborah Smith.
  • Food & Agriculture: Professor Peter Olesen and Director Kees de Gooijer.
  • Energy: Dr. Jørgen Kjems and Professor Kjell Hugo Bendiksen.
  • Transport: Head of Dept. Niels Buus Kristensen and Programme Director Dr. Christian Piehler.
  • Climate & Resources: Professor Katherine Richardson and Professor Johan Rockström.
  • Society: Professor Ole Wæver and Professor Loet Leydesdorff.

The six panel chairships were asked to invite up to 100 researchers to offer their views in a virtual discussion forum. Out of the invitees, 15 researchers from each group were also asked to meet at a workshop conference in Copenhagen on 16 January 2012 shortly after the Danish EU presidency began.

Virtual discussion forum – Divided equally between the six societal challenges, the 600 researchers were invited to comment on the draft text of Horizon 2020. The researchers were asked to contribute personal visions for the future as well as point out needs and possible solutions. They were also asked to suggest and comment on the technologies and the priorities within the given challenge as well as consider the instruments and implementation needed to ensure success as seen from a scientific perspective. Lastly, they were requested to contribute their ideas on how to secure the link between research and the innovation perspective stressed in Horizon 2020. All of the input was collected in a draft report that formed the basis of the aforementioned conference in Copenhagen.

Conference – On 16 January 2012, the six panels met and discussed the draft report, offering comments and adding new ideas inspired by the input collected in the virtual discussion forum. The aim was to reach agreement on (1) the views and recommendations in each of the six panels, (2) a joint statement during plenary sessions expressing the view on scientific issues cutting across all six challenges and (3) recommendations for the implementation of a challenge-oriented framework as a basis for excellent research and far-reaching solutions.

The Danish Minister of Science, Innovation and Higher Education, Morten Østergaard, attended the conference.

Outcome – The conference resulted in a condensed report offering ideas and solutions that could help form Horizon 2020 from a scientific point of view. The conclusions were presented to the European community in an open dialogue as explained in the following.

Dissemination – The CRF recommendations were presented to the EU Council of Ministers’ meeting in Copenhagen on 1 February 2012 and subsequently to the European Commission, the European Parliament as well as directly to Director General for DG Research and Innovation, Robert Jan Smits. The dissemination activities were closely connected to the Danish EU presidency.

In the following section, we provide key statements from the CRF panels’ recommendations. A full version can be found in the report.

Key CRF Recommendations for Each Societal Challenge

Health, Demographic Change and Wellbeing
  • Biomedical research and its implementation in clinical practice must be supported and accelerated. This requires a paradigm shift towards personalised medicine.
  • The global revolution in biomedicine is providing new technologies. Utilising those technologies requires vast efforts to expand and implement them.
  • A European platform engaging all key stakeholders to ensure discovery and delivery of these technologies will be crucial.
  • Establishment of a European Strategic Action for Healthier Citizens is also recommended to assist in strategic long-term healthcare research and planning, including preventive measures and the spread of best practice across Europe.

Food Security, Sustainable Agriculture, Marine and Maritime Research and the Bio-economy

  • Overriding challenges of increasing demand, competition for land use and other resource scarcities create massive pressure to produce significantly more per unit of a given resource.
  • Food, agriculture and land use must be seen in a complex and multi-directional value chain encompassing climate, available resources, environmental sustainability, transport, energy and health perspectives, not to mention social and economic requirements.
  • Key objectives are reductions in food waste and water consumption, valorisation of all bio-resources, including municipal bio-waste and agro- and bio-industrial side streams as well as the recycling of sufficient amounts of carbon and phosphor to maintain soil vitality.
  • Increasing prevalence of diet-related diseases and disorders calls for a balanced healthcare concept more geared towards prevention.
  • There is a need to create a collaborative innovation culture linking researchers, companies (especially SMEs), university education, NGOs and governments.
Secure, Clean and Efficient Energy
  • Horizon 2020 priorities should build on (1) a revised Strategic Energy Technology Plan (SET Plan), including a critical update of technology road maps and (2) a new, complementary systemic approach to combine technological, economical, political, social and cultural research to facilitate the transformation of the energy system as a whole.
  • Collaboration of social sciences and humanities with ‘hard sciences’ must be recognised as necessary and organised and funded accordingly to meet the challenges at the system level.
  • Coupling of educational efforts with research and innovation is critical for realising the ambitious plans for technology implementation and the overall system transition agenda.
  • Direct mobilisation of universities in addressing systemic challenges should be given high priority.
Smart, Green and Integrated Transport
  • The complexity of transport challenges requires closer cooperation across scientific domains and integration across universities, research institutions and industry than in the past.
  • Meeting the challenge of developing smart and green transport systems requires not only technological solutions but also a better understanding of transport behaviour and the use of innovative and effective policy instruments.
  • This calls for a more pronounced role for the social sciences than in previous framework programmes as well as for strengthening the integration of scientific domains.
  • Technological innovation will still be of paramount importance, including cleaner and safer vehicles for all transportation modes, cost-effective alternative fuels, advanced ICT for personalised real-time travel information with modal integration, metropolitan traffic management and smart payment systems.


Climate Action,Resource Efficiency and Raw Materials
  • Climate change constitutes one of the most urgent global resource challenges facing society, where the resource in question is our atmosphere as a receptacle for greenhouse gas wastes.
  • Development of actions and strategies for dealing with this challenge can potentially provide models for dealing with resource scarcity issues (biodiversity, ecosystem services, water, phosphorous, ores and metals etc.).
  • A general paradigm for dealing with resource scarcity is reducing the need for – and more efficient use of – the resource, combined with the adaptation of human activities to changed conditions and/or the recognition of resource scarcity.
  • In dealing with resource scarcity in general and the climate in particular, a major challenge is to channel the knowledge gained on the mechanisms of the Earth’s system into political and societal action. This requires cross-disciplinary approaches that integrate natural sciences with other disciplines.
  • The focus of Horizon 2020 should thus be to underpin societal responses to climate challenges by including research on systemic interaction, collecting baseline information and establishing monitoring activities of different mitigation and adaptation approaches.
Inclusive, Innovative and Secure Societies
  • The focus on ‘inclusive, innovative and secure societies’ provides a highly welcome challenge to the social sciences and humanities (SSH).
  • The Horizon 2020 proposal tends to focus on ‘hard’ technologies, especially statistics, assessments and measures of efficiency (evidence-based lessons), with a corresponding tendency to employ a technocratic definition of the nature of the challenges (e.g. in the security part, critical infrastructure protection is prioritised over international politics).
  • This represents a limited political and social vision that underestimates the power of citizens and communities to contribute to the realisation of inclusion, innovation and security.
  • Corresponding to a vision comprising a broader mobilisation of societal energies are forms of research that employ a wider selection of methodologies and theories to study the dynamics of society as productive and generative, rather than as the site of problems to be solved.
  • SSH can play key roles in the other societal challenges as well. It is important that researchers in the SSH engage scholars in the hard sciences in a joint effort to cultivate research-based innovation regarding the way expertise and democracy interact.

Excellence,Cross-disciplinarity and Simplicity

The ambition of using societal challenges as a means to organise European research requires new approaches. The message from CRF is to pursue this through a combination of excellence, cross-disciplinarity and administrative simplicity.

The CRF report signals a strong will among scientists to enter into cross-disciplinary collaborations in order to address complex challenges for which no single discipline has the solution. But this must not violate an equally strong need for administrative simplification and a continued effort to support excellence in all research activities. Without excellence as a fundamental requirement in all programmes, the cross-disciplinary ambition may become a hollow and strange add-on to ‘real’ science. Whenever a problem calls for a disciplinary approach, this should not be substituted with cross-disciplinarity. Timely application of new approaches must be a key priority.

Strategic Partnerships as Tools for Organising Cross-disciplinary Collaboration?

One of the ways in which cross-disciplinarity may enter the Horizon 2020 programme could be by establishing strategic partnerships devoted to delivering solutions to complex challenges. Strategic partnerships could be a way for the Horizon 2020 programme to nurture new constellations of fields of expertise without establishing very detailed road maps or other guidelines ‘from above’. It would be important to involve industrial and civil society actors in the formulation of strategic objectives in order to ensure that strategic partnerships become platforms for linking strategic priorities from science, policy, industry and other actors and that these partnerships organise collaboration accordingly.

A key feature of implementing strategic partnerships should be to provide them with sufficient operational freedom so as to secure flexibility and entrepreneurship in how partnerships pursue their goals at the project level.

Strategic partnerships should be an invitation and challenge to European research to explore new models of collaboration. This corresponds also with a clear recommendation from the CRF advocating the setup of strategic platforms connecting long-term visions with mid- and short-term investments in a dynamic way.

The advantage of a partnership-based organisation of strategic research is that it allows coordinating a variety of fields and actors while creatively linking actors who would otherwise not establish collaborative ties. Coordination and connection are thus key aspects of well-functioning strategic partnerships – but only if the model builds on principles that afford strategic partnerships sufficient degrees of freedom in organising collaboration projects. Otherwise, the risk of reproducing fragmentation and the resulting problems known from FP7 cooperation will be substantial.

The CRF epitomises an interest among scientists to engage in shaping the framework conditions of research and innovation. Beyond the scope of specific recommendations, the CRF may serve as a source of inspiration for how to establish a direct dialogue between the scientific community and policymakers.

The CRF report was followed up by a ‘CRF II’ process during which the chairship of CRF put together a set of recommendations for the implementation of Horizon 2020 in light of the CRF report. The resulting paper (Højgaard, L. et al. [2012a]) focuses on recommendations for implementing measures to promote excellence, cross-disciplinarity, simplicity and impact. The recommendations for implementation along with the CRF report can be found at the CRF homepage (crf2012.org).

Authors: Brenneche, Nicolaj Tofte                   ntb.lpf@cbs.dk

Højgaard, Liselotte      liselotte.hoejgaard@regionh.dk

Sponsors: Capital Region of Denmark

Technical University of Denmark

University of Copenhagen

Type: European research and innovation policy, Horizon 2020
Organizer: Capital Region of Denmark, Technical University of Denmark, University of Copenhagen

Contact: Anne Line Mikkelsen, amik@adm.dtu.dk

Duration: 2011 – 2012
Budget: n.a.
Time Horizon: 2020
Date of Brief: November 2012

Download: EFP Brief No. 228_Visions for Horizon 2020.

Sources and References

Højgaard, L. et al (2012): Visions for Horizon 2020 – from Copenhagen Research Forum.

Højgaard, L. et al (2012a): Copenhagen Research Forum II. Recommendations for an optimized implementation of Horizon 2020.

Both are available at www.crf2012.org.

EFP Brief No. 227: Assessment of Global Megatrends

Tuesday, November 13th, 2012

The aim of the European Environment Agency’s regular state of the environment and outlook reporting is to inform policymaking in Europe and beyond and help frame and implement policies. Information can also help citizens to better understand, care for and improve the environment. Global megatrends assessment complements the assessment of four European challenges (climate change, biodiversity loss, growing material use and concern for the environment, health and quality of life) while it identifies additional social, technological, economic, environmental and political factors beyond Europe’s control that are already affecting the European environment and are expected to continue to do so.

Demographics, Technologies, Trade Patterns and Consumption Put Pressure on the Environment

An assessment of global megatrends relevant to the European environment has been performed for the 2010 European state and outlook report prepared by the European Environment Agency (EEA) and a network of countries (EIONET). It focuses on identifying the most relevant global pressures on Europe. A global-to-European perspective is relevant to European environmental policymaking because Europe’s environmental challenges and management options are being reshaped by global drivers such as demographics, technologies, trade patterns and consumption.

While the future cannot be predicted with certainty, it also does not arise from nowhere. It is rooted in our present situation. Some trends visible today will extend over decades, changing slowly and exerting considerable force that will influence a wide array of areas, including social, technological, economic, environmental and political dimensions. While these megatrends cannot be predicted with certainty, they can be assessed in terms of plausible ‘what-if’ projections.

Mega-trends always include uncertainties or strategic shock factors. They can lead to a sudden slowdown or change of direction. This concerns especially events with low probability but far-reaching implications (so-called ‘wild cards’). In addition, a combination of sub-trends can emerge into novel megatrends over a longer time frame, for example several decades.

Many of these changes are interdependent and likely to unfold over decades. They can significantly affect Europe’s resilience in the long term. Naturally, such changes also offer unique opportunities for action. Effective measures, however, require better information and a better understanding of a highly complex and evolving situation.

The assessment grouped a rich diversity of information on global drivers of change into a number of social, technological, economic, environmental and political (governance) megatrends (see Table 1). It summarised key developments succinctly with the goal of triggering a discussion about how we should monitor and assess future changes in order to better inform European environmental policymaking.
227_bild1

 

Public Call for Evidence

The approach utilised for this exercise included:

  • A public call for evidence on global megatrends of relevance to Europe’s long-tem environmental The call was launched in June 2009 via the EEA website and was disseminated to relevant research networks and mailing lists. It generated a list of relevant studies that helped further prioritise topics for the analysis.
  • The setting up of an external advisory group to guide the progress of the work. The group comprised representatives of international and national organisations in the field of environmental assessment as well as EEA’s scientific committee members.
  • Reviews of academic and non-academic information sources in the form of eight targeted background reports produced between autumn 2009 and 2010.
  • Consolidation of the information base following the STEEP (social, technological, economic, environmental and political) framework for classifying drivers of change.
  • Structuring of the information base into information sheets including indicators.

The complexity of interlinkages and manifold uncertainties inherent in megatrends require an exploratory, qualitative approach, underpinned by empirical data. It does not solely rely on quantitative modelling although already available model results are used in the analysis. Current approaches to risk analysis and quantitative forecasting are problematic since the systems at hand and their dynamics are not well understood, assumptions are often non-transparent and necessary data are not always available.

The selection of the final list of global megatrends has been determined by matching selection criteria of relevance, novelty, data availability and feasibility within the time frame of the assessment.

The analysis of global megatrends and their relevance to Europe’s long-term environmental context is being carried out as a longer-term and iterative process. The current report captures issues and results relevant to the context and timescale of the state and outlook report 2010. Further work will be undertaken during the next years – and this assessment process intends to provide a solid information base to support policy formulation with a long-term perspective.

Global Megatrends of Relevance to European Environment

Eleven global megatrends were selected to address the European environmental challenges in the area of climate change, nature and biodiversity, natural resources and waste, and health and quality of life.

Increasing Global Divergence in Population Trends: Populations Aging, Growing and Migrating

The global population will continue to grow until the mid of the century but slower than in the past. People will live longer, be more educated and migrate more. Some populations will increase as others shrink. Migration is only one of the unpredictable factors for Europe and the world.

Living in an Urban World:
Spreading Cities and Spiralling Consumption

An increasingly urban world will probably mean higher levels of consumption and greater affluence for many. Yet it also means greater poverty for the urban underprivileged. Poor urban living conditions with the environmental and heath risks this involves can easily spread to other parts of the world, including Europe.

Changing Patterns of Global Disease Burdens and Risk of New Pandemics

Risk of exposure to newly emerging and re-emerging diseases and new pandemics grows with increased mobility of people and goods, climate change and poverty. Aging Europeans could be vulnerable and at risk of being severely affected.

Accelerating Technologies: Racing into the Unknown

The breakneck pace of technological change brings risks and opportunities. These include, in particular, the emerging clusters of nanotechnology, biotechnology and information and communication technology. Innovations offer immense opportunities for the environment – but can also create enormous problems if risks are not regulated adequately.

Continued Economic Growth

High economic growth accelerates consumption and the use of resources, but it also creates economic dynamism that fuels technological innovation potentially offering new approaches for addressing environmental problems and increasing resource efficiency.

Global Power Shifts:
From a Unipolar to a Multipolar World

One superpower no longer holds sway; regional power blocs are increasingly important, economically and diplomatically. As global interdependency and trade expands, so do international and bilateral agreements.  Europe may benefit from this development by improving its resource efficiency and knowledge-based economy.

Intensified Global Competition for Resources

How will Europe survive in the intensifying scramble for scarce resources? The answers may lie in more efficient production and use of resources, new technologies, innovation and increasing cooperation with foreign partners.

Decreasing Stocks of Natural Resources

A larger and richer global population with expanding consumption needs will place growing demands on natural systems for food, water and energy. Europe may see more pressure also on its own natural resources.

Increasing Severity of the Consequences of Climate Change

Accelerating climate change impacts will imperil food and water supplies, impair human health and harm terrestrial and marine life. Europe may see also more human migration, changes in migratory species and heightened pressure on resources availability.

Increasing Environmental Pollution Load

The environment is burdened with an increasingly complex mix of pollutants that threaten the regulatory mechanisms of the earth. Particulates, nitrogen and ground-level ozone merit particular attention in view of their complex and potentially far-reaching effects on ecosystem functioning, climate regulation and human health. In addition, many other chemical substances are released into the environment, the effects of which – whether in isolation or combined – are still poorly understood.

Global Regulation and Governance: Increasing Fragmentation But Converging Outcomes

The world is finding new governance models – multi-lateral agreements and public-private ventures, for example. In the absence of international regulation, advanced European standards and procedures have often been adopted worldwide. But will this situation continue in the future?

Impacts on Europe’s Environment

The analysis of global megatrends shows that they may have a series of direct and indirect consequences for Europe’s environment. These consequences can be illustrated by looking at the four priority areas that underpin the European Union’s Sixth Environmental Action Programme, namely climate change, natural environment, resource use, and environment and health.

The most evident consequences are expected in the area of climate change. A whole set of global socio-economic megatrends will play a key role in determining the severity of climate change impacts in Europe in coming decades. Projected direct impacts in Europe include biodiversity change, particularly in the Arctic region, the Alpine region and the Mediterranean. Water scarcity can become a problem in southern European regions, whereas flooding threatens lowland coastal areas and river basins. Indirectly, Europe may experience increased migration pressures from developing countries, where accelerating global environmental change is becoming more important as a direct root source for migration, and its ageing population may become more vulnerable to extreme events such as heat waves.

For biodiversity and nature, the global megatrends are expected to have a relatively weak direct impact on Europe itself (i.e. spread of invasive species), though globally the loss of biodiversity and indirect impacts on European biodiversity (through use of natural resources and pollution) will be a major concern.

The links between global megatrends and their impacts on Europe’s natural resources are complex and uncertain. Europe is resource-poor in terms of fossil fuels (oil, gas) and minerals (e.g. rare earths, phosphorus, copper, aluminium) and will largely remain dependent on supply from abroad. For energy, Europe may turn to its own stocks (coal, oil shale, ‘revival of mining’), but exploitation costs will be high due to high costs of labour, environmental and occupational security, accessibility and landscape disruption. Changes in the abundance of migratory species and climate change impacts might be aggravated by an increased demand for and depletion of domestic resources (such as food and timber). Similarly, heightened global demand for European agricultural and forestry products may lead to an increase in the intensity and scale of agriculture and forestry in Europe, increasing pressure on water and soil resources. Technology, however, may act to reduce pressure on Europe’s natural resources by enhancing the efficiency of resource use and improving agricultural yields.

In addition to the direct and indirect consequences on Europe’s environment, the megatrends can be expected to also have a global impact on environmental security in many parts of the world, including Europe’s neighbours in the southern and eastern Mediterranean as well as in Sub-Saharan Africa. Examples of such impacts are climate-change-induced refugees, risk of new pandemics and new diseases, conflicts arising from competition for resources, development problems related to uncontrolled urban sprawl.

How Can We Respond to Global Megatrends?

The assessment of megatrends highlights a range of interlinkages and interdependencies. They increase complexity, uncertainty and risk and accelerate feedback within and between economic, social, technological and environmental systems. The growing global links also offer unique opportunities for action although the attempts to realise these opportunities face the challenge of huge time lags between action (or inaction) and effect.

Responding to global megatrends and reflecting future changes in policy is thus a challenging task. The report of the Reflection Group on the Future of Europe has emphasised how many recent global developments, such as the financial crisis or price volatilities in key commodity markets, have caught us by surprise.

A key question emerges: how can we respond to global challenges in resource-using systems when we are very far from understanding them completely? For example, much of the speed and scope of global environmental change has been underestimated by scientific assessments and policy appraisals. Few considered that some of the key emerging economies would develop so fast and affect global demand as quickly as they have in the last decade.

Brief reflection reveals three related but distinct challenges for the future:

  • reviewing assessment approaches to improve monitoring and analysis of future changes and their uncertainties;
  • revising approaches and institutional arrangements to embed a long-term perspective into policy planning and decision-making;
  • reflecting on further policy changes to take better account of global-to-European interlinkages and better align European external policies with environmental policies.
Authors: Teresa Ribeiro              Teresa.Ribeiro@eea.europa.eu

Axel Volkery                 avolkery@ieep.eu

Anita Pirc Velkavrh       Anita.pircvelkavrh@eea.europa.eu

Hans Vos                     hansbvos@gmail.com

Ybele Hoogeveen         Ybele.hoogeveen@eea.europa.eu

Sponsors: n.a.
Type: Regular European state of the environment reporting every four years
Organizer: European Environment Agency
Duration: 2009-2010
Budget: n.a.
Time Horizon: 2050
Date of Brief: August 2012

Download: EFP Brief No. 227_Assessment of Global Megatrends.

Sources and Resources

EEA, 2010a, ‘General support to framing the forward-looking assessment component of the European state of the environment and outlook report 2010 part A — Background Paper on Demographics and Migration’, European Environment Agency, Contract Number 3403/ B2009/EEA.53788 (unpublished).

EEA, 2010b, ‘Background paper on urbanisation and consumption— General support to the forward-looking assessment component of the 2010 European State of the Environment and Outlook Report (Part A)’, European Environment Agency, Copenhagen (unpublished).

EEA, 2010c, ‘Report on health related megatrends — Identifying global health megatrends in support of SOER 2010 Part A’, European Environment Agency Contract No. EEA/AIR/04/007 Specific Agreement 3403/B2009/ EEA.53683, Task 4.

EEA, 2010d, ‘Global megatrends in the area of nano-, bio-, ICT and cognitive sciences and technologies’, European Environment Agency, Copenhagen (unpublished).

EEA, 2010e, Pharmaceuticals in the environment, EEA Technical report No 1/2010, European Environment Agency (http://www.eea.europa. eu/publications/pharmaceuticals-in-the-environment-result-of-an-eea-workshop/at_download/file) accessed 23 November 2010.

EEA, 2010f, The European environment – state and outlook 2010: synthesis, European Environment Agency, Copenhagen.

EFP Brief No. 219: Sustainable Urban Metabolism for Europe Planning Resource-Efficient Cities

Tuesday, June 26th, 2012

The Project SUME – Sustainable Urban Metabolism for Europe – analyses the relationship between urban form and urban metabolism in a long-term development perspective to 2050. Urban metabolism encompasses all flows of energy and material resources of a city or agglomeration while urban form describes the way cities are built in spatial terms. Two different spatial scenarios, the BASE scenario as a continuation of the current development and the SUME scenario as a path of sustainable spatial development, have been elaborated for seven European cities. These scenarios demonstrate a corridor of potential future demands in terms of land use and energy consumption.

How Can We Reduce Urban Resource Consumption?

In Sustainable Urban Metabolism for Europe (SUME), the concept of urban metabolism is explicitly applied to the organisation of space for the first time, demonstrating the impact of urban form on resource flows by analysing the spatial distri­bution of population and jobs, the transport system and urban building technology. This is per­formed in a long-term scenario approach, projecting the urban development perspectives of seven European urban agglomerations. For four of these agglomerations, a spatially explicit metabolism model has been developed and applied.

Urban forms have evolved throughout history and can be changed substantial­ly only over longer periods and/or through dynamic restructuring. In search of opportunities to reduce urban resource consumption, the SUME project estimates the potential for transforming urban building and spatial structures by 2050 by applying alternative spatial development pol­icies for a given demographic and economic development path. Urban agglomerations in Europe show extremely different spatial patterns: some are com­pact and confined; many are fragmented and spread out. Urban transport systems are of very different qualities: some featuring attractive, well-integrated public transport provision while others strongly rely on individual transport. Technical building standards also vary widely, often depending on the period of construction, and add to the resource impact of a wide range of climatic conditions. All these differences are included in the term ‘urban form’ as it is used here.

Approach 1: The given urban form, in all its variations, is taken as a starting point for long-term urban development scenarios by 2050 in order to analyse the future potential of resource-effi­cient transformation. Demographic and economic development dynamics are, of course, the main parameters influencing the potential to change a given urban form.

Approach 2: The spatial urban metabolism model allows for systematic simula­tions of the functional relations between socio-economic developments and their consequences on the urban metabolism.

Approach 3: Since cities are built step-by-step, with larger or smaller develop­ment projects changing the existing structures, it is important to understand the projects’ individual contributions to the improvement of the overall performance of a city/agglomeration in terms of resource consumption. The Metabolic Im­pact Assessment (MIA) is a novel methodology to evaluate the effect of proposed urban deve­lopment projects on the metabolism of a city. It is a decision-support tool geared toward analysing and understanding the complex metabolic consequences of new urban projects or urban plans, e.g. in terms of energy flows associated with the project, for heating, cooling and transport.

Approach 4: Urban agglomerations’ development processes are very complex. Many factors intersect to generate the spatial pattern that we see in the built environment today. Hence, the processes, actors and their respective rationales were under scrutiny in the SUME project as well. ‘Producers’ of the urban fabric, such as landowners, developers and investors, are im­portant players, but they are not the only actors who matter; ‘consumers’ are also crucial. This group in­cludes individuals and companies who use buildings and spaces in cities, not just the inhabi­tants of homes and offices, but also visitors to the city, whether for work, shopping or recreation.

SUME Principles for Resource-efficient Development

In the SUME project, two different storylines are at the core of the two urban development scenarios elaborated for seven cities: a baseline, the so called BASE scenario, understood as a continuation of the urban develop­ment policies supporting past spatial development trends; and a SUME scenario, defined as a path of sustainable spatial development. The ‘scope for action’ referred to in this project involves the choice between these two scenarios, meaning whether or not the SUME principles are applied in urban development over an extended period. The SUME scenarios are geared toward improving urban resource efficiency and are guided by the so-called ‘four SUME princi­ples’ for future urban development:

  • Principle 1: Spatially focused densification

Promoting a minimum density standard for any new quarter and redevelopment of existing low-density quarters in areas with attractive, high-level public transport

  • Principle 2: High-density development only with access to high-quality public transport

Focusing new high-density developments exclusively in areas close to public transport networks (especially those with job and service functions)

  • Principle 3: Functional mix in urban quarters

Providing a mix of functions (i.e. residential, jobs and services) in close proximity to each other at the local level, allowing for short-distance access

  • Principle 4: Combination of urban and building (object) reconstruction

Improving the thermal quality of buildings and using the opportunity to improve the spatial qualities of urban quarters

It seems clear that the importance and potential impact of each of the four principles depends on the current urban form of the respective city. The varying range of potential future improve­ments in terms of land use and energy consumption is analysed in the subsequent case studies of cities presented below.

Increase in Space, Decrease in Economic Growth

Comparing the urban development scenarios shows that there is a great potential to influence urban form over time if a consistent set of policies is applied. The scenarios also display that the differential between the policy sets adds up and becomes resource-relevant over time.

The BASE scenarios show a substantial expansion of the so-called Urban Morphological Zones (UMZs)[1] for the fast growing cities, ranging from growth by 24% in AthensUMZ to 30% in MarseilleUMZ, 41% and 47% in MunichUMZ and StockholmUMZ to 54% in ViennaUMZ. These results are due to population increase, a proportional growth of jobs and a continuing increase in per capita floor space consumption. Based on empirical evi­dence of the past, it has been assumed here that the historical trend of floor space increase will continue in a stable eco­nomic development, but the per capita growth will slow down compared to past decades.

From this ‘baseline’ of expected development, the so-called SUME scenarios demonstrate a develop­ment path that should result in lower resource consumption (land use, energy, materials) and could be reasonably achieved through concerted urban development policy packages. SUME scenarios focus on inner-city development, high-level public transport axes and more compact development on the fringes of the existing UMZ.

[1] The continuously built-up area of an agglomeration, as defined by UN-Habitat (200 m maximum distance between buildings, based on the CORINE land-cover data).

The potential effects are substantial: the expan­sion of the agglomerations analysed can be avoided altogether in OportoUMZ and NewcastleUMZ, which is also due to their small demographic development, but also in dynamic cities such as AthensUMZ and MarseilleUMZ. The fastest growing agglomerations in the group are MunichUMZ, StockholmUMZ and ViennaUMZ where the expansion by 2050 could be reduced significantly to 13%, 20% and 14% respectively.

The results of the two spatial development scenarios for four of the cities were used as input for the spatially disaggregated modelling of energy flows based on the spatial distribution of jobs and residents, localisation of services and central functions, and fast lines of public transport.

Reducing Today’s Energy Demand

Table 1 gives an overview of the main results for the agglomeration aggregates for both the building and the transport model. It shows the final state of development in 2050 and compares the per capita energy demand figures for hea­ting and transport in the BASE and SUME scenarios. The main results show that today’s energy demand can be reduced by 60% to 80%, varying between cities and scenarios. In general, a SUME-scenario-type agglom­eration development will reduce energy consumption between 10% and 40% by the year 2050 compared to the BASE scenario.

The results demonstrate that, even in a future agglomeration development using all available technological improvements, there is a large differential between a BASE- and a SUME-type development: A higher replacement or renovation rate of buildings and a better spatial focus of new developments with respect to public transport accessibility will reduce energy con­sumption by 30 to 40%. Only in special situations like in Oporto, where relatively small changes are anticipated for both components, i.e. buildings and transport, will the differ­ential between the BASE and SUME scenarios be less than 10%.

In principle, Metabolic Impact Assessment (MIA) can be applied to different types of planning proposals: policies, programmes, plans and projects. However, within the scope of the SUME project, it was applied to detailed plans of large urban development projects. It has been recognised that at more strategic levels, MIA’s application will be more complex and demanding. At a local level, data is more easily identified and the analysis becomes more objective.

Within the general objective of SUME to analyse the impacts of urban form on resource use, the application of MIA has focused on specific components of urban metabolism, namely energy, land use, water and materials. Moreover, in each case study some limitations of data have caused further restrictions.

The four case studies in the European cities of Vienna, Stockholm, Oporto and Newcastle demonstrate the application of the new method: Metabolic Impact Assessment (MIA). The case studies show the impact of projects, compare them with the performance of alternative projects and of the relevant districts within the agglomeration. Applying MIA can lay the ground­work for improving planning proposals in key aspects of urban metabolism and also contri­bute to the necessary assessment of alternative locations for such projects within the urban fa­bric. MIA shows that it is essential to include the impacts of urban development projects regar­ding infrastructure needs and transport in the agglomeration context because a) unexpected effects in other sections of the complex transport network can be detected and b) underuse of existing infrastructure in certain districts can be determined. Both of these aspects potentially lead to substantial project modifications.

Guidelines for Developing New and Existing Quarters

To improve the metabolic performance of a city or agglomeration, urban spatial development strategies should focus on the application of the four SUME principles for developing new and rebuilding existing quarters. This would be an ongoing process with a clear strategic orienta­tion:

  • Containment at the level of agglomerations: reduce urban expansion to a min­imum, keep travel distances low, provide for good spatial access to public transport routes and attractive service there. Currently most growth happens in the spaces be­tween transport axes in areas out of reach of attractive public transport.
  • Spatially focused densification in low-density urban outskirts: this is a key strategy in growing cities to avoid expansion and improve transport service quality.
  • Locate services and offices at transport nodes and allow for a mix of functions at the neighbourhood level: the busiest nodes of agglomerations’ public transport systems are attractive for office and service space, and most advantageous for the location of jobs with excellent access to public transport. On a neighbourhood scale, it is also important to have a functional mix within each of the urban regions’ neighbourhoods to provide for services and access to daily supplies at short distances.
  • Improve agglomerations’ public transport systems: some urban regions have com­paratively high densities, but do not provide well-developed public transport systems – there exists a great potential for improvements, particularly at the agglomeration level.

Urban development policy packages need to be oriented towards the following:

  • All urban growth and the life-cycle turnover of built structures should be used as potential to improve the existing urban form, both in terms of spatial structures and object qualities. Urban growth in this sense is not an enemy to sustainable develop­ment but can be a partner in getting there.
  • Larger urban development projects can be located and serviced with infrastructure in such a way that they improve the overall performance of a whole area of a city/agglom­eration (see MIA).
  • At the level of users/developers, all ongoing relocation and renovation activities have the potential to improve urban form if location, building standards and functional distribution (residential, services, jobs) are taken into account constantly and systematically.
  • Renovation and building rehabilitation programmes for urban quarters should reach be­yond improving thermal qualities only, to include raising inner-city attrac­tiveness (green spaces, pedestrian/bicycle mobility, services) and putting metabolism-relevant technology in place (e.g. smart city initiatives, production of renewable energy).

In order to follow these strategic recommendations, it will be essential to develop a cross-sectoral approach in urban development, integrating urban planning, housing policies, energy policies, infrastructure provision and transport policies. Such integrated, coherent approaches for the development of new and existing urban quarters, however, are hardly found nowadays. This shortcoming presents the greatest challenge in restructuring European cities along sustainable and resource-efficient line.

Authors: Christof Schremmer                        schremmer@oir.at

Barbara Saringer-Bory                    saringer@oir.at

Ursula Mollay                                  mollay@oir.at

Sponsors: FP7 Collaborative Research Project; Area 6.2.1.5 – Urban development ENV.2007.2.1.5.1 – Urban metabolism and resource optimisation in the urban fabric, collaborative research project
Type: Single issue brief
Organizer: ÖIR, Austrian Institute for Regional Studies and Spatial Planning, Project coordinator, www.oir.at
Duration: 2008-2011 Budget: 3.6m € Time Horizon: 2050 Date of Brief: Mai 2012  

 

Download EFP Brief No. 219_Sustainable Urban Metabolism for Europe

Sources and References

For information and downloads on the SUME project and its findings, please visit: http://www.sume.at/

EFP Brief No. 213: Material Efficiency and Resource Conservation (MaRess) Project

Wednesday, May 2nd, 2012

In order to successfully provide relevant groups with political support for implementing resource efficiency, one needs to know where to start best, thus, where the highest potentials are likely to be found. Addressing four key issues, MaRess identified potentials for increasing resource efficiency, developed target group-specific resource efficiency policies, gained new insights into the effects of policy instruments at the macro- and micro-economic level, provided scientific support for implementation activities, engaged in agenda setting and communicated findings to specific target groups. This paper presents the overall results of Work Package 1 (WP1) with regard to the potential analyses of the identified technologies, products and strategies. The results were gained from research conducted in the context of a graduate research programme, which was embedded in a network of experts who were involved in the analysis.

The Starting Point

The extraction and exploitation of resources, the associated emissions and the disposal of waste are polluting the environment. The increasing scarcity of resources and the high and fluctuating prices of raw materials can lead to major economic and social dislocations, combined with a growing risk of conflicts over raw materials. Competitive disadvantages arising from the inefficient use of resources endanger the development of businesses and jobs. A strategy for increasing resource efficiency can limit all these problems, which is why this subject is increasingly becoming a key issue in national and international politics. As yet, however, consistent strategies and approaches for a successful resource efficiency policy have been lacking.

Against this background, the German Federal Environment Ministry and the Federal Environment Agency commissioned thirty-one project partners, under the direction of the Wuppertal Institute, to carry out the research project Material Efficiency and Resource Conservation (MaRess, project number 3707 93 300, duration 2007 to 2010).

The project aimed at advancing knowledge with respect to central questions of resource conservation, especially the increase of resource efficiency with a focus on material efficiency. Therefore, the most interesting technologies, products and strategies for increasing resource efficiency were identified in a broad, multi-staged, expert-driven process. After that, their concrete saving potential was determined. The potential analyses were carried out as part of a graduate research programme in the wider context of an expert network and expert-based analytical process. After their finalisation, the results of the single potential analyses were analysed in an intense discourse and cross-evaluation process. Finally, issue-specific as well as overarching recommendations for action were concluded.

Identifying Topics with High Resource Efficiency for Germany

Selection of Topics

The process of topic selection aimed at identifying technologies, products and strategies that are expected to carry high resource efficiency potential in Germany. In this respect, a complex expert-based methodology for evaluation and selection was developed that included four steps:

Step 1 “Broad collection”: Identifying topics via desk research and surveys.

Step 2 “Pre-evaluation”: Evaluation of about 1,000 proposals by three criteria: resource input, resource efficiency potential and economic relevance to end up with a focussed topic list (“Top 250 topics”)

Step 3 “First evaluation”: Expert evaluation along seven criteria: resource input in terms of mass relevance, resource efficiency potential of the specific application, other environmental impacts, feasibility, economic relevance, communicability and transferability.

Step 4 “Selection”: The final selection of the “Top 20 topics” was carried out in cooperation with the German Federal Environment Agency.

Potential Analysis as Part of a Graduate Research Programme

Altogether, potential analyses were performed with reference to 20 relevant topics (“Top 20 topics“), which are expected to carry high resource efficiency potential. Methodologically, the resource efficiency potentials were quantified according to the concept “Material Input per Unit of Service (MIPS). Therefore, the potential analyses are based on resource use across the whole life cycle for up to five resource categories. They determine the concrete potential for increasing resource efficiency in each case. Besides the assessment along quantitative results, a qualitative evaluation was carried out to capture, among other things, possible rebound effects and constraints to the dissemination of the application. The qualitative evaluations are based on publications, statistics and expert opinions.

After the finalisation of the potential analyses carried out by the students, the advisors pre-evaluated the theses. Furthermore, an internal evaluation workshop was held to assess the pre-evaluated potential analyses of the WP1 partners according to the seven criteria outlined in Step 3 and the guidelines for potential analysis in an overarching frame. The results of each individual thesis were discussed and specific, overarching recommendations for action were concluded.

From Water Filtration to Resource Efficiency Business Models

Seven fields of action were worked out in the course of the criteria-based cross-evaluation in which central results and recommendations for action for the individual potential analyses were merged. Each field of action summarises several closely interrelated topics from the potential analyses. The selective assignment of the topics is not always possible and there are complex interdependencies between the individual fields of action. Table 1 gives and overview of the fields of action and the potential analyses:

Fields of action and assigned potential analyses
Cross-sectional technologies and enabling technologies: “Door openers” for resource efficient applications

Assessment of resource efficiency in grey water filtration using membrane technologies

Resource-efficient energy storage: comparison of direct and indirect storage for electric vehicles

Resource efficiency potential of energy storage – resource-efficient heat storage

Resource efficiency potential of insulation material systems

Renewable energies facilitate substantial resource savings

Resource efficiency potential of wind and biomass power

Resource-efficient large-scale energy production: potentials of Desertec

Resource-efficient energy production by photovoltaics

The growing ICT market needs a careful resource management

Green IT: resource efficiency potential of server-based computing

Green IT: resource efficiency increase with ICT – comparison of displays

Resource efficiency potential of recycling small electric and electronic appliances by recoverage from household waste using radio frequency identification (RFID) labelling of primary products  

Food – both production and consumption need to be considered

Resource efficiency potential in food production – example: fish

Resource efficiency potential in food production – example: fruit

Resource efficiency potential in food production – example: vegetables

Resource efficiency potential of intelligent agricultural technologies in the example of the use of nitrogen sensors for fertilization

Traffic – infrastructure bears higher resource efficiency potential than drive systems

Assessment of resource efficiency potential in freight traffic

Resource efficiency potential of electric vehicles

Integrating resource efficiency into product development

Consideration of resource efficiency criteria in product development processes

Resource efficiency potential of implementing light-weight construction using new materials

Resource efficiency potential of high-strength steel

Resource efficiency-oriented business models: product-service systems require rethinking

Resource efficiency potentials of new forms of “using instead of possessing” in assembly facilities

Resource efficiency potential of production on demand

Tab. 1: Overview of fields of action and potential analyses

Stronger Networking among Potential Partners and Early Industry Involvement

The topics worked on (“Top 20“) ought to be understood as the beginning of a systematic and encompassing analysis of resource efficiency potentials concerning our social and economic activities. Even though representing central and resource intensive sectors, the topics analysed naturally represent only a small selection from the totality of relevant topics and those that were identified and pre-assessed by the experts during the first expert workshop. Furthermore, some questions remain open and new questions were raised with regard to the topics addressed. Moreover, those topics presented in the expert workshop but not chosen for further analysis and those chosen at the workshop (“Top 50“) bear promising potential, which ought to be analysed in the future. There is also a need to study focus areas based on further case studies (e.g. central fields such as construction, living or food and nutrition).

The analyses also demonstrate the need to make greater use of or develop suitable arrangements (such as networks) to involve industrial partners at an early stage. On the one hand, the existing network of the MaRess project needs to be strengthened; on the other hand, further forms and consortia need to be established (e.g. with a stronger focus on sector-specific topics). This aims at ensuring that the project stays in touch with matters of implementation and feasibility regarding the potentials analysed.

Due to the broad range of topics and the possibilities for increasing resource efficiency in diverse sectors, the network of universities integrating the paradigm of resource efficiency in research and training ought to be expanded considerably. It would also be desirable to extend the circle of participating universities.

The Virtual Resource University

So far, in university education, only few departments and specialist areas offer programmes (e.g., lectures, seminars, projects) in the field of resource efficiency. Therefore, there is much room for increasing the number of programmes offered while they also need to be better integrated into existing curricula. To foster the broad integration of resource efficiency into university training and research, activities for the establishment of a “Virtual Resource University” (from innovation to implementation research) need to be started.

The results of the project will be documented in a comprehensive form in a final report and the central results are planned to be published in a book. Besides, the results of WP1 will be made use of in other work packages of the MaRess project and in the Network Resource Efficiency.

Authors: Dr. Kora Kristof                       kora.kristof@wupperinst.org

Holger Rohn                            holger.rohn@trifolium.org

Nico Pastewski                       nico.pastewski@iao.fraunhofer.de

Sponsors: German Federal Environment Ministry

Federal Environment Agency

Type: National foresight exercise to increase resource efficiency and conserve resources.
Organizer: Dr. Kora Kristof, Wuppertal Institute for Climate, Environment and Energy, D-42103 Wuppertal, Döppersberg 19, phone: +49 (0) 202 2492 -183, email:       kora.kristof@wupperinst.org

Holger Rohn, Trifolium – Beratungsgesellschaft mbH, D-61169 Friedberg, Alte Bahnhofstrasse 13, phone: +49 (0) 6031 68 754 63, fax: – 68, email: holger.rohn@trifolium.org

Nico Pastewski, Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO, Nobelstr. 12, D-70569 Stuttgart, phone: +49 (0) 711 970 -2222, fax: -2287, email: nico.pastewski@iao.fraunhofer.de

Duration: 2007-2010 Budget: ca. 540,000€ Time Horizon: N/A Date of Brief: July 2011  

 

Download EFP Brief No. 213_Material Efficiency and Resource Conservation

Sources and References

For information and downloads on the MaRess project and its findings please visit: http://ressourcen.wupperinst.org