Archive for the ‘brief’ Category

EFP Brief No. 253: Egypt’s Desalination Technology Roadmap 2030

Thursday, February 14th, 2013

This project was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Stud-ies in the Egyptian Cabinet’s Information and Decision Support Center, with the aim of identifying the future needs for desalination technology development, charting a series of research and development activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet the national future needs, and providing short and long term action agenda to guide desalination research and investments in Egypt till the year 2030.

Investment to Meet National Needs

Water shortage is a worldwide problem, where 40% of the world population is suffering from water scarcity. In Egypt, the per capita water share was 771 CM/capita/year in 2005, which is below the international standards of “water poverty line” of 1000 CM/capita/year. Due to the long time horizon required to implement the Upper Nile development projects, directing efforts towards non-conventional water sources – such as; water recycling; reuse of drainage water; treated industrial and sewage effluents; rainfall harvesting; and desalination – provides a short term solution to the water shortage problem. Water desalination should top the agenda of developing non-conventional water resources, since desalination technologies have developed substantially over the last fifty years, especially with the development of “Reverse Osmosis” (RO) technology in the sixties leading to significant reductions in the cost of desalination. Therefore, due to the great advances which occurred in the field of desalination globally, and the noticeable increase in awareness of the importance of such a technology among decision-makers in Egypt, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt in the year 2030. The desalination roadmap is a program-planning document that identifies the most appropriate desalination technologies and their related R&D projects that Egypt needs to invest in to meet the national needs.

Developing and R&D Agenda

The desalination roadmap is a program-planning document that identifies different desalination technology alternatives and their related R&D projects, and the milestones for meeting future national needs of water resources. Due to its role in investigating the future of Egypt in different areas, the Center for Future Studies (CFS) at the Cabinet’s Information and Decision Support Center (IDSC) has taken the initiative to develop a desalination technology roadmap for Egypt. The project objectives are:

  1. To identify future needs for desalination technology development.
  2. To chart a series of R&D activities that will result in cost-effective, efficient revolutionary desalination technologies that can meet future national needs.
  3. To establish development activities that will accelerate the rate of improvement of current-generation desalination technologies, and therefore allowing these technologies to better meet the short-term national needs.
  4. To develop short-term and long-term action agendas for the required desalination R&D projects in Egypt till 2030.
  5. To improve communication within the R&D community and between this community and the end users.

Technology Roadmapping Methodology

The desalination technology roadmap project was divided into three main phases: roadmap initiation, technical needs assessment, and technical response development. The first phase was concerned with the preparation of the actual roadmapping process and involved agreement on the roadmap’s scope, leadership, participants and deliverables. This phase involved constituting the Desalination Steering Committee (DSC), validating the need to roadmap and clearly portraying this need in a clear vision statement.

The second phase was Technical Needs Assessment: which involved technical needs definition, by assessing current capabilities and identifying the capability gaps and associated R&D goals. This was carried out by the Steering Committee’s core research group who conducted research in the field of desalination, in general, and in Egypt, in particular to determine recent breakthroughs in desalination technologies and how far Egypt has reached in this field. This was followed by identifying and specifying the areas of technical risks/opportunities, and correspondent technical solutions that are either available, or currently under development through a series of brainstorming sessions to identify potential alternate solutions. This phase resulted in a number of critical objectives associated with each need highlighted in the vision statement, and which certain research projects are meant to fulfill. These targets aim at challenging the R&D community to pursue and achieve major technological breakthroughs to be used in future projects, and should only be developed if key projects are not scheduled to start for another 10 years or more.

The final phase of the project was the Technical Response Development, which involved identifying relevant technological areas and research projects (e.g thermal, membranes, alternative, reuse, and cross-cutting research areas) to meet the metrics of each critical objective, and involved brainstorming to identify all possible technical approaches which represent the mechanisms for achieving the critical objectives. This phase resulted in a Broad Strategic Action Agenda which serves as a guideline for the R&D projects required on the short and mid/long term by providing prioritized suggested R&D projects, their duration and an estimated budget.

Most activities associated with the roadmapping process were conducted through committees or workgroups, and a number of focus group meetings were sequenced and scheduled for all work groups to come together, share results, and reach consensus on the defined targets or critical objectives. In addition, a number of individual follow-up meetings took place.

The Desalination Roadmapping Team was composed of the Desalination Steering Committee (DSC) and the Desalination Working Group (DWG). The main responsibility of the DSC was to oversee the technology roadmapping process, and guide it in the direction of achieving the vision statement or the final goal. The DWG is a committee representing a group of experts in desalination technology, environmental engineering, water resources planning, and energy resources. Their main responsibilities were to brainstorm technology options responsive to the technology strategies provided by the DSC, as well as the costs, benefits and risks of the different options.

Good Water Quality Free of Charge

Upon identifying the steering committee, a meeting was held to highlight the main national needs facing Egypt’s water resources in the future till 2030. This meeting was held among a number of prominent experts in the field of water resources and desalination, and accordingly, the following broad vision for desalination was formulated and agreed-upon to cover the main national needs as below:

“Develop desalination technologies that aim to secure cost-effective, drinkable, fits for its uses and sustainable water for Egypt in 2030”.

National Needs and Critical Objectives to Meet National Needs

Following the extensive literature review carried out by the research team during the second phase of the roadmapping process, the technical needs of Egypt in the field of desalination were identified and were mainly focused on capitalizing on the availability of abundant renewable resources in Egypt, mainly solar and thermal energy. As determined by the agreed-upon vision, Egypt’s main national needs with respect to water can be categorized as:

  • Cost-effective water: In Egypt, as in many countries, there is no direct charge for water services provided for agriculture, while water provided for domestic and industrial uses is subsidized. Farmers receive water free of charges and are only responsible for pumping costs from the manual pump to the field. However, the provision of water free of charges to farmers began to pose an increasing burden on the government especially in the face of increasing costs for O&M and irrigation and drainage system rehabilitation, due to the increasing population and construction of mega projects. As with regards to the municipal and industrial sectors, it is estimated that government subsidies amount to 70% of water service in the industrial sector and 88% in the municipal sector. The rate for domestic water supply in Greater Cairo is about LE 0.13/m3, which is much lower than the cost of providing raw water (around 0.56/m3). Charging users for water and water services in Egypt is a sensitive issue, as it involves political, historical, social, and economic factors.
  • Drinkable water: Access to safe drinking water and sanitation is considered a basic human right, however providing this service and securing the required investments are a real challenge for the government. In Egypt, over 90% of Cairo’s drinking water is drawn from the Nile, which has provided high quality water during the 1970’s and 1980’s. However, the Nile’s water quality showed increasing deterioration in the 1990’s due to increased industrial and agricultural discharges, and also contamination from human sewage. In addition, water quality provision was increasingly threatened by the inefficient infrastructure and deteriorating distribution systems and water treatment plants.
  • Water fits for its uses: Given the worsening water situation in Egypt due to the massive and increasing demand by the agricultural sector, supplementary non-conventional sources including desalination of sea and brackish water, and reuse of waste water, represent very important sources to ensure maximum water allocation for its uses. In general, desalinated seawater costs about more than twice the price of freshwater used in irrigation and hence is considered too expensive for all types of agricultural production. However, desalination costs have decreased to nearly one-tenth of what it was 20 years ago, and are likely to continue falling due to continuous advances in the field. This declination in cost is likely to make the use of desalinated sea or brackish water feasible for wide use in both agricultural and industrial fields.
  • Sustainable water. Achieving the national need of providing sustainable water resources requires that policy makers widen their scope on the main users of water, to include the environment as well as the traditional industry, agriculture and household users. This measure is crucial in the future in order to overcome the unsustainable “hydrological” debt that Egypt faces today, as its future water flows are more or less fixed while consumption is increasing at an enormous rate leading to water depletion.
Quantifying the Objectives

These are the objectives for each national need that the different proposed desalination technologies are expected to fulfill. These objectives gained consensus by the experts who have participated in this study.

Near Term Critical Objectives (2015):

  • Reduce capital cost by 20%
  • Increase energy use by 10%
  • Decrease operating and maintenance cost by 20%
  • In-house manufacture of renewable energy (RE) units
  • Increase public awareness, education/training on the importance of desalination.
  • Water quality meets drinkable water standards identified by Egyptian Environmental Affairs Agency (EEAA)
  • Develop science related concentrate specific regulations
  • Microbial removal
  • Provide water for supplementary irrigation coupled with greenhouse irrigation
  • Water use in industry
  • Reduce cost of desalinated water by 20%
  • In-house manufacture of RE
  • Maintain stability of reclaimed water over time
  • Brine reuse for other purposes

 

Mid/Long Term Critical Objectives (2030):

  • Reduce capital cost by 50%
  • Increase energy efficiency by 50%
  • Reduce operating cost by 50%
  • In-house manufacture of multi stage flashing (MSF)/Multi Effect Distillation (MED) desalinating plants
  • Develop small desalination units for remote areas
  • Address cumulative issues related to concentrate and enhance regulations
  • Wider water for supplementary irrigation coupled with greenhouse irrigation
  • Wider water use in industry
  • Reduce cost of desalinated water between 60-80%
  • Development of new systems projects
  • Use of nuclear energy for large desalination plants using CANada DUterium Oxide Uranium (CANDU) technology.
Desalination Technologies to Address Critical Objectives: Research Areas with the Greatest Potential

The Roadmapping Team identified three main technology areas where R&D is needed in order to create the next-generation desalination technologies. These technologies and their associated research areas are:

  1. Solar/Thermal Technologies:
  • Design and manufacture of solar stills
  • Application of a reflection reduction solution to the glass of solar desalination units
  • continuous improvement in material enhancement for solar desalination unit
  • Multistage evacuated solar desalination system
  • Multiple effect humidification/ dehumidification at ambient temperature (solar)
  • Solar multistage condensation evaporation cycle
  • Enhancement of reverse engineering of national made (5000 m3/day) MSF (or MED) units (existing 5000 m3/day of Sidi Krir & Euon Mosa could be used for verification)
  • Solar PV-RO system
  • Develop solar ponds for energy and concentrate management
  1. Membrane Technologies
  • Enhancement of in- house manufacture of RO technology
  • Enhanced evaporation through Multistage Condensation Evaporation Cycle
  1. Other Technologies
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day)
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients).
  • Ionization of salty water for irrigation
  • Secondary treatment of brine for salt production
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients )
  • The biology of salty water, including understanding of environmental impacts, using bacteria for beneficial treatment, etc.

Expectations of Impacts

Given that the critical objectives that are to be achieved by the roadmap are divided into short-term and mid/long term, it was seen as most suitable to divide the strategic plan for desalination into a strategic plan to achieve short term critical objectives and another strategic plan to achieve mid/long term critical objective

Mid/Long Term High Priority R&D Projects
  • Manufacturing of stand alone small desalination units (1.0 – 20 m3/day). Duration: 10 years, Expected Cost: L.E10 million.
  • Integrated complex for water production (solar stills), electricity (wind, solar, bio mass), food (greenhouses self sufficient of irrigating water, rabbit, sheep and birds breeding), and salts (chemical salts, artemia & fish nutrients). Duration: 5 – 10 years, Expected Cost: L.E 2.5 million.
  • Storage of brackish water aquifers all over the country. Duration: 10 years, Expected Cost: LE 5 million
  • Bio technology using Bacteria, micro, plants…etc, that reduce amount of salt in seawater (e.g. Man-Grove). Duration: 12 years, Expected Cost: 2 million.
  • Combined nuclear power & desalination plants. Duration: 20 years, Expected Cost: 50 million.
Authors: Dr. Abeer Farouk Shakweer

Reham Mohamed Yousef reham.yousef@gmail.com

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion
Organizer: Center for Future Studies
Duration: 2006 – 2007
Budget: n.a.
Time Horizon: 2030
Date of Brief: June 2011

Download EFP Brief No. 253_Desalination Technology Roadmap 2030

Sources and References

Abou Zaid, Mahmoud, “Desalination in Egypt between the Past and Future Prospects”, The News Letter of The Middle East Desalination Research Center, Issue 9, March 2000.
El-Kady, M. and F. El-Shibini, “Desalination in Egypt and the Future Application in Supplementary Irrigation”, National Water Research Center, Ministry of Public Works and Water Resources, July 2000.

Food and Agriculture Organization of the United Nations (FAO), “Raising Water Productivity”, Agriculture 21 Magazine, Agriculture and Consumer Protection Department, March 2003, http://www.fao.org/AG/magazine/0303sp2.htm

National Research Council “Review of the Desalination and Water Purification Technology Roadmap”, The National Academies Press, Washington DC, January 2003.

EFP Brief No. 252: Egypt’s Water Security – Future Vision 2030 Using Delphi Method

Tuesday, February 12th, 2013

This study was an activity within the framework of Egypt’s Vision 2030 project carried out by the Center for Future Studies in the Egyptian Cabinet’s Information and Decision Support Center. Using Delphi Method, the study aims at identifying, analyzing and foreseeing potentials of Egypt’s water security as ground to thinking of pilot solutions aimed at evading problems and crisis as well as developing a set of procedures whereby Egypt’s water security is attained.

Increasing Gap between Water Supply and Demand

The Nile stands as Egypt’s main source of water whereby it secures 80% of Egypt’s water yield per year-according to the 1959 Nile Agreement, Egypt’s fixed quota of Nile water comes to 55.5 billion m3/year. In Egypt, water security tops the national agenda whereby studies reveal that estimations of available water and water needs for different purposes are heading towards an increasing gap between water supply and demand, not only because of the anticipated increase of water demand, but also due to the impact of other factors on the available quantity of Nile water. The study at hand contributes to foreseeing the future of Egyptian water security, by analyzing the impact of varied factors influencing Egypt’s water security in terms of the political, economic, environmental, hydrological, legal and strategic aspects,  developing an integrated vision, and forming a new approach for further research in this area and providing comprehensive knowledge.

Combining Forecasting and Delphi

The study applied the “Delphi Technique” – an important qualitative tool of future studies – which relies on collective intelligence and scientific forecasts, by deriving knowledge from a group of experts, directing them to consensus on aspects of the issue at hand, and providing verifications for the relatively extreme positions. This technique was used to identify the main factors of uncertainty that will affect the future of Egypt’s water security, and to forecast potentials of these uncertainty factors, their different expected impacts, and proposed recommendations. A Delphi web site was developed allowing access to 25 experts in the areas of water, economic and political science.

The study also used forecasting (futures analysis) which does not seek foreseeing or planning the future, but rather conducts a set of conditional forecasts or scenarios assuming either the reality or desired ones. Hence, the research does not conclude to achieving any of the aforementioned scenarios but aims at allowing societal players to learn about the requirements of achieving one of the desired scenarios according to their relevant preference in order to work on giving it precedence over other alternative scenarios.

Main Factors Affecting Water Security

Based on the theoretical review of the issue of Egypt’s water security, the most important factors affecting Egypt’s water security were identified by applying Delphi Technique as follows:

  1. Relations between countries of the Nile basin towards either cooperation or struggle:

The regional hydrological system of the Nile basin lacks a comprehensive legal or institutional framework deemed acceptable by all Nile countries because of their conflicting outlook on the legitimacy of the existing agreements and international conventions – the 1929 and 1959 Agreements in specific. Accordingly, countries of the Nile sources divide the River Nile’s water according to the area of River Nile basin passing through the given country, and the contribution of each country to the river’s water yield. However, Egypt and Sudan refuse reviewing the distribution of water quotas in the Nile basin based on calls for justice and equity.

Additionally, some of the Nile basin source countries are calling for enforcing the principle of international water sale on the Nile basin system including that Egypt and Sudan, pay financial compensation in return for their water quotas if they wish to maintain them, while Egypt and Sudan refuse this principle on the ground that water is a socio-economic commodity that should not be subjected to market mechanisms.

On another level, countries of the Nile basin sources reject the condition of advance notification when developing water projects or taking water measures within their national borders, which is seen as necessary by Egypt and Sudan.

  1. Impact of external powers:

External powers, mainly USA and Israel play a crucial role in affecting international water interactions in the Nile basin, and carry out a motivating role for struggle. In this regard, Israel adopts two main strategies: “Quota based system” considering projects involving water that eventually aims that Israel receives fixed water quota from the Nile and “Seizure Strategy” which implies surrounding the Egyptian policy and using water as a pressure card against Egypt and Sudan. European countries, specially Italy, Holland and some Asian countries particularly Japan are playing a motivating role for water cooperation in the Nile basin putting down inclinations towards water related conflicts by providing financial and technical support for a number of water related projects in the Nile countries.

  1. The impact of the separation of South Sudan:

Opinions vary on the impact of south Sudan separation on Egypt’s water security. Some opinions perceive minimum negative impact resulting from the separation on the Egyptian water yield from the Nile and others are seriously concerned about the potential impacts.

  1. Shifts to irrigated agriculture and minimizing pressure on the blue water:

All countries of the Nile sources wish to follow Egypt’s footsteps in terms of cultivating spacious irrigated agricultural areas. However, this type of agriculture requires costly technical expertise. In this context, funding and technical assistance provided through investors, local, regional or international entities might have a hidden agenda for helping poor citizens of the Nile countries, destabilizing some countries and creating tension in a manner that impacts development plans.

  1. Change in the economic:

As a main feature of the Nile basin countries- except Egypt- extreme poverty reflects on the capabilities in terms of providing water related infrastructure. According to 2007 World Bank data, Burundi had the lowest GDP (US$0.97 billion) among Nile Basin countries, whereas annual GDP per capita growth rate was highest in Ethiopia and Sudan at 8.4% and 7.7% respectively. Egypt comes next with a growth rate of 5.2%. Nevertheless, GDP per capita share decreased in Burundi by 0.3% and in Eritrea by 2.3%.

  1. Water reservoirs or control utilities:

If dams are constructed to serve as reservoirs, it is necessary to ensure that the stored water affects Egypt’s water quota in the long term.

  1. Impact of climate change on water of Nile basin:

The most important climate changes affecting the Nile’s water are increasing temperatures which  will cause rising rates of evaporation, and changes in the rates, locations and seasons of water fall will cause the loss of quantities of rain that were to be used in agriculture and human consumption in the northern coast.

  1. Political stability of the Nile basin countries:

Continuous or aggravated forms and indicators of domestic instability in the Nile basin countries will push them to adopt struggle based foreign policies. It is projected that countries of the Nile basin sources will resort to adopting aggressive foreign policies towards both mouth and stream countries-Egypt and Sudan-every now and then. This is in an effort to divert the domestic public opinion away from internal problems and failures suffered in each country relatively.

Egyptian Water Security Scenarios

Given the aforementioned main factors affecting Egypt’s water security, the future of water in the Nile basin will likely be shaped according to three alternative scenarios as follows.

Business as Usual Scenario

The current situation of struggle relations between Egypt and the Nile Basin Countries, will continue but will not escalate to war because of political expertise,  and countries of the Nile basin maintain a reasonable margin of rationality with their neighbours. Furthermore, the domestic political, economic and social circumstances of the Nile basin countries will not permit potential escalation of conflicts.

According to the outcomes of Delphi survey, a change in the current situation of cooperation or struggle regarding water is unlikely (there were no sharp deviations regarding the potential full cooperation or struggles that may escalate to war over water), where 46%, 38% and 50% is the probability of increasing the normal yield of Nile water before 2030 via cooperation where Egypt develops projects in the Ethiopian Plateau, Equatorial Lakes Plateau and Bahr el Ghazal. But the probability of reaching an agreement on some of the conflict areas by amending the existing legal agreements of the Nile basin countries is 48%.

Also, lack of current sufficient funding will affect the ability of benefiting from green water and relieving the pressure off blue water in Nile Basin countries. And in light of the outcomes of Delphi survey, Egypt’s probability of developing projects -in cooperation with donor international organizations-aimed at assisting other countries in benefiting from green water is 49%, 52% and 53% respectively in the Ethiopian, Equatorial Plateaus and Bahr el Ghazal.

It is unlikely that the basin countries will experience an economic boom on the short term, since economic development requires stable political regimes and local, regional and international capital, capacity building, technical calibres and improvement of institutions and laws.

There is low probability of an impact from the separation of south Sudan on Egypt’s yield of the Nile water, as the new State will be bound by all past conventions related to the River Nile. Needless to mention, South Sudan is advantaged with abundant rain which spares it the need for this water. According to Delphi Survey, the probability of a relevant impact on Egypt’s Nile water supply is 45%.

It is likely that climate changes will continue without an impact on the normal yield of Nile water in Egypt, at least during the coming twenty years. According to a study by the Organization of Economic Cooperation and Development (OECD) in 2004, there is limited confidence regarding changes in amount and direction of rainfall on the future on the Nile basin countries. Based on the survey results, the probability that climate changes will move the rain belt far from the Ethiopian, Equatorial Lakes Plateaus or Baher Al Gazal are 40%, 35% and 44% respectively.

Optimistic Scenario (Regional Cooperation)

This is the scenario of optimization of available opportunities for developing shared water resources and building a regional water system capable of securing the needs of the region’s countries without undermining the fixed historical and legal rights of some of the countries.

This scenario involves the potential of expanding cooperation areas among Nile basin countries within the Nile Basin Initiative, which includes all ten Nile basin countries, provides an institutional framework for collective cooperation, receives governmental and political support, and pays great attention to projects and mechanisms aimed at building mutual trust among basin countries, as well as capacity building and training projects.

There is an increased possibility of establishing water related projects in collaboration with the basin countries via building and connecting dams on a unified electricity network in those countries, aimed at generating power for agriculture and industrial production purposes rather than storing water and assist in regulating water supply to Egypt. Survey results indicate that probability of completing Gongli Canal is 56%, in addition to the possibility of redirecting Congo River to benefit from its water is 60%.

Pessimistic Scenario (Conflict)

This scenario is based on the possibility that variables motivating struggle will lead to raising chances of conflict of national interests in the Nile basin countries to an extend of inter struggle. The struggle inclination might rise given the following variables:1) A strong and sharp inclination of the Nile basin sources countries towards enforcing the principle of “selling Nile water” to the two countries of the mouth and stream will cause an eruption of international water struggle and wars among the countries.2) Escalated role of the external motivating powers for Nile-Nile struggle based on the following considerations:

Israel will play a motivating role for water struggle in the Nile basin in addition to the indirect role of the USA, where it will work on besieging and pulling the parties of Egyptian policy, on the regional level, in a way that serves coining the American power on the political and strategic levels in preparation for an effective Israeli role.

Countries of the upper Nile basin will seek to constitute external coalitions aimed at changing the current situation; these are mainly Ethiopia, Kenya, Tanzania, and Uganda.

Separation of south Sudan will be at the expense of projects dedicated to exploiting the wasted Nile water in the Egyptian and joint upper parts, such as the Gongli Canal project.

The political tensions in the Ethiopian Plateau will negatively affect the Egyptian water yield as well as failure to implement any proposed projects. According to the survey, the probability of the eruption of a civil war (due to ethnicity, religion, political or tribal affiliation) in the Ethiopian Plateau and bearing an impact on water projects and management is 53% and 57% respectively.

Based on the Delphi Survey outcomes, the probability of increased Nile basin countries’ demand for Blue water for agricultural, industrial, drinking, tourism, and fish wealth purposes by 2030 in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region are 60%, 61% and 59% respectively. As for the probability that those countries construct dams or other projects in the Ethiopian, Equatorial Plateaus and Bahr El Gazal Region-to meet the increased demand for water -that will eventual-ly affect Egypt’s Nile water quota by 2030 are 63%, 59% and 54% respectively.

Cooperation for Water Security

  1. Cooperation among the Nile Basin Countries

Regional cooperation should depend on balancing the distribution of benefits and duties in the context of a cooperative Win-Win Approach, which will eventually lead to optimizing the benefits among all Nile countries enabling a relevant improvement and development.

  1. Endorsing the Soft and Diplomatic Instruments

This ensures avoiding the struggle scenario, and can be supported by developing the mutual dependency mechanism between Egypt and Ethiopia via joint projects where Egypt provides the technical expertise in irrigation currently being provided by Israel.

  1. Enhancing Cooperation between Egypt and Sudan

The mutual dependency mechanism between Egypt and Sudan, in light of separation, can be achieved through establishing strong ties with both north and south via joint cooperation in agriculture, power production, health, education and industrial projects in addition to military. This entails developing railways, river naval lines and unified electricity networks, and that Egypt grants southern citizens all advantages equal to Sudanese citizens in terms of education, work, residence, and entry into Egypt, and redrafting the projects to exploit wasted water in the upper Nile in Bahr El Gabal, Bahr El Gazal, and Mashar Swamps situated in south Sudan.

  1. Benefiting from Green Water

This entails that Egypt: cooperates with the international donor organizations for developing projects in the source countries, transfers agriculture technologies to all Nile basin countries by availing technically qualified irrigation and agriculture engineers, and developing rain harvest technologies and introducing selected seeds and chemical fertilizers.

  1. Creating a social, economic, political observatory

This should be in charge of monitoring changes immediately, analysing indicators and presenting relevant plans. In the event of any internal political tensions in the Nile basin countries, Egypt should adopt a neutral position, stimulate mediations in ethnic and border conflicts taking place in the Great Lakes and African Horn regions to evade the potential sensitivities that might emerge due to aligning with any of the conflicting parties.

  1. Egypt’s Role in Developing Economies

It is recommended that Egypt carries out development projects in Nile Basin countries and cooperates with international organizations in areas of improving health care, and eradicating Endemic diseases that affect public health and consequently productivity.

  1. Forecasting the Impact of Climate Changes

Developing a local model for forecasting the impact of climate change on the Nile basin water yield, in cooperation with the British Meteorology Office.

Authors: Dr. Nisreen Lahham   nisreenlahham@idsc.net.eg

Dr. Mohamed Saleh   msaleh@idsc.net.eg

Sahar Sayed Sabry    saharsayed@idsc.net.eg

Sponsors: Egyptian Cabinet’s Information and Decision Support Center (IDSC)
Type: National Technology Foresight Exercise based on desk research and expert opinion.
Organizer: Dr. Nisreen Lahham, Executive Manager, Center for Future Studies, www.future.idsc.net.eg
Duration: 2009 – 2010
Budget: n.a.
Time Horizon: 2030
Date of Brief: August 2011

Download EFP Brief No. 252_Egypt’s Water Security

Sources and References

Ayman Alsayed Abdul Wahhab (editor), “River Nile Basin: Cooperation opportunities and problems” (Cairo, Al Ahram Center for Political and Strategic Studies, 2009).

Mohammad Salman Taye`a, Water Security in the Arab Gulf in a Changing World: between Prerequisites of National Interest and Addressing External Threats, Middle East papers, National Center for Middle East Studies, Vol. 38 October 2007.

Atlas of international agreements on fresh waters, UNEP, FAO, and Oregon University, 2002.

H.J.Brans (ed.), The Scarcity of Water: Emerging Legal and Policy Issues, London, The Hague, Boston, Kluwer International, International Environmental Law and Policy Issues, 1997, 21-39.

Theodore J. Gordon, The Delphi Method, future research methodology – V2.0, AC/UNU Millennium Project.

World Bank, World Development Indicators, Washington, 2007

 

EFP Brief No. 251: VERA – Forward Visions on the European Research Area

Wednesday, February 13th, 2013

The VERA project provides relevant strategic intelligence for the future governance and priority-setting of the research, technology, development and innovation (RTDI) system in the EU and for better adapting science, technology and inno-vation policy to the shifting global environment and upcoming socio-economic challenges. For this purpose VERA carries out an in-depth stocktaking of RTDI related forward looking activities in Europe and internationally and a thorough review of trends and drivers of long-term change of European RTDI governance. On the base of these insights VERA develops scenarios on the evolution of the European Research Area, assesses the critical issues for the ERA’s future capabilities emerging from these scenarios, explores subsequent strategic options and ultimately generates a set of policy recommendations for responsive and future oriented multi-level, multi-domain RTDI policy strategies. As VERA will run until 2014 we will present some intermediary results of the first two work packages in this Brief.

Changes and Tensions within ERA

Recently, ERA has undergone many relevant changes from inside. First of all, research and development became a domain of shared competence between the member states and the EU as a result of the new Lisbon Treaty in 2009. The subsequent strategic processes, such as the Lund Declaration, the Ljubljana Process, the Europe2020 Strategy and the Europe 2020 Flagship Initiative Innovation Union, have provided a solid mandate for a strong and open European Research Area that is highly responsive to societal challenges and provides excellent research and innovation activities in open exchange with the international RTI landscape.

However, in order to realise this ambitious agenda, the share of integrated research expenditure needs to be significantly increased. Furthermore, new coordination mechanisms are required to allow for flexible identification of ERA priorities, mobilisation of the critical mass of funding, and governance of its implementation.

In the last few years, a number of integrative instruments have been developed and implemented, such as:

  • Knowledge and innovation communities (KICs) selected within the European Institute of Innovation and Technology (EIT)
  • ERA Net and ERA-Net Plus allowing for joint funding of EU and member states
  • Joint technology initiatives (JTIs article 187) developed through the European technology platforms (ETPs)
  • Joint programming in research (JPIs)
  • Public private partnerships (PPP)
  • Joint research programmes (article 185)
  • European research alliances
  • European innovation partnerships

Thus a number of opportunities and experiences for more integration and pre-allocating significant chunks of EU funding to joint priorities do exist. At the same time, there are many tensions associated with the implementation of these strategies.

A key challenge and opportunity for ERA development is its relation to and integration with the wider world. The production and composition of knowledge have become globalised. While science always has been international, the scope of actors and the need for coordination and cooperation across the globe has changed dramatically in the face of global challenges. At the same time, there is an increasing specialisation of knowledge production and exploitation. Global division of labour and connecting the global centres of excellence that have emerged is a key requirement of the future. In addition, many of the problems European societies face are either the same as for other societies (obesity, demographic change) or transnational in nature (climate change, pollution, security) while the EU is just one among many international players. The overarching challenge of decoupling economic growth from the depletion of the ecosphere and preserving natural capital demands an unprecedented alignment of efforts on a global scale.

There are a number of changes in the way research and innovation is being embedded in the societal context. Changing values and lifestyles are giving rise to new societal expectations of research and innovation. Changing economic and institutional contexts introduce new rationales into knowledge production. Established boundaries, such as basic and applied research or users and producers of innovation and knowledge, are blurring. New actors such as NGOs, citizens and user groups are increasingly playing relevant roles in the realm of research and innovation.

The need for research and innovation to address the grand challenges in realms such as health, food, security and sustainability is not only increasingly advocated but also poses new kinds of challenges. Transformative socio-technical pathways rather than isolated key technologies need to be explored. Social innovation, service organisation and organisational innovation need to be aligned with breakthrough technological innovation. Experimental approaches are gaining relevance for successful innovation trajectories, in particular when transitions are at stake. These changes make it imperative to situate ERA in the global context.

Identifying the Grand Challenges of the Future

In order to generate custom-made strategic intelligence for the future of ERA, the starting point was, first, to identify Grand Challenges (GC) and, secondly, to do so in relation to research sectors that are relevant to the ERA. The GC were identified based on existing EU documents and discussion papers that had been published in the context of pertinent foresight and horizon scanning projects. These GC were classified into relevant research sectors, for instance health, energy, environment and civil society. This approach allowed a thematic clustering of topics, which then served as a basis for broadening the scanning of FLAs. Ten sectors and more than 760 GC in total from a stock of 71 sources were identified.

The stocktaking was designed so as to collect information that would help reach the objective of the work package, i.e. to answer questions such as,

  • What Grand Challenges in the fields of economy, environment, geopolitics, society and ethics, technology and health are the documents and projects under consideration concerned with?
  • Do these documents and projects represent the discourse on Grand Challenges in the European Union and in other parts of the world?
  • What conclusions can we draw from these documents concerning the future governance needs of the ERA? And what do they tell us about the future requirements of RTI governance?

Sixteen Grand Challenges

The VERA team managed to identify 16 Grand Challenges from the analysis and clustering of 760 individual issues from the inventory and interviews with individual STI experts:

  1. Uncertainty is arising from a multipolar world

Increasing polarisation and regionalisation are driving towards a multipolar world. Possible evolutions and implications of or even solutions for this multi-aspect and multi-level challenge are still hardly understood.

  1. Values and attitudes are changing globally

Attitudes and values are changing globally; societies and particularly policy need to respond to these changes.

  1. The traditional role of the state is challenged

A number of developments require new models of governance that go beyond the traditional model of the state.

  1. The world is becoming more interconnected and thus more vulnerable

The more the world becomes interconnected and interdependent, the more new forms of crime and security threats are interlinked and have far-reaching consequences at all levels of society.

  1. Health concerns of an aging society are rising

The ageing of populations has diverse implications for science, technology, economy and society that are proliferated in the context of new health risks and ineffective health systems.

  1. A risk of financial system failure is emerging

In the financial sector the risk of systemic failures is increasing.

  1. Current non-sustainable economic models come under scrutiny

A growing unease with the current model of economic growth calls for alternative approaches to societal progress at the macro level. At the same time, environmentally sustainable business models are required in all sectors of economic activity.

  1. Migration requires responses

The challenge of migration takes many forms as a consequence of other challenges such as climate change, food and water shortages, natural disasters, pandemics etc., each of which requires a specialised and coordinated response at various levels of governance.

  1. Education is struggling to cope with new demands

The education and training systems in Europe need to be modernised. A more specific demand defines the need for education systems capable of promoting sustainability, innovation and solidarity values, and new professions require highly skilled craftsmanship.

  1. The health situation in deprived regions is deteriorating

Impoverished regions around the world are struggling with acute and virulent health issues.

  1. Climate change is causing new diseases

New health problems are arising globally due to climate change.

  1. Providing basic resources for increasing global demands becomes difficult

Without ecologically, economically and politically sustainable solutions, scarcities of basic resources may lead to extensive and serious social and political problems in some areas of the globe.

  1. Material resources are becoming increasingly scarce

Demand for metals and minerals is growing dramatically, especially due to the fast growth of emerging economies and increasing strategic demand for minerals in industrialised economies.

  1. Our modes of energy supply and use are threatening the survival of humankind

Adopting sustainable forms of energy production and consumption is one of the key means for mitigating climate change.

  1. Transportation systems are coming under strain

Environmental and health impacts from emissions, mitigation of climate change, urbanisation, the need for traffic safety and security, and avoidance of traffic jams are among the drivers pushing towards the reinvention of mobility and full-scale transition of existing transportation systems.

  1. EU competitiveness is endangered

The fragmentation of Europe, poor education and skills as well as rising costs and declining labour force participation caused by demographic change may prevent effective exploitation of Europe’s research and innovation potential.

Facing the Grand Challenges to the Future of Europe Means Facing the Global Ones First

From the analysis of a broad range of sources on Grand Challenges, it becomes clear that we cannot take a European perspective only. Especially not when attempting to identify ways of dealing with the Grand Challenges, or at least some of them. The most pressing challenges are globally interconnected and require global action. Topics like Our modes of energy supply (14), Providing basic resources for increasing global demands (12) and The world becoming more interconnected (4) are the ones most frequently discussed. They also show the need to accept shared responsibility on a global scale, which implies that the EU countries cannot lay back and point to other countries to take action. On the contrary, from a European perspective, European countries are among the major contributors to the drivers of the Grand Challenges and among the major countries affected as well, although the impacts of the Grand Challenges are more widespread globally than the drivers are.

The sixteen clusters identified and discussed above also seem to be the ones that call for policy action most immediately and represent the cases where such action could make a substantial difference if planned and executed in a systemic way.

To face the Grand Challenges to the future of Europe, most of all we need to cope with the global ones. If we make a major contribution to the global ones, we will be better equipped to cope with the challenges that lie ahead for Europe.

What we as Europeans have to face is that our lifestyle and the underlying economic model must be considered the root of fundamental problems with devastating global consequences. Many studies and independent resources have pointed this out before. It is of course not only the European lifestyle but also that of all developed economies. At the same time, the global interconnectedness that seems to make this lifestyle transferable to emerging, lagging and, in the long term, even to undeveloped economies also makes societies vulnerable to shocks in many respects.

Facing the Grand Challenges means to introduce fundamental changes in many areas of our lives and activities, thereby affecting global liaisons as well. Even if radical changes are unrealistic, the changes required in tackling the Grand Challenges will be felt by every European citizen. Policy-makers are in a crucial role as these changes will not occur without fundamental and coordinated policy measures in almost every policy area.

Furthermore, it becomes clear that the scope of these Grand Challenges is in essence societal. We need to take this into account when we talk about policy action, for example in the area of research, technology and innovation policy – in the respective work packages of the VERA project and beyond. We especially need to consider what the impact of that societal scope is with regard to the systemic character of handling the Grand Challenges.

Text Analysis and Discussion with “ERA Thinkers”

The second set of tasks performed was to synthesise the existing insights on trends, drivers and key dimensions of change in European RTDI governance. A computer-assisted analysis helped to characterise the body of discourse on ERA in a systematic and quantitative manner. The analysis of text data on ERA was expected to allow interpretations and descriptions of the attitudes, structures, values and norms that currently dominate STI governance. In view of the large quantities of data in textual form, text analysis provided an important means of discovering obscured meanings and unveiling hidden relationships. The computer-assisted analysis took as a point of reference a pre-understanding of ERA constituencies gained through literature review. Following the digitisation of the entire corpus, linguistic analysis software was used for cleaning and formatting, unitising and indexing. The development of categories and dictionaries, as well meaningful associations, relied on qualitative analysis techniques.

Quantitative text-analysis software allowed to produce an aggregation of unit-level coding. Statistical and network analysis software was used to highlight frequencies, trends, comparisons, networks and maps of relevant factors influencing STI governance.

Subsequent interviews with ERA “thinkers” served to obtain additional types of information (i.e. narratives, accounts, fronts, stories and myths).

Relevant factors identified by means of discourse and interview analysis provided the basis for a so-called key-factor workshop with key stakeholders. The insights on potential key factors were synthesised into a background document.

Based on these insights, VERA developed scenarios on the evolution of the European Research Area. VERA’s uniqueness is grounded in the systematic knowledge base it creates, for example, by stocktaking exercises such as the one on Grand Challenges described above. They are publicly accessible and intended to be used widely. At the same time, the results of these exercises feed the scenario process, the subsequent assessment of the scenarios, and the exploration of strategic options. Another distinct feature of VERA is that it pays particular attention to the assessment and policy implications of the scenarios, which will help to make scenario results useful for policy-making and thinking about the future of ERA.

Authors: Susanne Giesecke         Susanne.Giesecke@ait.ac.at

Philine Warnke             Philine.Warnke@ait.ac.at

Effie Amanatidou           effie.amanatidou@mbs.ac.uk

Sponsors: European Commission, DG Research, Social Sciences and Humanities Programme
Type: Multiple issue brief
Organizer: Fraunhofer Gesellschaft – ISI, Karlsruhe Germany, Stephanie Daimer, Stephanie.Daimer@isi.fraunhofer.de
Duration: 2012-2014
Budget: € 1,940,000
Time Horizon: 2030
Date of Brief: Decemeber 2012

Download EFP Brief No 251_VERA

Sources and References

References

The Lund Declaration (incl. its addendum), July 2009; available for download at

http://www.vr.se/download/18.7dac901212646d84fd38000336/ Lund_Declaration.pdf

Links to further results of the VERA project at http://www.eravisions.eu

The inventory contains 726 individual Grand Challenges named by the 67 screened FLAs. It has been submitted in an independent report and can be downloaded at http://vera.dev.zsi.at/stocktaking/list

EFP Brief No. 250: Mediating Different Stakeholder Levels in an “International Cooperation Foresight” Process

Friday, February 1st, 2013

The purpose of the New Indigo foresight process was firstly to identify the most important and most relevant drivers of current S&T cooperation between India and Europe. Its second aim was to engage relevant stakeholder groups in a structured discussion on what this cooperation should look like in 2020. Thirdly, long-term and short-term policy-recommendations for shaping this future have been developed.

Fostering Multilateral Research Cooperation between India and Europe

As one of the BRICS countries, India is among the biggest and most dynamic emerging economies worldwide, which increasingly excel in the area of science and technology (S&T). In her address to Parliament on 4 June 2009, India’s President declared the period from 2010 to 2020 as the “Decade of Innovation”. The main aim of the declaration is to develop an innovation eco-system to stimulate innovation and to produce solutions for societal needs, such as healthcare, energy, urban infrastructure, water and transportation. Although the gamut of innovation is vast and includes efforts in many sectors, the underlying emphasis is to boost advances in S&T. Focusing on the same time horizon, the European Union introduced the “Innovation Union”, a flagship programme of the Europe 2020 Strategy to be implemented from 2014 to 2020 to secure Europe’s competitiveness and face major societal challenges at a global level.

The European Commission and the European countries perceive India as an important future partner when it comes to S&T, as is evidenced by the fact that India was chosen to be the target country of the first pilot initiative of the Strategic Forum for International Science and Technology Cooperation (SFIC), an advisory body to the Council of the EU and the European Commission.

One of the EC funded instruments targeting S&T cooperation between India and Europe is the ERA-NET New INDIGO. The project fosters multilateral cooperation between the two regions by supporting the bi-regional policy dialogue, networking different stakeholders in the field of S&T cooperation, analysing current cooperation, identifying common priorities and implementing multilateral (networking and research) projects.

Following a participatory approach leading to policy-recommendations, the project conducted a one-year foresight study on the future of this cooperation between India and Europe. The consortium agreed to envisage a 2020 perspective, in line with the Europe 2020 strategy and the Decade of Innovation announced by the President of India in 2009.

The similarity of the political initiatives in both regions was the background against which a success scenario-based foresight study was conducted: a desirable scenario of what S&T cooperation should look like in 2020 was developed and respective instruments were identified that might be of help in turning the normative success scenario into reality.

From Bibliometric Research  to Delphi Analysis

The main methodologies used where Delphi analysis, scenario building, expert workshops and a bibliometric analysis. The methodological setup of the New Indigo foresight process is based on the idea that three main stakeholder groups are the most relevant for future EU-India S&T cooperation: policymakers, programme owners and scientists. The policymakers design the framework conditions within which S&T cooperation takes place and decide upon support structures. The programme owners/managers adopt an intermediary position between policymakers and scientists. They know both worlds, co-develop and implement dedicated programmes and, thus, are engaged in the actual implementation of S&T internationalisation policies. The scientists, finally, are the ones actually performing research cooperation. They are the ultimate target group and main beneficiary of all internationalisation policies.

The New Indigo foresight exercise started at the end of 2010 with preliminary desk analyses on drivers of S&T cooperation and EU-India co-publication trends. On this basis, evidence on the current status and thematic focus of S&T cooperation between India and Europe could be provided as an input to the foresight and wider policy processes. Furthermore, in a series of online consultations as well as expert workshops, factors (‘drivers’) have been identified that are likely to influence what future collaboration might look like in the year 2020. Figure 1 (p. 3) describes our implementation model that can roughly be divided into two phases: one before and one after the first draft of a success scenario. The scenario development phase spans from the preparatory analyses via driver identification by literature analysis, email consultations, online Delphi for driver identification and validation, and expert workshops leading to a draft success scenario. The second scenario validation phase involves consultations on the validity and viability of the success scenario for different stakeholder groups, backcasting activities trying to indicate paths towards the success scenario, as well as the development of instrument and policy recommendations.

Assessment of Stakeholder Groups

In order to gather data and opinions from the three core stakeholder groups as mentioned above as well as include and engage them in the process of thinking about future S&T cooperation between the two regions, we opted for a twofold data collection approach: In the case of policymakers and programme owners, we arranged for physical workshops in the framework of the New Indigo project and beyond. By contrast, we approached the scientists by means of an open email consultation followed by a Delphi survey.

The main reason behind these different ways of approaching the stakeholder groups is the fact that policymakers and programme owners concretely concerned with (and thus knowledgeable about) this form of cooperation are few in number. For these few, however, our preparatory analyses and project experience suggested that they have a good overview of the current state of programmes and future plans. Thus, it makes sense to try to investigate their expertise in more depth and engage them personally, not least because they have a major stake in designing the political framework conditions for the future they are reflecting upon in the foresight analysis.

As regards the programme owners, again, their number is limited, and several of them who are engaged in EU-India cooperation in their national contexts also act as policymakers (especially in the smaller EU member states and in India). It was this group of stakeholders that was most easily accessible via the New Indigo project as they formed part of the consortium as partners or members of the steering committee.

The scientists, however, are a much larger stakeholder group. We avoided to randomly approach large groups of Indian or European scientists and did not invite small groups to give us their individual and, given the large size of the population, unrepresentative views either. Instead, we considered it most reasonable to approach those scientists who already have cooperated. We decided to revert to co-publications as a proxy for cooperation experience, i.e. we looked for scientists from each of the regions who have already published with scientists from the respective other region and engaged them via an online consultation and Delphi survey.

The whole exercise dealt with the constraints proper to international S&T cooperation foresight (cf. Degelsegger, Gruber and Wagner 2011 in EFP Brief 201): increased complexity due to the bi-regional perspective combined with very limited time resources of and difficult access to policymakers. Moreover, members of this stakeholder group are, as said above, in a position not only to assess but to significantly shape the future we aim to look at, which again adds complexity to the process as few relevant variables can be considered totally external. Regarding the scientific community, it is not easy (due to time constraints on their side and negative experiences with policy consultation processes or simply disinterest) to attract those scientists to the foresight exercise who are excellent in their field, willing to cooperate and knowledgeable about science cooperation (and willing to adopt a meta-perspective on what they are doing).

Mediating Different Stakeholder Levels

As depicted in Figure 1 (p. 3), the different stakeholder groups were firstly assessed in parallel and the assessment results of one group then fed into the subsequent discussions in the other group(s): For example, drivers identified by scientists were categorised and prioritised by programme owners and policymakers. In a second Delphi round, the results of these discussions were again presented to the scientists for validation. This implementation method proved very fruitful regarding the participatory aspect of the foresight exercise: while, for example, some of the drivers identified by scientists seemed rather obvious to programme owners or policymakers, usually experts in the field of STI cooperation policy, discussions showed a growing understanding of the scientists’ problems and triggered some revised viewpoints. At the same time, the scientists, confronted with the success scenarios (based on programme-owner assessments of urgent and feasible drivers), came to harmonise and translate their expertise and experiences in a way that the latter could inform recommendations on policy instruments. With regard to the mediation of different stakeholder levels, one of the lessons learnt is that taking the time for a kind of ‘preparatory’ discussions is a necessity. Such discussions are yet not focused on a concrete set of drivers or scenarios but target the topic of cooperation rather openly. While such time may be perceived as wasted on side topics or general statements, it is actually necessary for the group members to align their thinking and experiences with each other and in view of the expected output of the meeting. Even later in the foresight process, participants (not all of whom had participated in the process from the start) had to be given time to start discussions “from zero”. The task of the workshop leader is to pull together and harness the discussions reasonably without frustrating individual input while building understanding for different levels within S&T cooperation.

250 New Indigo Foresight

Figure 1: Relation of different stakeholder levels within the foresight process

 

Another lesson learnt – which is actually well-known but became quite apparent in this particular international cooperation foresight – is the contradiction of the participatory (integrating all inputs to the extent possible) and the strategy building aspect of success scenario-based foresight: Involving a broad range of stakeholders makes it difficult to avoid a fairly general wish list of success indicators; at the same time, reasonable recommendations beyond commonplace solutions had to be developed. Again, it is upon the process designers and workshop leaders to guide discussions towards an agreed but still fairly concrete selection of instruments.

Outcomes and Impact

New Indigo has had the opportunity to present the results of its foresight study, particularly the short-term programme recommendations, not only in form of a deliverable to the European Commission, but in front of a high-level political stakeholders audience during the regular session of the India Pilot Initiative of the Strategic Forum for International S&T Cooperation (SFIC-IPI) in Vienna on 30 November 2011. The presentation was followed by comments and a discussion with the SFIC-IPI members and contributed to contextualising and complementing the short-term programme recommendations. Additional perspectives were considered in the discussions, for instance regarding the challenges the implementation of the programme recommendations faces in different national contexts, as well as regarding new forms of support to bi-regional collaboration (Networks/Virtual Centres of Excellence, part-time academic personnel exchange etc.). The most prominent outcome of the process is the integration of results into the draft EU-India Joint Strategic Agenda (currently in preparation, see: http://ec.europa.eu/research/iscp/index.cfm).

In addition, the results and outcomes, particularly the short-term recommendations, have been presented at the second EU-India S&T Cooperation Days in Vienna on 1 December 2011, a multi-stakeholder conference that gathered over 150 participants from India and Europe. The results are available to the public on the New Indigo website (www.newindigo.eu)

Funds for Mobility and Platforms for Joint Research

Finally, long- and short-term recommendations towards a 2020 horizon were deducted from the success scenario developed as part of the exercise. In its complete textual form, this success scenario reads as follows:

“By 2020, success in EU-India S&T Cooperation has been achieved by support to activities in each of the three areas of facilitating, funding and training.

With regard to the facilitation of cooperation, researchers have funds and fora available to meet their Indian/European counterparts. A significant number of established multidisciplinary networks of groups and senior scientists form the core of ongoing cooperation. Research funding schemes offer dedicated project top-up funds for mobility. Barriers for short and long-term mobility such as burdensome visa procedures have been removed and, at the same time, brain circulation channels have been opened that also facilitate career development.

Common standards are in place together with a standardisation in the area of IPR, allowing for fair treatment of each partner in bi-regional consortia and avoiding additional administrative efforts for the coordinators of joint projects. Formalised institutional cooperation has increased, for instance in the form of agreements between standardisation agencies (standardisation, joint testing, measurement, data, samples, etc.). Evaluation of collaborative projects and ex-post evaluation of project outcomes is uniform and transparent.

As regards funding, the availability of dedicated public as well as philanthropic financial resources is significantly higher in 2020 than it was in 2010, coupled with an increased and explicit donor commitment. Regular bi-regional calls for proposals with real joint funding (as well as virtual common pot funding programmes complementing bilateral programmes), complemented by co-funding from the European Commission, are in place. Scientists benefit from exchange schemes in the frame of specific research infrastructure in both regions as well as from access to joint infrastructure. In order to allow scientists to quickly find information and access to EU-India S&T cooperation funding, a single entry point information hub (e.g. in form of a website) for all Indian-European research funding offers is available. The results of successful joint multi- and bilateral S&T cooperation are presented to an interested business community in dedicated showcasing conferences, facilitating academia-business-society linkages. Society is involved in designing cooperation policy, priorities and the goals of collaborative research, while science itself applies a transparent and rigorous peer review mechanism.

R&D activities of small and medium enterprises (SMEs) are scanned both in India and Europe and showcased in both regions. Successful or potentially research-performing SMEs are routinely approached to be updated on possible public research partners.

Finally, dedicated funds are available (as part of wider S&T cooperation funding) for hiring outside PhDs who can support the creation of and stabilise long-term exchange between senior scientists. Two-way short-term mobility of postdocs, postdoc exchange schemes supporting young scientists to come back to their home institutions (and countries), and similar programmes are also facilitating brain circulation.

When it comes to training, a central virtual platform exists for preparing, accompanying and motivating multilateral joint research as well as for the development of joint degrees and the exchange of PhDs in sandwich programmes. Activities and results are presented in actual workshops once a year. These support structures trigger significant brain gain in combination with mobility schemes mentioned above, for instance when an Indian fellow spends two years of his/her PhD in Europe and the rest of the time in India or vice versa.

There are mechanisms in place for the development and quality control of joint PhD programmes. Joint programmes take advantage of online and virtual learning systems” (Blasy, C. et al., 2012: 31-32).

 

Authors: Cosima Blasy       blasy@zsi.at

Alexander Degelsegger degelsegger@zsi.at

Sponsors: New Indigo, co-financed by the European Commission (FP7 )
Type: International (S&T) Cooperation Foresight
Organizer: Centre for Social Innovation (ZSI), Alexander Degelsegger, degelsegger@zsi.at
Duration: 2010 – 2011
Budget: € 80,000
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No 250_New Indigo Foresight 2012

Sources and References

New Indigo Project website: www.newindigo.eu/foresight

Blasy, Cosima; Degelsegger, Alexander; Gruber, Florian; Lampert, Dietmar; Wagner, Isabella (2012): New Indigo International S&T Cooperation Foresight: A study of S&T cooperation future(s) between Europe and India. Project Deliverable 4.5 to the European Commission, online at http://www.newindigo.eu/foresight; last accessed on 13 October 2012.

Degelsegger, Alexander; Gruber; Florian (2010): S&T Cooperation Foresight Europe – Southeast Asia, in: Форсайт (Foresight), 4(3), 56-68.

ipts/Joint Research Centre of the European Commission (2007): Online Foresight Guide. Scenario Building, online at http://forlearn.jrc.ec.europa.eu/guide/3_scoping/meth_scenario.htm; last accessed on 13 October 2012.

UNIDO (2005): Technology Foresight Manual. Volume 1 – Organization and Methods, Vienna: UNIDO.

Technopolis Group et al. (2008): Drivers of International Collaboration in Research. Background Report 4, online at http://ec.europa.eu/research/iscp/pdf/drivers_sti_annex_4.pdf, last accessed on 24 July 2011.

Georghiou, Luke; Cassingena Harper, Jennifer; Keenan, Michael; Miles, Ian; Popper, Rafael (2008): The Handbook of Technology Foresight. Concept and Practice. Great Britain: Edward Elgar Publishing Ltd.

EFP Brief No. 249: Measuring Foresight Impact

Wednesday, January 30th, 2013

This brief describes a new instrument for measuring the impact of foresight. The foresight impact measurement instru-ment consists of 54 measures covering a wide range of foresight activities and potential policy and other impacts. This instrument, developed primarily by Ron Johnston and the author, is the result of several sessions with leaders of many of the most active national foresight programmes and includes a variety of types of measurement categories – notably those that align with the policy cycle in terms of positioning foresight for future impacts on policies as they emerge or are developed. It also has been pilot-tested on two Canadian foresight programs – in both cases achieving strong participation rates, high frequency of written comments and positive assessments of most of the measures and very strong endorsements of several key measures. One of the cases, a national foresight project on animal health and food security is described in this brief. Essentially the instrument provides a baseline for interim evaluation – while the experience is still vibrant – and in so doing it can (1) provide a unique mix of qualitative and quantitative feedback for stakeholders, participants and sponsors; (2) be immediately applied if required to making the case for continuity, future foresight funding or new projects; (3) form a credible baseline against which more formal evaluation can be structured later; and (4) help create a key international benchmark data base entry and case example of public sector foresight impact measurements – and thus position the EFP well for the future.

The Impact-Value Challenge

A key recurring challenge for foresight initiatives – projects, programmes and pilots – has been how to actually demonstrate the value of foresight investments for government sponsors and stakeholders – who are mindful of accountability, are asked to justify the value of foresight investments for government mandates and are requested to provide cost-efficiency and cost-effectiveness analysis so that foresight can be compared with other prospective applications of limited government funds.

The methodology elaborated below is a response to this challenge, prepared by Professor Jack E. Smith with input from senior international foresight leaders from the US, Europe (UK, FR, NL, FN) Australia and Asia ( TH, CH, KR, SP). The methodology draws upon discussion papers presented by the author and Professors Jon Calof and Ron Johnston at five international meetings. The challenge was to assess how to effectively measure impacts of foresight for government sponsors, operating in the short to medium term of 1-3 years when ideally these foresight impacts occur over a (mid to long term) five- to fifteen-year time horizon.

Case Study on Animal Health and Food Security in Canada

In September 2011, the Fore-Can Project on Animal Health and Food Security completed a three year foresight-based assessment of major challenges and opportunities associated with the future management of animal health and food security systems in Canada. The project was well received, involved a wide range of stakeholders and effectively engaged key policy advisors and industry leaders. As with many foresight projects, questions of immediate and enduring impact were raised as the end of the project drew closer. Fortunately this timing has coincided with the development of a new series of long and short format impact measurement instruments as part of an international forum of foresight best practices (more below on this).

Accordingly, the Fore-Can management team decided to be the first project to apply the new instruments. The logic for starting to measure impact now is as follows:

  • Impact is a relatively imprecise and general term, which inspires almost as many distinct answers as there are participants – so having a new and fairly comprehensive instrument that can add precision and shape stakeholder thinking while they are still involved is both innovative and appropriate in addressing the diversity of interests.
  • Impact happens at all stages of a project, i.e., during, immediately after and beyond completion, especially if there is a follow-up of projects – often until much later: so a time-flexible and adjustable instrument- linked to current and recent activities and also designed to accommodate later impacts is needed.
  • The approach adopted uses a single instrument – as a long form where commentary plus scoring is solicited and as a short form where numbers of respondents will be larger; the narrative and the quantitative aspects are complementary.
  • It has been designed to apply upon completion when memories are fresh and the knowledge still current; it can also be applied at any point in the future or re-applied as a comparative measure of time dependent impacts.
  • In this way it can be applied today as a current measure of impact and simultaneously as a measure of positioning for future prospective impacts – as assessed by those most involved.
  • This is why it is described as a preliminary baseline impact measurement tool that captures expectations as well as examples.
  • Impact analysis is not the same as an evaluation but may provide needed input especially if baseline data has been collected during or just after completion since most evaluations occur much later.

The Impact Measurement Instruments

The deployment was quite straight forward as follows:

TFCI described the development process and demonstrated the two forms of the impact measurement instrument to the CFIA-led Fore-Can team. The project leader first sent the long form to 54 potential participants – of whom four declined to participate and four responded with many comments plus scoring. The short form was then sent to all, and ten more responses were received – mostly just with scoring of the 50+ variables; based upon the short notice and lack of solicitation before emails were sent, it is positive that 14 responses in total were received out of 50 potential ones. With more advance preparation, this rate of 28% could easily be doubled. TFCI then managed a dual analysis – combining the quantitative and the qualitative responses.

The Measures

The actual measurement, distributed amongst several different lenses (or measure groupings), consists of a total of 54 measures. The first lens or level of impact interest is in terms of general role effectiveness: wherein foresight is seen as generally playing or performing as many as five roles to differing degrees;

249_bild1

The second set of impact measures, lens or grouping, consists of several general benefits, as perceived main-ly by those directly involved. As the impact data base and diversity of cases grows, differing patterns of pro-tagonist and stakeholder appreciation may emerge.

249_bild2

A third set of measures is obtained by using a success factor lens, which is especially relevant for foresight process designers and planners:
249_bild3

A fourth set of lenses consists of seeing foresight main-ly as a macro or meta process, focused on foresight as essentially a learning process and that each foresight project educates someone, and usually all participants. Here the evaluation team collected testimonials, anec-dotes, personal stories etc. In the category “training & skills development” the evaluators acknowledged that foresight is often motivated by sponsors wanting to strengthen readiness, resilience and preparedness skills.
249_bild6

These categories also give credit to the notion that fore-sight is a key tool for risk assessment and the man-agement of uncertainty.

249_bild7

And finally, foresight is closely aligned with design and planning. Accordingly, the participants of the evaluation had the opportunity to give account of the changes induced by the foresight exercise such if their organisa-tion achieved new strengths, there was any evidence of foresight in adopted priorities or of new directions with foresight-derived origins.

Alignment with Policy Cycle

Further, in the impact design, three groups of measures were developed – related to successive stages of the policy cycle: pre-policy; policy implementation and post policy. Here the participants had to give a score (# score represents average out of 5 including all scores other than no response).

249_bild4

249_bild5

 

The Response

Overall, these preliminary impact results indicate that the project had both a significant impact on participants from a present time vantage point and a well-positioned potential for future impact as expressed by the clear and consistent trend in the results toward impact endorsement in most of the variables examined. The conclusion to be drawn is not only that the project was quite successful in operational terms, but also that its full impact may only be known some years hence, given the strong prospects for future impact that were cited by most respondents.

The lists of the top and bottom five impact elements provide a snapshot both of domains where there is strength or weakness but also reflect a high degree of alignment amongst the respondents. Also of note is that 2/5 of the highest and lowest impacts are from the critical success factors elements (questions # 6-13), and this suggests that the CSF list is a key differentiator of impact – as was intended by Calof and Smith when they undertook their study in 2007.

249_bild8

Room for Improvements

The findings and the comments together present a consistent picture of a project that was both successful in achieving its intended near-term objectives and is well positioned for future impact and development opportunities. The ratings questions worked well to elicit stakeholder differentiation, which is normally regarded as indicative of a good engagement process, and many of the excellent comments reinforce this.

Because of the clear and generally enthusiastic responses, prospects for continued support from the participants for follow-up activities appear positive.

The combination of a long form and short form for impact assessment was viable, but both formats could be improved. The long format should be tailored to interviews, with some additional guidance provided. While it worked very well to elicit substantive commentary, it clearly was too daunting in terms of the time commitment required for most, particularly in that the impact analysis was an unanticipated additional time commitment for all stakeholders. Given the generally responsive attitudes, it is reasonable to assume that with more lead time, improved instruments, structured impact discussions built into the last meeting and a clear link to next stage development ideas, a response rate of over 60% can be anticipated – double what was received with almost no advance notice and no context preparation. The short format worked very well but likely missed a relatively easy opportunity to obtain short commentary on each of the eight sections of enquiry – thus enabling participants to elaborate the basis for their scores. The next version of the impact instruments will embody these improvements.

Overall, the post project preliminary impact baseline measurement has been very productive: baseline data and a set of premises for future development and evaluation/assessment have been established, and much of the impact experience has been captured in comments and scores that validate the benefits of the project – notably while still vivid and current.

Key Issues Raised Relevant to Policymaking

The main implication is that policy authorities can now have access to a reliable interim foresight impact measurement instrument aligned with stages of the policy cycle – and as experience accumulates with its application, governments can begin to benchmark their foresight project impacts against other projects, nations, fields etc.

Finally, the measures used for examining foresight impacts could be equally applied to most policy staging – so that at least the perception of potential impacts of policies could be measured during the development process rather than waiting for full implementation – when it is likely too late to adjust them.

Authors: Jack Smith, TFCI Canada Inc. and Telfer School of Management, University of Ottawa, Canada. (JESMITH@TELFER.UOTTAWA.CA)
Sponsors: Canadian Food Inspection Agency
Type: FORE-Can: national foresight project on animal health and food security – measurement phase
Organizer: Dr. Shane Renwick (CFIA SHANE.RENWICK@INSPECTION.GC.)
Duration: 2011
Budget: € 10,000
Time Horizon: 2011
Date of Brief: July 2012

Download EFP Brief 249_Measuring Impact of Foresights

Sources and References

Jonathan Calof, Jack E. Smith, (2012) “Foresight impacts from around the world: a special issue”, foresight, Vol. 14 Iss: 1, pp.5 – 14

EFP Brief No. 248: Drivers, Trends and Grand Challenges in Security

Tuesday, January 29th, 2013

This brief gives an overview of the recent trends, drivers and ‘grand challenges’ in the area of security as they were iden-tified in the mapping and analysis of the 2nd EFP Mapping Report on Security Futures (Amanatidou et al., 2012). These findings were compiled from 16 different forward-looking activities (FLA), representing four types of FLA, namely: fore-sight, impact assessment, horizon scanning and forecasting. The selected FLA offer an interesting and complementary mix of national views and European perspectives.

Key global and European Security Issues

The concept of security has changed fundamentally over the last 25 years. The end of the cold war accompanied by a shift in global power distribution, failing states due to corruption, crime and religious fanaticism, risk of climate change and the interconnectedness of global hotspots giving rise to cyber-crime make the range of security challenges we are facing today and in the near future.

However, there is no clear separation between drivers, trends and ‘grand challenges’. The analysis of the original sources is not of a generic type but focuses on the security perspective. Some issues are mentioned in more than one group (as both trend and challenge, for instance) while some clustering would also make sense. This is attempted in this brief.

Globalisation is a major driver of evolutions with significant implications for security. Globalisation is likely to raise the level of interdependence between states and individuals within the globalised economy. Resources, trade, capital and intellectual property rely on complex networks of physical and virtual infrastructure that are likely to be vulnerable to physical disruption or cyber-attacks by multiple actors. Consequently, increasing dependency on this infrastructure, and the global supply chains that underpin globalisation, will leave the global economy vulnerable to disruption (DCDC 2010).

One of the main trends mentioned in the security FLAs is the emergence of new centres of power and the consequent redistribution of global power (EU-GRASP, NIC 2008). Associated to this is the shift of power to Asia as a major trend. In particular, the world of 2030 will be diffusely multipolar and polycentric. Polycentrism will be accompanied by an economic power shift toward Asia where over half of the world’s population will be concentrated by 2030. China is projected to be the largest economic power, and India will continue to rise. Both countries will face major structural challenges, however. Brazil may become a successful example of sustainable development during the next two decades. Russia and Japan will lose the great power status they enjoyed in the twentieth century (ESPAS 2012).

A constellation of rising middle powers, including Indonesia, Turkey and South Africa, will become ever more prominent (NIC 2008). The international system that is likely to emerge as a result of all these shifts will probably mix balance-of-power politics and multilateralism, with states making issue-by-issue shifts and alliances. This will generate a higher level of unpredictability in international relations and make it harder to attain a broad consensus even on matters requiring urgent global action (ESPAS 2012). This shift of global power is likely to result in a period of instability in international relations, accompanied by the possibility of intense competition between major powers as there will be several states and institutions competing for regional and global influence, cooperating and competing within the international community (DCDC 2010).

The grand challenges addressed in the security FLAs are climate change, scarcities, global inequalities, changing demographics and migration.

Climate change has a central position in the analysis of trends and challenges. Temperature increases are likely to lead to significant environmental change that may, for example, include desertification in the Saharan margins and changes to rainfall distribution patterns within the monsoon belt of the Arabian Sea and South Asia. The frequency and intensity of extreme weather events will change, possibly with severe impact on low-lying coastal regions. Rapid glacial melt, particularly in the Himalayas, may exacerbate water management problems in China, India, Pakistan and Bangladesh. Disease carriers, such as malarial mosquitoes, are likely to spread into previously temperate zones (DCDC 2010).

Special reference is being made to the consequences of climate change affecting living standards and public safety by exacerbating water and food scarcity with environmental degradation expected to continue to provoke humanitarian disasters, including desertification and floods of increasing magnitude. The severest impact will be felt in China, South Asia and the Sahel where millions of people will be displaced; but no region of the world will be spared (ESPAS 2012).

Scarcity in energy, food and fresh water resources is also separately addressed in relation to the social unrest and conflicts they may cause. The frequency, scale and duration of humanitarian crises are likely to increase. Many states, including China and India, are likely to become more dependent on food imports to feed their large and increasingly affluent populations. A shift in agricultural patterns and the distribution of grain growing areas, coupled with the rise in animal and plant diseases, is likely to disrupt food production, resulting in increased migration. However, improvements and efficiencies in agricultural production are likely to meet much of the increased demand, given likely scientific advances that develop high-yield, disease resistant crop strains, combined with better land usage and improved irrigation. Humanitarian crises due to water scarcity and related food and health emergencies may become recurrent, particularly in some parts of Africa. Competition for resources is likely to exacerbate tensions and trigger conflicts. Energy crises will heighten the sense that the world is entering an ‘age of scarcity’, putting the prevailing model of development into question (ESPAS 2012).

Inequalities of opportunities is another grand challenge due to globalisation and increased access to more readily and cheaply available telecommunications. This type of inequality is likely to be a significant source of grievance, possibly resulting in an increased incidence of conflict. However, states that experience lower birth rates and increased longevity are likely to benefit from a growing workforce and a falling dependency ratio. The result is a ‘demographic dividend’, which can produce a virtuous cycle of growth (DCDC 2010).

Demographic trends are also mentioned among the grand challenges as possible causes of tensions. Demographic trends may fuel instability especially in the Middle East, Central Asia and sub-Saharan Africa. The developing world will account for most of the growth, remaining relatively youthful, in contrast to the developed world and China, which will experience little population growth and undergo significant increases in median age. In the West, however, ageing is likely to lead to policies to employ the ‘younger old’. This cultural shift may yield a second demographic dividend leading to a lower demand for migrant workers and decreasing the social welfare burden. (DCDC 2010) The populations of several youth-bulge states are projected to remain on rapid growth trajectories. Unless employment conditions change dramatically in parlous youth-bulge states, such as Afghanistan, Nigeria, Pakistan and Yemen, these countries will remain ripe for continued instability and state failure (NIC 2008).

Nevertheless, populations in many affluent societies are likely to decline, encouraging economic migration from less wealthy regions. Environmental pressures, economic incentives and political instability will continue to drive population movement from afflicted regions. Conflict and crises will also continue to displace large numbers of people. Such movement is likely to occur in regions of sub-Saharan Africa and Asia (DCDC 2010).

In terms of responses to humanitarian crises, we will witness a world characterised by the diffusion of power. Meeting the challenges of human development will depend increasingly on non-state actors, be they private companies, non-governmental organisations (NGOs), or philanthropic institutions. Non-state actors, in particular national and transnational civil society networks and private corporations, will play a critical role in the coming decades. Their power and influence will be greater than that of many states and may lead to new forms of governance and civic action. But not all contributions by private actors will be positive: extremist non-state actors are likely to present a threat to the well-being of human communities (ESPAS 2012).

The rising power of non-state actors vis-à-vis the state is a central theme examined from several perspectives. Concurrent with the shift in power among nation-states, the relative power of various non-state actors—including businesses, tribes, religious organisations and criminal networks—is increasing. The global political coalition of non-state actors plays a crucial role in securing a new worldwide climate change agreement. In this new connected world of digital communications, growing middle classes and transnational interest groups, politics is no longer local and domestic, and international agendas become increasingly interchangeable (NIC 2008).

The impacts from the empowerment of individual and non-state actors are addressed. In democratic societies, new forms of protest and anti-establishment politics may emerge in response to a growing expectations gap, deepening income disparities and the power shifts that are limiting the action of countries that have been used to acting as major global players. From the security perspective, it is expected that over the next two decades the cyber sphere is likely to become an arena of conflict and tension between states of all political stripes and also between individuals or private companies.

The examination of the role of the individual in future societies goes even further, indicating that the citizens of 2030 will be much more aware of being part of a single human community in a highly interconnected world. This may signal the rise of a new ‘age of convergence.’ Democratic aspirations will tend to be perceived as compatible with, even as facilitating, a greater awareness of national and sub-national cultural identities (ESPAS 2012).

The role of women is also examined. Over the next 20 years, the increased entry and retention of women in the workplace may continue to mitigate the economic impacts of global aging. Examples as disparate as Sweden and Rwanda indicate that countries with relatively large numbers of politically active women place greater importance on societal issues such as healthcare, the environment and economic development. If this trend continues over the next 15-20 years, as is likely, an increasing number of countries could favour social programs over military ones. Better governance also could be a spinoff benefit, as a high number of women in parliament or senior government positions correlates with lower corruption (NIC 2008).

The current economic crisis is referred to as a driver that may reverse the trend of decreasing inequalities due to the emergence of a middle class in Asia, Latin America and also Africa. Overall, however, inequality will tend to increase and poverty and social exclusion will still affect a significant proportion of the world population (DCDC 2010). At the same time, increasing social and economic pressures may undermine liberal institutions and the long-term prospects for greater democratisation (NIC 2008).

The proliferation of modern weapons’ technologies will generate instability and shift the military balance of power in various regions. Nuclear weapons are likely to proliferate. Terrorist groups are likely to acquire and use chemical, biological and radiological or nuclear (CBRN) weapons possibly through organised crime groups (DCDC 2010), but a major conflagration involving CBRN weapons is not likely to happen over the next two decades (ESPAS 2012, NIC 2008).

The possibility of inter-state conflict cannot be discounted entirely. Looking ahead to 2030, the border tensions between China and India over water resources have the greatest potential to disrupt international peace. Conflicts are also foreseen due to current tensions between Algeria and Morocco over the Western Sahara, the problems emerging as a result of the possible collapse of North Korea, and unresolved conflicts in Eastern Europe. Tensions over raw materials may also cause conflict and require new forms of crisis management. Intra-African and trans-regional forced migration due to economic factors, conflicts and environmental degradation will tend to grow. Wars fuelled by nationalism and extremist identity politics, and the associated dangers of mass murder and genocide, will be among the core security challenges of the coming decades (ESPAS 2012).

Despite the emergence of a possible ‘age of convergence’, ideologically driven conflicts are another form that continues to exist. The social tensions caused by intrusive global culture are likely to be most acute amongst those who seek to maintain their indigenous and traditional customs and beliefs, and feel threatened by changes. This is likely to lead to an increasing number of individuals and groups forming around single issues that differentiate them from wider society and becoming marginalised and possibly radicalised. When such conditions exist, particularly when exacerbated by high levels of marginalisation and social exclusion, sections of the populace will develop grievances that may lead to extremism (DCDC 2010).

Urbanisation is also seen as an important trend. By 2040, around 65%, or 6 billion, of the world’s population will live in urban areas, attracted by access to jobs, resources and security. The greatest increases in urbanisation will occur in Africa and Asia. As up to 2 billion people may live in slums, these areas are likely to become centres of criminality and disaffection and may also be focal points for extremist ideologies. Rapid urbanisation is likely to lead to an increased probability of urban, rather than rural, insurgency (DCDC 2010).

In addition, megacities are also highlighted as possible sources of conflicts as well as important future players. By 2030, the fifty greatest megacities in the world will concentrate more resources than most small and middle-income states, and they will demand more autonomy and exert greater power, even taking on a more prominent international role. Preserving humane living conditions in the world’s megacities will be the major challenge facing some states. Cities will also absorb most national security resources (ESPAS 2012).

Trends in innovation and technology are also being examined especially for solutions to the major trends and challenges mentioned above. Technology will provide partial solutions for both adapting to and mitigating the effects of climate change. However, it is unlikely that, by 2040, technology will have produced low emission energy sources capable of providing the majority of the energy demanded. Nevertheless, advances in carbon capture technology are likely to be significant, allowing fossil fuel usage to continue in a limited emission regime using more coal. Despite this, resource competition, carbon pricing, increased energy demand and the limitations imposed by climate change are likely to increase the cost of fossil fuels, stimulating the development of cleaner, renewable energy solutions and nuclear power (DCDC 2010).

However, from a security perspective, technology will also facilitate the organisation of protests and high impact terrorist attacks. The future global environment will be defined by physical, social and virtual networks. The physical system will consist of complex interconnections, including extensive resource pipelines, communication cables, satellites and travel routes. The virtual networks will consist of communications servers linking individuals and objects, many of which will be networked through individual Internet Protocol (IP) addresses. Avenues for protest and opportunities for new and old forms of crime will emerge and may allow hostile groups to form and rapidly create effect (DCDC 2010).

In terms of defence technologies, many states are likely to develop ballistic and cruise missiles capable of delivering CBRN weapons as well as conventional payloads (DCDC 2010). The majority of the technological breakthroughs are likely to be driven by the commercial sector, although technological adaptation in defence will continue at a rapid pace. Nonlethal, directed energy weapons (DEW), space and cyber technologies will be available to a wide variety of actors, both state and non-state (DCDC 2010).

Finally, there is growing demand for multilateral policies in the global and regional arenas for an increasing number of issues from the fight against climate change to disease control. There is, therefore, need for more multilateralism and, arguably, for a larger European role (EU-GRASP).

The Way Forward in European Security Research

In several studies, recommendations address a number of grand challenges from a security perspective, for instance, in the field of energy, the environment or migration. FORESEC, for example, recommends developing a common EU energy security strategy – energy policy is still driven by national-level approaches. FORESEC also recommends a dialogue with the security and intelligence services across the EU as useful input in formulating counter-terrorism legislation at the EU level.

EU-GRASP places special emphasis on the role of the EU in a multi-polar world and recommends that the EU adapt to changing global multilateralism. The EU must be steady in promoting multilateralism as an ideal but extremely flexible in its multilateral practice; it must find ways to engage with legitimate sub-national, multinational and transnational non-state actors and their networks.

In its recommendations, the NATO Security Jam study (Dowdall 2012) focuses on security issues of global concern, managing relations with emerging powers such as establishing a NATO-China Council (NCC) similar to the NATO-Russia Council.

SANDERA produced a long list of suggestions for further research. One suggestion regards the analysis of the portfolio of policy instruments at the EU level in view of defining the potential for strengthening European synergy in defence research.

FORESEC repeats the importance of researching certain definitional and analytical aspects of security (i.e. on societal aspects of security, unintentional threats, external dimension of security and its link to internal security, cultural aspects of terrorism, societal resilience and cultural and social identity). In addition, it suggests assessing impacts of certain challenges on security, i.e. vulnerability of societies in the EU, migration and demographic shifts and security, climate change and security, urbanisation and security.

EFP Mapping Results represent a major step forward in the successful implementation of a new mapping framework (SMART Futures Jigsaw) capable of providing customised forward-looking research and innovation policy intelligence on a wide range of sectors, such as security. Both the Mapping Environment (a web-based platform available online at www.mappingforesight.eu) and our mapping work (1st, 2nd and 3rd EFP Mapping Reports) demonstrate the commitment of EFP to the mapping of FLA practices, players and outcomes. Thus, our FLA mapping work will almost certainly continue beyond EFP.

Authors: Effie Amanatidou         effie.amanatidou@mbs.ac.uk                   Rafael Popper             rafael.popper@mbs.ac.uk                         Thomas Teichler thomas.teichler@technopolis-group.com
Sponsors: n.a.
Type: Thematic overview on security
Organizer: MIoIR/MBS, University of Manchester
Duration: n.a.
Budget: n.a.
Time Horizon: 2020-2050
Date of Brief: December 2012

Download EPF Brief No. 248_Drivers, Trends and Grand Challenges in Security

Sources and References

Amanatidou et al. (2012): 2nd EFP Mapping Report on Security Futures. Towards a Fully-Fledged Futures Mapping: Results of Mapping 16 FLA on Security, available for download at http://www.foresight-platform.eu/wp-content/uploads/2011/01/Deliverable_2-4_2nd_EFP_Mapping_Report_Security_Futures.pdf

DCDC – Development, Concepts and Doctrine Centre (2010): Global Strategic Trends – Out to 2040, available for download at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/33717/GST4_v9_Feb10.pdf

Dowdall, Jonathan (2012): The new global security landscape. 10 Recommendations from the 2012 Security Jam, available for download at http://www.securitydefenceagenda.org

ESPAS – European Strategy and Policy Analysis System (2012): Global Trends 2030 – Citizens in an interconnected and polycentric world, available for download at http://www.espas.europa.eu/home/

EU-GRASP, http://www.eugrasp.eu/, last access 15 January 2013

NIC – National Intelligence Council (2008): Global Trends 2025: A Transformed World, available for download at http://www.dni.gov/files/documents/Newsroom/Reports%20and%20Pubs/2025_Global_Trends_Final_Report.pdf

EFP Brief No. 247: Delphi-based Foresight for a Strategic Research Agenda on the Future of European Manufacturing

Tuesday, January 29th, 2013

This follow-up brief recapitulates the foresight exercise of the “Manufacturing Visions – Integrating Diverse Perspectives into Pan-European Foresight (ManVis)” project. Six years after the project was concluded, we look back with the purpose of extracting key lessons learned. We ask what the mid-term and long-term implications of this foresight exercise are, specifically how effectively the Delphi method was deployed to examine a wide spectrum of aspects underpinning the future trajectory of European manufacturing with a particular emphasis on the elaboration of scenarios that provide a broad basis for public discussion on the future of European manufacturing. This follow-up brief draws particularly on the lessons learnt from the organisers’ perspective.

Creating a Vision of the Future of European Manufacturing

The central purpose of the ManVis project was to inform a continuous process of policy development to enhance the competitiveness of the European manufacturing industries through a structured foresight exercise. In particular, the ManVis project was expected to contribute to completing the picture of the socio-economic dimensions that shape the technology dynamics in European manufacturing industries.

The policy relevance of the ManVis project was essentially linked to its role as one of the central strategic foresight studies in which the preparation of a more detailed Strategic Research Agenda (SRA), aimed at paving the way for the definition of research priorities to be implemented via the EU’s future RTD Framework Programmes, was anchored. The ManVis foresight was launched in response and complementary to the results obtained from previous foresight exercises and empirical surveys indicating that manufacturing in Europe needed to strengthen its innovation capacity in an environment where manufacturing is increasingly being relocated to locations outside Europe. Together with the FuTMaN (“Future of Manufacturing in Europe 2015-2020 – The Challenge for Sustainable Development”) project, the ManVis project was a central pillar of the Manufuture European Technology Platform, composed of high-ranking representatives of European industry and the scientific community, that was initiated in December 2004 with the explicit purpose of elaborating specific technology roadmaps, both horizontal and sectoral, to define the priorities for the first calls for proposals of EU’s Sixth Framework Programme (FP6).

In sum, the ManVis project addressed the following questions:

(a) Which technologies will be relevant to European manufacturing?

(b) What role will European manufacturing play in a more competitive world?

(c) Is European manufacturing prepared to meet the challenges of knowledge-based manufacturing?

(d) Which visions and challenges emerge for European manufacturing?

The ManVis Foresight Approach:
Delphi and Demand-side Scenarios

Delphi is a long-established methodology to create consensus among a wide range of opinions as a basis for developing an informed view on visions and alternatives in the setting of priorities in controversial or complex fields of science and technology policy. The ManVis Delphi survey collected the views of more than 3,000 manufacturing experts in 22 European countries as well as those of stakeholders and overseas experts that were collected during workshops and through interviews.

The Delphi survey covered developments of all relevant aspects of manufacturing from technological dynamics to organisational concerns and issues related to sector-specific developments. In parallel to the survey, scenarios on the future development of the demand side of manufacturing were elaborated.

Flexible Automation Instead of Unmanned Factory

The following key messages on technological dynamics in European manufacturing were derived from the ManVis Delphi survey:

(a) Micro-electromechanical devices, smart materials and products using nano-coatings represent long-term developments of new types of products with the potential to disrupt markets.

(b) New manufacturing technology principles, such as bottom-up manufacturing technologies are only expected in the long run. Manufacturing technologies using biotechnologies to create and manipulate inorganic material and products, such as nano-manufacturing, should be on the long-term “radar” of RTD policy.

(c) Micro-electromechanical systems (MEMS) as well as flexible organisation and automation strategies combined in reconfigurable manufacturing systems supporting flexible business strategies are important topics on the short-term research agenda. However, as a particular aspect, the experts surveyed viewed the unmanned factory with skepticism. Instead, they forecast that humans working with flexible automation solutions will play an important role in creating flexibility.

(d) Only long-term automation visions comprise human-machine interfaces such as man-machine speech recognition, self-learning systems and co-bots.

From these key messages the following implications were derived for the role of manufacturing research in combining the long-term horizon in technology trajectories with the short-term needs of firms to innovate successfully: Basic manufacturing research needs to prepare for new challenges, whereas applied manufacturing research should focus on the adaptation and transformation of existing technologies and organisational processes. Considering the functions of manufacturing research, it has been suggested that these key messages on future technology dynamics be discussed using the concept of the combined science-technology cycle of innovation (see Figure 1).
bild1

Figure 1: Manufacturing-related technologies on the sci-ence-technology cycle for macro innovations (Source: ManVis Report No. 3, Delphi interpretation report)

Integrating Non-technological Aspects

The ManVis Delphi survey covered many aspects of knowledge-based manufacturing related to the working environment. In particular, organisational concerns as they are linked to new challenges of product development were examined. In one of the interviews conducted for this follow-up, however, one of the organisers of the foresight process highlighted that – although the ManVis project was considered a “creative pool” for the construction of the Manufuture platform – contributors to the platform were skeptical concerning several of the organisational challenges. This was explained by a lack of interest in issues of work organisation at the company level, in particular on part of the predominantly larger industrial firms represented on the platform (SMEs were not represented). In addition, the organisers stated that the ManVis foresight contributed greatly to the integration of non-technological aspects in the debate on the future drivers shaping technological dynamics and on the demand for skills and competencies.

Furthermore, the interviewee argued that the Delphi results had the intended wide-ranging impact because the survey did not focus on sector issues alone. Although this impact was important in consolidating the field of manufacturing research, the foresight results were not followed up by more in-depth indicator-based (e.g. patents) research with a greater focus on sectoral issues. This was, however, not considered a methodological constraint but rather a weakness in following up on the Delphi results.

In addition, the organisers mentioned two methodological aspects as particularly important in shaping the results of the Delphi survey:

(a) The organisers’ interventions during several workshops at the national level, held to prepare the Delphi survey, played a central role in condensing the themes and elaborating the Delphi statements. As in any Delphi survey, the heterogeneity of the participants assured the validity of the results. In particular, the responses to the survey highlighted the facilitator’s role in coordinating the pool of heterogeneous expertise coming from a great diversity of technological and non-technological fields during the initial workshop, at which a list of 100 statements on a wide range of manufacturing topics was generated, as very important for the final outcome of the Delphi process.

(b) With regard to the stability of the responses to obtain a consensus among the participating experts, the summary feedback of aggregated responses of the second round did not generate any significant new changes. Under efficiency considerations, it could therefore be argued that the survey administration could have used statistical methods to analyse the data from the first round to assess whether any subsequent rounds were needed and, if not, terminate data collection after the first round.

Direct and Indirect Achievements of the ManVis Foresight

The ManVis Delphi survey results provided a broad basis for public discussion on the future of manufacturing in Europe. In particular, by complementing previous foresight studies intended to improve the self-understanding of the European manufacturing industry, it constituted an important pillar in the development of a strategic manufacturing research agenda at the European level. Several of the issues that were highlighted by ManVis, such as the need to explore the implications of user-driven innovation for manufacturing systems, were taken up in FP6.

Beyond its intended effects, the ManVis foresight also had some important unintended effects such as making a central contribution to the definition of research needs of the new member states that joined the European Union during the 2004 enlargement. Another central achievement of the ManVis foresight process was also an unintended side effect, namely to involve these new member states in the development of a Strategic Research Agenda on manufacturing in Europe.

Effective Dissemination of the Results under Budget Constraints

Since the financial budget for dissemination activities was cut significantly during the negotiation phase with the European Commission, the ManVis dissemination approach was under strain from the beginning of the project. Nevertheless, the project reported the results of the foresight to a wide audience of industry and governmental stakeholders at the Bled Conference in October 2005. This conference, which would not have been realised without the national resources of the Slovenian ManVis partner, provided a strong signal of interest in and relevance of identifying the manufacturing research needs in the new eastern member states.

Reaching the Policy Level

The ManVis key messages have been disseminated at the policy level to a wide set of stakeholders and actors of the European Commission, the member states, and industry. During the interviews for this follow-up brief, the communication with European policymakers was described as very good and the interaction with the EC as very supportive, in particular with regard to the central goal of feeding the results of the foresight exercise into key European initiatives such as the Manufuture European Technology Platform.

In sum, the outcomes of the Manvis project served to bring manufacturing experts with different national and professional backgrounds together to discuss the visions and the possible paths for securing the future of manufacturing in Europe. The results of the ManVis project have been fed into the EU’s Seventh Framework Programme.

Learning about the Manufacturing Research Needs of the New Member States

It was reported during one interview with the organisers of the foresight that a central achievement of the ManVis project was to involve the new member states in the development of a Strategic Manufacturing Research Agenda at this particular time. While the EC only had partial knowledge about key institutions and actors shaping policy development processes in areas related to manufacturing, it was an important indirect achievement of the ManVis foresight initiative to involve many experts and policy stakeholders from the new member states in defining and assessing the manufacturing research needs at the European level. In this sense, the networking effect, particularly during the Delphi preparation workshops, was highly appreciated by European policy stakeholders because they provided a unique opportunity to get acquainted and build strong relationships with key experts from these countries and to use the foresight initiative to define priorities for the first calls for proposals for the upcoming Seventh Framework Programme.

In this sense, the direct involvement of the new member states in the definition of research topics to be supported was stated as one of the most important, yet unplanned and indirect, contributions of the ManVis foresight process. The research topics thus identified are considered to have real industrial relevance and the potential to produce measurable impacts in terms of marketable products and services or more efficient manufacturing methods in the context of the catch-up process that these countries are undergoing.

Contributions to EU Enlargement

The ManVis foresight process made an important contribution to completing the picture of technology dynamics in manufacturing. At the particular time of realisation, i.e. in the aftermath of the 2004 EU enlargement, the Delphi survey not only set out several possible trajectories for developments of future manufacturing processes and policy scenarios, but it also helped to define the R&D position of 22 EU countries. In the context of the shifting comparative advantages due to the salary increases to be expected particularly in the new member states, the ManVis foresight provided an important platform to learn about manufacturing research priority topics and the adaptations needed at the level of companies and innovation systems. Beyond the identification of research needs, a concrete achievement of the ManVis foresight lies in the strong integration of key stakeholders from both public policy and industry of the new member states in the long-term planning of European research funding for manufacturing.

Authors: Dirk Johann             dirk.johann.fl@ait.ac.at

Elisabetta Marinelli   elisabetta.marinelli@ec.europa.eu

Sponsors: European Commission (Directorate General Research)
Type: International foresight activity (Specific Support Action) covering the enlarged European Union, focusing on the thematic area of manufacturing
Geographic coverage: Europe
Organizer: Fraunhofer ISI Karlsruhe, OPTI,  JRC-IPTS, Cambridge University, IVF Sweden and national correspondents in 22 European countries
Duration: 2003 – 2006
Budget: € 1,500,000
Time Horizon: 2020
Date of Brief: July 2012

Download EPF Brief No. 247_ManVis_Follow-up

Sources and References

Dreher, C. et al. (2005), ManVis Report No. 3 – Delphi Interpretation Report, Deliverable D15, Contract No. NMP2-CT-2003-507139-MANVIS

Dreher, C. et al. (2005), ManVis Report No. 6 – Manufacturing Visions – Policy Summary and Recommendations, Deliverable D17, Contract No NMP2-CT-2003-507139-MANVIS

European Commission (2006), Manufuture Strategic Research Agenda – Assuring the Future of Manufacturing in Europe – Report of the High-level Group, European Commission, Directorate-General for Research: Brussels

Jung-Erceg, P. K. Pandza, H. Armbruster, C. Dreher (2007), “Absorptive Capacity in European Manufacturing: A Delphi Study”, Industrial Management & Data Systems, Vol. 107, 1, 37-51

Link to the original Foresight Brief No. 53 “European Manufacturing Visions – ManVis 2020”: http://www.foresight-platform.eu/wp-content/uploads/2011/04/EFMN-Brief-No.-53-European-Manufacturing-Visions-ManVis-2020.pdf

EFP Brief No. 246: Foresight and STI Strategy Development in an Emerging Economy: The Case of Vietnam

Tuesday, January 29th, 2013

With the purpose of supporting the definition of the Science and Technology Strategy 2011 – 2020 by the Ministry of Science and Technology of Vietnam, a novel approach to policy and strategy development was introduced, combining foresight techniques alongside traditional strategy programming tools. This novel approach is considered useful for application in developing countries with strong planning traditions.

Challenges to STI Policy Definitions in a Developing Country

Vietnam has one of the fastest evolving economies among developing countries. GDP growth was around 7% in the last decade and should continue growing if the country moves beyond the current model based on low labour costs and intensive capital investment. In spite of advances, strengthening competitiveness and productivity presents a key challenge. In social terms, poverty decreased from 58% (1993) to 14% (2008), indicating the capacity of the country to achieve the Millennium Development Goals. There remains, however, a large and increasing income gap. Advances in education and health have been important, but problems of coverage and quality associated to the services provided also remain as challenges.

Recognising the importance of science, technology and innovation (STI) as instruments of development, Vietnam has given them high priority and has defined and implemented corresponding policies and strategies for several years. The process followed an approach consistent with the country’s political context, i.e. based on a strong planning culture, a top-down policy approach and weak monitoring and evaluation systems.

The outcomes of this approach have been mixed. Demanding policies and strategies were defined but had a varying degree of success in terms of extent and quality of implementation and impact.

Recognising the challenges imposed by today’s accelerated technological change, the growing complexity of research and innovation, and obvious limitations of traditional approaches used in policy and strategy formulation, Vietnam requested support from UNIDO to formulate the 2011/2020 STI strategy and better meet its development goals.

The Novel Approach to Policy and Strategy Definition

Responding to the above request, the project developed and applied a novel approach to policy and strategy definition by using foresight as a focusing and policy informing tool, aiming to support, step by step, the preparation of a fully-fledged national STI strategy (UNIDO 2010a) and facilitate the institutional embedding of the foresight and strategy process. Very few cases of foresight exercises are known to focus explicitly on the future shaping of the whole STI system.

The application of the novel approach to shape the STI system requires its components and functions to be explicitly identified. On this basis, it is of crucial importance to ensure, first of all, an effective and efficient operation of the STI system in structural terms (“structural priorities”). More specific priorities can only be tackled if the main STI system functions operate properly.

A second element playing an important role in the context of the definition of policy and strategy are three types of thematic priorities on which to concentrate efforts beyond structural ones: key science domains, technology areas and application fields.

A third element concerns time. Any policy or strategy should target a given time frame, and the targets defined within this horizon should be both challenging and achievable while steps towards defining them need to be clearly defined.

Finally, foresight and STI policy strategy development should be embedded in a comprehensive framework of policy definition.

The approach combines thematically focused and systemic-structural foresight activities, on the one hand, and STI strategy propositions, on the other, implemented in a co-evolutionary manner:   

  • Foresight activities with the purpose of exploring the future development of the STI system at the national level and for specific key technologies, combining exploratory and normative approaches, and devising options and roadmaps for future action.
  • STI strategy propositions to “translate” the findings of foresight into position papers that can be easily fed into the development and formulation of the actual STI strategy. In turn, insights generated in the context of the STI strategy can be fed back into the foresight exercise.

In this approach, foresight activities and the development of the STI policy and strategy are closely intertwined, as shown in Figure 1.

246_bild1

Figure 1: Proposed Methodological Approach

To ensure a timely transfer of the knowledge generated by the foresight activities into the STI strategy development process, interfaces between the two processes must be carefully designed. Cross-membership between the working groups in charge of foresight and strategy development respectively is an important transfer mechanism, as is the preparation of well-fitted and targeted input papers (position papers) to feed strategy development at key points in time. For the application of the novel methodology five phases can be foreseen, as follows:

Phase 1: Analysis, positioning and exploration of the STI system

In this phase, the relative performance of the STI system is analysed, a preliminary SWOT analysis constructed, and the main current policies and strategies assessed in order to capture the country’s present situation. This phase also explores trends related to contextual local and international developments and drivers that are likely to affect the country’s STI system in the coming years; from these trends and drivers, first exploratory scenarios can then be constructed.

 

On top of these exploratory scenarios, a so-called “success scenario” needs to be developed in order to obtain a first normative orientation and a set of criteria to determine what a desirable future for the country’s STI system might look like. The success scenario also provides the basis for specifying criteria for the selection of technology areas to be analysed in more depth later in the process.

The result of this phase is resumed into a first informing position paper”, which is then fed into the strategy team.

Phase 2: Deepening of the exploration of the STI system using Delphi methodology

The second phase deepens the exploration of the STI system by way of a Delphi enquiry, which is used as a means to interact extensively with the expert and stakeholder communities and to collect further inputs and feedback on three main aspects: a) the trends identified, b) the exploratory and success scenarios developed for the STI system together with their main structural characteristics and deficits, and c) main technology areas of importance to the country.

The Delphi can be implemented in four main blocks: a) scenario assessment and perspectives on success in STI, b) national and international context of the STI system, c) structural challenges in the STI system and d) potential technology areas. As Delphi surveys are difficult to carry out in many developing economies, other types of consultative foresight techniques may be used as alternative options.

The assessments from the Delphi can then be analysed and interpreted in the light of the currently envisaged objectives and targets of the national development plan and strategy in order to trigger a debate to what extent there is actually the systemic capacity in place to achieve what has been formulated as targets.

This phase serves as the basis for preparing a second position paper to provide a deepened SWOT analysis of the STI system, together with first views on possible technology areas to focus on in the next module.

Phase 3: Exploring key technology innovation systems

This phase takes a limited number (5-6) of promising technology areas as its starting point. Based on suggestions from the second position paper and close interaction with the STI strategy drafting team, these areas can be defined with a view to achieving important socio-economic development goals. Apart from identifying and assessing key technologies in these areas, this analysis aims at exploring the systemic requirements that the area-specific STI systems in which these key technologies are embedded have to meet in order to ensure their successful development and application.

The key technology (4 to 5 per area) analysis can be based mainly on panel work and possibly on interviews with additional key experts. Depending on a country’s specific situation, criteria for the selection of key technologies could be, for instance, their relevance to industrial application and to the positioning of the country in international production networks, the relative strength of the country in this key technology or the potential to become an autonomous leader in this key technology as contrasted with being dependent on critical imports.

A third position paper takes into account the findings of this phase and elaborates on the opportunities and requirements in a selected set of key technology innovation systems

Phase 4: Vision and roadmap for STI systems

This phase moves from the analytical and exploratory perspectives adopted in the previous phases towards a more normative perspective on what a desirable future of the STI system could look like, and what steps may be needed to get there.

The panels established in the previous step develop visionary outlooks for the key technology innovation systems they have been dealing with. Building on the insights on requirements for key technology innovation systems, they sketch how these systems should look like within a given time horizon. Similarly, a previously established crosscutting panel should work on a vision at the level of the STI system.

Some harmonisation of the different visions is achieved by a joint workshop of the different panels because the STI system visions should build on sector visions and the sector visions should be framed by the STI system vision. The different visions can finally be compiled in a single document.

A final and fourth position paper can then be prepared to feed the visionary and roadmap-related elements into the policy and strategy development process.

Phase 5: Future-oriented agreements and their implementation

The final phase of the process deals with the conclusion of concrete agreements between actors and stakeholders to undertake specific joint action in line with the STI policy and strategy developed. This phase is already about making first steps towards the implementation of the strategy.

Application of the Novel Approach to the 2011 – 2020 Vietnamese STI Strategy

The main results of the application of this novel approach to the Vietnamese case, between 2010 and 2011 can be resumed as follows:

Phase 1: A STI system and policy diagnosis was obtained (UNIDO 2010b), and a trend analysis and scenarios completed (UNIDO 2010c). A first position paper informed the strategy drafting team on the main results of this phase, emphasising the internal trends and challenges to Vietnam.

Phase 2: A Delphi inquiry was conducted by e-mail, which received little response and was not used for further analysis. This situation restricted the exploration of key technology areas and technology innovation systems to be undertaken in Phase 3, but did lead to their discussion in the strategy panels as reflected in the first draft of the strategy prepared by the Ministry of Science and Technology of Vietnam (MOST) in mid-2011.

Considering the above limitations, position paper 2 put its emphasis on exploring the possibility of realising a success scenario and provided guidelines on how to achieve it.

Further considering that a draft strategy had already been developed by this time, position paper 3 provided inputs that would allow to better embed it into the Five-year National Development Plan (NDP) (2011–2015) that was being prompted for approval.

Position paper 4 identified key STI inputs needed to advance prioritised economic and social sectors, based on a set of priorities put forward in the draft version of the STI strategy of September 2011. The main idea of this position paper was to ensure that the STI strategy would be embedded in the NDP, drawing on the “vision” that had been constructed as part of the latter.

MOST adopted the STI Strategy in April 2012 with some of the limitations that were characteristic of previous strategies, such as its still too general character and lack of more specifically targeted priorities. Nonetheless, the novel approach to policy and strategy definition introduced in the project did incorporate several elements of importance into the final version of the document.

Parallel Foresight and Policy Design Process Most Promising

The social and economic developments that have taken place in Vietnam in the past years have provided a facilitating framework for a novel approach to STI decision-making, combining foresight tools with traditional programming methods.

The rather strong cultural context for policy definitions in Vietnam has limited the full application of the adopted methodological approach, but the process served as a powerful learning technique in the institutions dealing with policy and strategy.

Because of the complexity in the definition of public policies in fostering and strengthening indigenous capabilities to use, adapt, modify or create technologies and scientific knowledge, a parallel foresight and policy design process seems to be one of the most promising approaches to improve decision-making processes in developing countries.

Authors: Carlos Aguirre-Bastos   csaguirreb@gmail.com

Matthias Weber            matthias.weber@ait.ac.at

Sponsors: United Nations Industrial Development Organization, National Institute for Science and Technology Policy and Strategic Studies, Ministry of Science and Technology of Vietnam
Type: National foresight exercise
Organizer: UNIDO and AIT Austrian Institute of Technology
Duration: 2010 – 2011
Budget: n.a.
Time Horizon: 2020
Date of Brief: December 2012

Download EPF Brief No. 246_Foresight and STI Strategy Development for Vietnam

Sources and References

UNIDO (2010 a) Inception Report – Doc. STI-WP0-MOD2-001-v7-010610; 01 June 2010 (prepared by Matthias Weber)

UNIDO (2010 b) The Science, Technology and Innovation System and Policy Analysis – Doc. STI-wp1-MOD3-001-V.4-020610; 02 June 2010 (prepared by Carlos Aguirre-Bastos)

UNIDO (2010c) Trend Analysis and Scenario Development of the Vietnamese STI System – Doc. STI-WP1-MOD5- 012-V.1 – 151210 (prepared by José Miguel Fernandez Güell)

EFP Brief No. 245: Trend Database Design for Effectively Managing Foresight Knowledge

Tuesday, January 29th, 2013

In 2010, the German Federal Government launched one of its largest research initiatives in the area of logistics and supply chain management with the central aim to secure tomorrow’s individuality, in the sense of mobility and distribution, with 75% of today’s resources. One of the projects, the ‘Competitiveness Monitor’ (CoMo) develops an innovative, webbased foresight platform, which supports strategic decision-making and contingency planning as well as competitive and environmental intelligence.

Sophisticated Architecture to Support Foresight Processes

The development of an innovative Trend Database (TDB) is part of an extensive cluster initiative that was launched by the German Federal Ministry of Education and Research in June 2010. The ‘Effizienz­Cluster LogistikRuhr’, synonym for leading-edge cluster in logistics and mobility in the German Ruhr area, aims to boost innovation and economic growth in Germany by bridging the gap between science and industry (BMBF 2010). The cluster involves 130 companies and research institutes that cooperate in a strategic partnership in order to shape a sustainable future for the region and beyond. The determined challenges of future logistics (e.g., urban supply) are currently being addressed in more than 30 joint research projects. In this way, the cluster contributes to finding new ways to growth and employment that gear not only Germany’s but the European Union’s economy towards greater sustainability (see, e.g., Schütte 2010).

One of the joint research projects is developing an innovative foresight tool, the Competitiveness Monitor (CoMo), which will contribute to the validity and robustness of foresight activities by digitally combining quantitative and qualitative forecasting methods. The CoMo aims to enhance cooperation in multi-stakeholder environments through a fully integrated web-based software solution that utilises existing knowledge and users’ conceptions. The tool links several applications for forward-looking activities as well as the development, processing and storage of foresight knowledge. The goal is to provide decision-makers from business, academia and government institutions with a valid knowledge base for future-robust decision-making.

 

The CoMo consists of three innovative foresight tools – Trend Database, Prediction Market app and a Future Workshop (“Zukunftswerkstatt”) app – which are implemented in an IT-based Futures Platform (Figure 1). The Futures Platform will serve as login portal in form of a dashboard and can be adapted by each user according to his or her individual interest. Within the TDB, future-oriented numbers, data, and facts on specific logistics-related topics or technologies can be stored or collaboratively developed by its users. Furthermore, the TDB shall not only include trend-related data but also handle weak signals, wildcards and disruptive events. The high practicability of the Trend Database is planned to ensure filtering of the query results through an intelligent algorithm.
245_bild1
Figure 1: Conceptual framework of the Competitiveness Monitor

Development of Trend Database Requirements

In the beginning of the TDB development process, we analysed and evaluated eight relevant TDBs in order to identify the state of the art. After that, we conducted several creative workshops and interviews with more than 40 interdisciplinary cluster partners and futures researchers to identify further requirements.

First of all, we compiled an extensive list of requirements and constraints in several participatory workshop sessions, which are considered relevant to our TDB. After conducting a requirement analysis according to the ‘Volere Requirements Specification Template’ (Robertson and Robertson 2006), we derived four categories and adapted them to the CoMo project concerns: (1) functional requirements, (2) non-functional requirements, (3) design requirements and (4) constraints. Whereas functional requirements describe the fundamental functions and processing actions a product needs to have, non-functional requirements are the properties that they must have, such as performance and usability. We clustered the final long list of 160 collected requirements in 9 categories as presented in the following:
245_bild2

In the next step of the TDB development process, we conducted a stakeholder analysis in order to generate possible use cases. Different use cases were defined according to the specific needs and organisational structures of the CoMo project partners and members of the EffizienzCluster involved. In doing so, we were able to conceptually test and complement the identi-fied requirements and constraints.
Finally, we revised the results of the trend database analysis and specification analysis and summarised our research results in a specification sheet, which now provides a clear and structured collection of TDB features for the programming process of a prototype.

Challenges and Differentiators

For the identification of the key challenges, we evaluated best practices and innovative features of existing TDB concepts regarding their applicability and efficiency. For this purpose, we focused on the surrounding conditions and primary objectives of the presented TDB, determined by its purpose within the CoMo and the cross-project objectives of the leading-edge cluster. We identified four main challenges of utilising a TDB, which we will discuss in the following: (1) extent and quality of trend information, (2) cooperation within the TDB community, (3) linking mechanisms and (4) creating incentives for users.

Extensiveness and Quality of Trend Information

Most of the TDBs analysed provide an extensive set of opportunities to describe and evaluate a certain trend or future signal. Since it is hardly possible to decide without further knowledge about the user’s purpose or what the right amount of information is, we continued to compare the ways in which future knowledge is contributed to the TDB. We see two main strategies within the examined sample of TDBs: (1) input from experts and futures researchers or (2) active participation of the user community. In the latter strategy, information is revised and complemented by the community, which more accurately meets the CoMo objectives of realising cluster potentials. However, in case of low interest in a certain trend, the information may remain fragmentary and lack reliability.

The combination of both strategies seems to be promising since it ensures certain quality standards as the information provided is subject to scrutiny from two sides: an expert review process, on the one hand, and user participation, on the other. Against the background of all our analyses, we propose that providing a certain amount of trend specifications (e.g., short description, key words, time horizon etc.) should be obligatory when entering a trend into the TDB. In addition, the CoMo TDB is planned to offer a regulator for the ‘level of aggregation’, which will enable users to constrain the trend search results regarding time, geography, economic scale and further aspects.

Cooperation within the TDB community

The so-called “wisdom of the crowds” is based on the logic that many people (a “crowd”) know more than single individuals (Surowiecki 2004). Consequently, the sharing of knowledge can improve the knowledge basis of different stakeholders as well. Therefore, it is useful – particularly in dealing with future-relevant knowledge – to motivate users to co-operate and to develop their knowledge further.

Regarding our TDB architecture, users shall therefore evaluate trends in terms of impact or likelihood, participate in surveys or add further evidence or aspects to existing future-oriented knowledge (Kane and Fichman 2009). Especially the stakeholders of the leading-edge cluster, who are aiming to improve their competitive situation through collaboration, are interested in sustaining topicality, validity and relevance of future-relevant knowledge in the trend database. Our TDB is expected to contribute to an improved quality of data and provide a more accurate basis for decision-making processes.

Linking Mechanisms

The CoMo TDB will be linked in three dimensions. First, the trends within the TDB will be linked among each other. This supports users by providing a more comprehensive causal picture of the future and allows decision-makers to identify early warnings and weak signals. Second, the trend database is linked to two other CoMo apps: the Prediction Market and the Future Workshop. Both apps require raw data from the TDB for purposes of evaluation (i.e. prediction markets) or analysis (i.e. future workshops). Furthermore, they define data sources by providing new or evolved future-oriented knowledge, which needs to be re-imported into the TDB. Third, the trend database will be linked to external data pools. Facilitating the idea of linked data, relevant external information can be included, increasing the basis to be drawn on in making future-relevant decisions (Auer and Lehmann 2010). Thereby, we aim to link our dataset intelligently by attaching metadata using the Semantic Web approach. This not only facilitates the process of finding relevant and recent data but also enables identifying related topics.

Motivation of Users

In contrast to the traditional World Wide Web, the application of a Semantic Web offers information that can be sorted by relevance, topicality and quality (Berners-Lee, Hendler et al. 2001). However, the Semantic Web requires the linkage of datasets first. Therefore, users have to be encouraged to tag, for instance, the trend information as good as possible, and the community needs to be motivated to edit and complete the tagging process.

In the process of developing the CoMo TDB, we discussed several concepts and ideas to address the challenges involved in motivating users. One concept that is planned to be applied in the CoMo is the lead users approach (Leimeister, Huber et al. 2009) in which users are incentivized by an awareness of the measurability of their contributions. Considering that most of the existing trend databases use an expert-based concept instead, we infer that this was thought to be the only efficient way of providing and processing future-oriented knowledge so far. However, current tendencies, such as the disclosure of previously protected data (i.e. open source/innovation) or the increasing activity in social networks, suggest that existing concepts need to be adapted to the new requirements forward-looking activities must meet.

Metadata Approach Using the Semantic Web

Future-oriented knowledge as a basis for decision-making is always critical due to its inherent uncertainty. Therefore, innovative concepts and tools need to be developed in order to provide users with the most valid, relevant and up-to-date information possible. With our new TDB concept, we try to acknowledge current challenges such as motivation and collaboration of users, usability of information and modern linkage methods. To meet these challenges, we aim to link our dataset intelligently by attaching metadata using the Semantic Web approach. This not only facilitates finding relevant and recent data but also enables identifying related topics. However, the linkage of the data has to be conducted manually. Thus, motivating users to share their knowledge within the community is essential to provide an accurate and comprehensive picture of the future reflecting the wisdom of the crowd. Finally, we will design our TDB to present future-oriented knowledge in a sufficiently comprehensive and detailed manner with an emphasis on clarity and thereby aim to contribute significantly to the robustness and quality of future decisions.

Authors: Christoph Markmann                christoph.markmann@ebs.edu

Stefanie Mauksch                     stefanie.mauksch@ebs.edu

Philipp Ecken                           philipp.ecken@ebs.edu

Dr. Heiko von der Gracht          heiko.vondergracht@ebs.edu

Gianluca De Lorenzis                G.DeLorenzis@dilotec.de

Eckard Foltin                           eckard.foltin@bayer.com

Michael Münnich                       M.Muennich@brainnet.com

Dr. Christopher Stillings                        christopher.stillings@bayer.com

Sponsors: German Federal Ministry of Education and Research
Type: National foresight project
Organizer: EBS Business School / Center for Futures Studies and Knowledge Management (CEFU)
Duration: 2010 – 2013
Budget: € 2,300,000
Time Horizon: Long-term
Date of Brief: October 2011

Download EFP Brief No. 245_Foresight Trend Database Design

Sources and References

Auer, S. and J. Lehmann (2010). “Creating Knowledge out of Interlinked Data.” Semantic Web Journal 1.

Berners-Lee, T., J. Hendler, et al. (2001). “The Semantic Web.” Scientific American 284(5): 34-43.

BMBF (2010). Germany’s Leading-Edge Clusters. Division for New Innovation Support Instruments and Programmes. Berlin, Bonn, Bundesministerium für Bildung und Forschung / Federal Ministry of Education and Research (BMBF).

Kane, G. and R. Fichman (2009). “The Shoemaker’s Children: Using Wikis for Information Systems Teaching, Research, and Publication.” Management Information Systems Quarterly 33(1): 1-22.

Leimeister, J. M., M. J. Huber, et al. (2009). “Leveraging Crowdsourcing: Activation-Supporting Components for IT-Based Ideas Competition.” Journal of Management Information Systems 26(10): 187-224.

Robertson, S. and J. Robertson (2006). Mastering the Requirements Process, second edition. Amsterdam, Addison-Wesley Professional

Schütte, G. (2010). Speech by. Germany’s Leading-Edge Cluster Competition – A contribution to raising Europe’s profile as a prime location for innovation. State Secretary at the Federal Ministry of Education and Research framework of the European Cluster Conference. European Cluster Conference. Brussels.

Surowiecki, J. (2004). The Wisdom of Crowds, Random House.

Note: The content of this publication is based on the joint research project “Competitiveness Monitor”, funded by the German Federal Ministry of Education and Research (project reference number: 01IC10L18 A). Joint research project partners are Bayer MaterialScience, BrainNet, dilotec, EBS Business School. Responsibility for the content is with the author(s).

EFP Brief No. 244: Survey of Future Market Research and Innovation Needs

Tuesday, January 29th, 2013

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. The WBC-INCO.NET project seeks to promote the bi-regional dialogue on science and technology between the EC, the member states and the Western Balkan countries. The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

Future Research and Market Needs for the Western Balkans Region

This brief presents the results of a survey conducted as part of the WBC-INCO.NET project initiative to support innovation capacities in the Western Balkans region. WBC-INCO.NET partners from the Western Balkans include research and policy stakeholders from the following countries: Albania, Bosnia and Herzegovina, Croatia, FYRo Macedonia, Montenegro, Serbia and Kosovo (under UNSCR 1244). The survey aimed to pinpoint both present and likely future research and market needs as well as identify possibilities for collaboration in the region.

The findings of the survey will support other activities that together will provide a clear overview of the region’s current situation and future needs in regard to innovation. These activities should help to prepare an action plan for further cooperation in innovation between the Western Balkan countries (WBC) and serve to establish closer cooperation between research and innovation stakeholders in the region (i.e. publicly funded researchers and innovative companies). This should include expertise from the industrial sectors and the fields of innovation management and market entry. It should also involve exploring EU programmes, other than FP7, and supporting programmes of other institutions that are directed toward increasing innovation in the WBC.

Survey among Stakeholders

Two questionnaires were jointly designed by the European Commission JRC-IPTS (Seville) and the Ivo Pilar Institute of Social Sciences (Croatia). The questionnaires addressed market and research stakeholders, including selected firms and entrepreneurial researchers, and aimed to identify current and future research and innovation needs in order to support the design of a joint action plan towards 2030.

The methodology employed consisted of five phases:

  1. Initially, a literature review on innovation was conducted to identify important aspects that would have to be taken into account when designing the questionnaires. The selected aspects were:
  2. i) Importance of different stakeholders in the innovation process.
  3. ii) Specific actions that can improve regional cooperation as well as innovation.

iii)   Factors necessary to stimulate regional cooperation divided in human resources, entrepreneurship infrastructure, expert assistance and cooperation between industry and research, fiscal and financial obstacles, and national and local regulations.

  1. iv) Likely outcomes of enhanced regional cooperation.
  2. The first questionnaire was submitted to selected firms in the WB region.
  3. Building on the results of the first questionnaire with the aim to compare them, a second questionnaire was sent to research stakeholders in the region.
  4. A statistical analysis was conducted for both questionnaires and the results were crosschecked.
  5. The results were circulated within the consortia for final refinements.

It must be emphasised that the findings indicate only  potential needs in the region, which need to be refined by further analysis and discussed with industry, research and regional stakeholders, for instance in a workshop for this purpose.

The response rate of the industry questionnaire was low: only 20 firms replied, which nevertheless allowed the team to perform some analyses. The response rate of the researcher questionnaire was higher.

Interesting Results of the Industry Survey

The respondents were asked to assess the importance of 14 stakeholders for firms’ innovation capacities.

Top Three Stakeholders

As the top three stakeholders, the respondents identified:

  1. Employees in the respondents’ enterprise or enterprise group
  2. Professional and industrial associations
  3. Universities and colleges
Bottom Three Stakeholders

The bottom three stakeholders were:

  1. Cluster networks
  2. Suppliers and customers from the WBC region
  3. Venture capital firms/angel investors
Interesting Results of the Researcher Survey

Figure 1 (below) compares the proportion of researchers that ranked various factors influencing university-industry collaborations as highly important. A majority of the researchers assessed all the factors as more important in the future than today, which suggests that the researchers feel that other barriers need to be overcome in the short-term.

Figure 1. Important factors for university-industry cooperation today and 2030
244_bild1

Industry and Research: Diverging Views on the Needs for Research and Innovation

Based on the results of the surveys in the field of research, the following points can be highlighted:

  • The most important actions to improve cooperation between business and research in the region, both in the present and in the future are (1) more funding for knowledge/technology transfer activities and expert consultations and (2) more funding for collaborative research between universities and businesses.
  • Whilst state and local regulations as well as expert assistance seem critical for innovative performance today, investment in human resources and infrastructure emerge as crucial to enhance cooperation in the future.
  • The analysis of the questionnaire administered to both research and business stakeholders reflects disagreement as to which potential outcomes of enhanced regional innovation collaboration are to be considered more relevant. The only outcome that both equally perceive as important is access to new markets. This suggests the need to build both more awareness of new opportunities and (new) capabilities in the region. To this end, improved communication, including the respective infrastructure (e.g. ICT), and mobility seem to be critical.
  • The answers industry and researchers give when asked about the most important actions to improve regional innovation activities differ substantially. The three actions least important to industry are among those actions that the participating researchers considered most important:
    • common programmes for mobility of personnel in the region between universities and business to establish cooperation between science and industry,
    • a consistent legal framework aimed at facilitating foreign direct investments in the WB region, and
    • the progressive liberalisation and mutual opening of the service market within the WB region.

The only action that business and researchers both perceive as important (ranking third for both of them) is developing regional initiatives for large infrastructural projects. Such an outcome highlights the need for enhanced communication and understanding between these two groups of stakeholders in order to achieve a joint agenda.

  • Finally, of the research topics identified by industry as important to trigger regional innovation through collaboration, the ones that the researchers also appear to be interested in are
    • the environment,
    • information management systems: monitoring through ICTs and the automation of information management systems, artificial intelligence and agent-based software and
    • new approaches and frameworks to enhance foreign direct investment and cross-regional investments in the region.

Diverging Views  between Industry and Research

Hot Policy Topics:
Need for More Technology Transfer

A strong divergence between the views of industry and research in terms of present and future actions as well as areas for collaboration has emerged. This call for policy measures aims at improving communication between the two groups of stakeholders to facilitate the move towards a common agenda.

Presently, a strong need is also felt for policies that provide more funding for knowledge/technology transfer activities and expert consultations as well as collaborative research between universities and businesses.

Action Needed: Improving Innovation Capacities

This exercise is part of a wider project that aims at defining a long-term strategy for scientific collaboration within the Western Balkan countries and between them and Europe.

The critical issues that emerged in the survey call for further analysis and discussion. In particular, it is suggested that industry and the research community gather to discuss the following aspects:

  • Investments in knowledge and technology sharing, expert consultations and collaborative research
  • Decrease in regulation
  • Strengthening of human resources
  • Improvements in infrastructure (including ICT)
  • Building of awareness of innovation benefits
  • Fostering of mobility
  • Enhancement of communication between different stakeholders
Shaping the Future: Critical Factors

This project was part of the larger WBC-INCO.NET project, which ultimately will develop a joint action plan for the WBC. The results will feed directly into the process at three levels:

  1. The development of a common vision for the WBC: This vision should set the longer-term objective(s), which are to be defined by authoritative experts in the field and endorsed politically.
  2. The translation of the vision into a strategic research agenda (SRA), which entails specific, measurable, achievable, realistic and time-based (SMART) objectives. The strategic research agenda should make the vision operational and link the implementation of the vision’s objectives with existing competences in Europe (or in the region) and new ones to be developed.
  3. The implementation of the SRA: All participating public authorities should gear their programs and funding towards the implementation of the SRA in a coherent manner. The full toolbox of public research instruments should be explored and used to implement the individual joint programming initiatives. Regular monitoring and evaluation of progress against the SMART objectives should be ensured and the results reported to the political level.
Authors: Cristiano Cagninc         cagnin@cgee.org.br

Elisabetta Marinelli       Elisabetta.Marinelli@ec.europa.eu

Sponsors: European Commission
Type: Quantitative survey

(The survey was conducted as part of the WBC-INCO.NET project)

Organizer: EC – Joint Research Centre – Institute of Prospective Technological Studies
Duration: 2008-2012
Budget: n.a.
Time Horizon: 2030
Date of Brief: July 2012

Download EFP Brief No. 244_Research and Innovation Needs in the Western Balkan Countries

Sources and References

For sources and references see the WBC-INCO.NET website:

http://wbc-inco.net/

The brief is based on the report by IPTS in collaboration with IVO-PILAR:

http://wbc-inco.net/object/document/7423